// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014 Emilio López * Emilio López */ #include #include #include #include #include #include #include #include #include #include #include #include #include "virt-dma.h" /** Common macros to normal and dedicated DMA registers **/ #define SUN4I_DMA_CFG_LOADING BIT(31) #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25) #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23) #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21) #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16) #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9) #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7) #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5) #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type) /** Normal DMA register values **/ /* Normal DMA source/destination data request type values */ #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16 #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1) /** Normal DMA register layout **/ /* Dedicated DMA source/destination address mode values */ #define SUN4I_NDMA_ADDR_MODE_LINEAR 0 #define SUN4I_NDMA_ADDR_MODE_IO 1 /* Normal DMA configuration register layout */ #define SUN4I_NDMA_CFG_CONT_MODE BIT(30) #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27) #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22) #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15) #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6) /** Dedicated DMA register values **/ /* Dedicated DMA source/destination address mode values */ #define SUN4I_DDMA_ADDR_MODE_LINEAR 0 #define SUN4I_DDMA_ADDR_MODE_IO 1 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3 /* Dedicated DMA source/destination data request type values */ #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1 #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1) /** Dedicated DMA register layout **/ /* Dedicated DMA configuration register layout */ #define SUN4I_DDMA_CFG_BUSY BIT(30) #define SUN4I_DDMA_CFG_CONT_MODE BIT(29) #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28) #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15) #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12) /* Dedicated DMA parameter register layout */ #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24) #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16) #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8) #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0) /** DMA register offsets **/ /* General register offsets */ #define SUN4I_DMA_IRQ_ENABLE_REG 0x0 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4 /* Normal DMA register offsets */ #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20) #define SUN4I_NDMA_CFG_REG 0x0 #define SUN4I_NDMA_SRC_ADDR_REG 0x4 #define SUN4I_NDMA_DST_ADDR_REG 0x8 #define SUN4I_NDMA_BYTE_COUNT_REG 0xC /* Dedicated DMA register offsets */ #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20) #define SUN4I_DDMA_CFG_REG 0x0 #define SUN4I_DDMA_SRC_ADDR_REG 0x4 #define SUN4I_DDMA_DST_ADDR_REG 0x8 #define SUN4I_DDMA_BYTE_COUNT_REG 0xC #define SUN4I_DDMA_PARA_REG 0x18 /** DMA Driver **/ /* * Normal DMA has 8 channels, and Dedicated DMA has another 8, so * that's 16 channels. As for endpoints, there's 29 and 21 * respectively. Given that the Normal DMA endpoints (other than * SDRAM) can be used as tx/rx, we need 78 vchans in total */ #define SUN4I_NDMA_NR_MAX_CHANNELS 8 #define SUN4I_DDMA_NR_MAX_CHANNELS 8 #define SUN4I_DMA_NR_MAX_CHANNELS \ (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS) #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1) #define SUN4I_DDMA_NR_MAX_VCHANS 21 #define SUN4I_DMA_NR_MAX_VCHANS \ (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS) /* This set of SUN4I_DDMA timing parameters were found experimentally while * working with the SPI driver and seem to make it behave correctly */ #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \ (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \ SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \ SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \ SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2)) /* * Normal DMA supports individual transfers (segments) up to 128k. * Dedicated DMA supports transfers up to 16M. We can only report * one size limit, so we have to use the smaller value. */ #define SUN4I_NDMA_MAX_SEG_SIZE SZ_128K #define SUN4I_DDMA_MAX_SEG_SIZE SZ_16M #define SUN4I_DMA_MAX_SEG_SIZE SUN4I_NDMA_MAX_SEG_SIZE struct sun4i_dma_pchan { /* Register base of channel */ void __iomem *base; /* vchan currently being serviced */ struct sun4i_dma_vchan *vchan; /* Is this a dedicated pchan? */ int is_dedicated; }; struct sun4i_dma_vchan { struct virt_dma_chan vc; struct dma_slave_config cfg; struct sun4i_dma_pchan *pchan; struct sun4i_dma_promise *processing; struct sun4i_dma_contract *contract; u8 endpoint; int is_dedicated; }; struct sun4i_dma_promise { u32 cfg; u32 para; dma_addr_t src; dma_addr_t dst; size_t len; struct list_head list; }; /* A contract is a set of promises */ struct sun4i_dma_contract { struct virt_dma_desc vd; struct list_head demands; struct list_head completed_demands; bool is_cyclic : 1; bool use_half_int : 1; }; struct sun4i_dma_dev { DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS); struct dma_device slave; struct sun4i_dma_pchan *pchans; struct sun4i_dma_vchan *vchans; void __iomem *base; struct clk *clk; int irq; spinlock_t lock; }; static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev) { return container_of(dev, struct sun4i_dma_dev, slave); } static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan) { return container_of(chan, struct sun4i_dma_vchan, vc.chan); } static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd) { return container_of(vd, struct sun4i_dma_contract, vd); } static struct device *chan2dev(struct dma_chan *chan) { return &chan->dev->device; } static int convert_burst(u32 maxburst) { if (maxburst > 8) return -EINVAL; /* 1 -> 0, 4 -> 1, 8 -> 2 */ return (maxburst >> 2); } static int convert_buswidth(enum dma_slave_buswidth addr_width) { if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES) return -EINVAL; /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */ return (addr_width >> 1); } static void sun4i_dma_free_chan_resources(struct dma_chan *chan) { struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); vchan_free_chan_resources(&vchan->vc); } static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv, struct sun4i_dma_vchan *vchan) { struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans; unsigned long flags; int i, max; /* * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones */ if (vchan->is_dedicated) { i = SUN4I_NDMA_NR_MAX_CHANNELS; max = SUN4I_DMA_NR_MAX_CHANNELS; } else { i = 0; max = SUN4I_NDMA_NR_MAX_CHANNELS; } spin_lock_irqsave(&priv->lock, flags); for_each_clear_bit_from(i, priv->pchans_used, max) { pchan = &pchans[i]; pchan->vchan = vchan; set_bit(i, priv->pchans_used); break; } spin_unlock_irqrestore(&priv->lock, flags); return pchan; } static void release_pchan(struct sun4i_dma_dev *priv, struct sun4i_dma_pchan *pchan) { unsigned long flags; int nr = pchan - priv->pchans; spin_lock_irqsave(&priv->lock, flags); pchan->vchan = NULL; clear_bit(nr, priv->pchans_used); spin_unlock_irqrestore(&priv->lock, flags); } static void configure_pchan(struct sun4i_dma_pchan *pchan, struct sun4i_dma_promise *d) { /* * Configure addresses and misc parameters depending on type * SUN4I_DDMA has an extra field with timing parameters */ if (pchan->is_dedicated) { writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG); writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG); writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG); writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG); writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG); } else { writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG); writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG); writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG); writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG); } } static void set_pchan_interrupt(struct sun4i_dma_dev *priv, struct sun4i_dma_pchan *pchan, int half, int end) { u32 reg; int pchan_number = pchan - priv->pchans; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG); if (half) reg |= BIT(pchan_number * 2); else reg &= ~BIT(pchan_number * 2); if (end) reg |= BIT(pchan_number * 2 + 1); else reg &= ~BIT(pchan_number * 2 + 1); writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); spin_unlock_irqrestore(&priv->lock, flags); } /* * Execute pending operations on a vchan * * When given a vchan, this function will try to acquire a suitable * pchan and, if successful, will configure it to fulfill a promise * from the next pending contract. * * This function must be called with &vchan->vc.lock held. */ static int __execute_vchan_pending(struct sun4i_dma_dev *priv, struct sun4i_dma_vchan *vchan) { struct sun4i_dma_promise *promise = NULL; struct sun4i_dma_contract *contract = NULL; struct sun4i_dma_pchan *pchan; struct virt_dma_desc *vd; int ret; lockdep_assert_held(&vchan->vc.lock); /* We need a pchan to do anything, so secure one if available */ pchan = find_and_use_pchan(priv, vchan); if (!pchan) return -EBUSY; /* * Channel endpoints must not be repeated, so if this vchan * has already submitted some work, we can't do anything else */ if (vchan->processing) { dev_dbg(chan2dev(&vchan->vc.chan), "processing something to this endpoint already\n"); ret = -EBUSY; goto release_pchan; } do { /* Figure out which contract we're working with today */ vd = vchan_next_desc(&vchan->vc); if (!vd) { dev_dbg(chan2dev(&vchan->vc.chan), "No pending contract found"); ret = 0; goto release_pchan; } contract = to_sun4i_dma_contract(vd); if (list_empty(&contract->demands)) { /* The contract has been completed so mark it as such */ list_del(&contract->vd.node); vchan_cookie_complete(&contract->vd); dev_dbg(chan2dev(&vchan->vc.chan), "Empty contract found and marked complete"); } } while (list_empty(&contract->demands)); /* Now find out what we need to do */ promise = list_first_entry(&contract->demands, struct sun4i_dma_promise, list); vchan->processing = promise; /* ... and make it reality */ if (promise) { vchan->contract = contract; vchan->pchan = pchan; set_pchan_interrupt(priv, pchan, contract->use_half_int, 1); configure_pchan(pchan, promise); } return 0; release_pchan: release_pchan(priv, pchan); return ret; } static int sanitize_config(struct dma_slave_config *sconfig, enum dma_transfer_direction direction) { switch (direction) { case DMA_MEM_TO_DEV: if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) || !sconfig->dst_maxburst) return -EINVAL; if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) sconfig->src_addr_width = sconfig->dst_addr_width; if (!sconfig->src_maxburst) sconfig->src_maxburst = sconfig->dst_maxburst; break; case DMA_DEV_TO_MEM: if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) || !sconfig->src_maxburst) return -EINVAL; if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) sconfig->dst_addr_width = sconfig->src_addr_width; if (!sconfig->dst_maxburst) sconfig->dst_maxburst = sconfig->src_maxburst; break; default: return 0; } return 0; } /* * Generate a promise, to be used in a normal DMA contract. * * A NDMA promise contains all the information required to program the * normal part of the DMA Engine and get data copied. A non-executed * promise will live in the demands list on a contract. Once it has been * completed, it will be moved to the completed demands list for later freeing. * All linked promises will be freed when the corresponding contract is freed */ static struct sun4i_dma_promise * generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest, size_t len, struct dma_slave_config *sconfig, enum dma_transfer_direction direction) { struct sun4i_dma_promise *promise; int ret; ret = sanitize_config(sconfig, direction); if (ret) return NULL; promise = kzalloc(sizeof(*promise), GFP_NOWAIT); if (!promise) return NULL; promise->src = src; promise->dst = dest; promise->len = len; promise->cfg = SUN4I_DMA_CFG_LOADING | SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN; dev_dbg(chan2dev(chan), "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d", sconfig->src_maxburst, sconfig->dst_maxburst, sconfig->src_addr_width, sconfig->dst_addr_width); /* Source burst */ ret = convert_burst(sconfig->src_maxburst); if (ret < 0) goto fail; promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret); /* Destination burst */ ret = convert_burst(sconfig->dst_maxburst); if (ret < 0) goto fail; promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret); /* Source bus width */ ret = convert_buswidth(sconfig->src_addr_width); if (ret < 0) goto fail; promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret); /* Destination bus width */ ret = convert_buswidth(sconfig->dst_addr_width); if (ret < 0) goto fail; promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret); return promise; fail: kfree(promise); return NULL; } /* * Generate a promise, to be used in a dedicated DMA contract. * * A DDMA promise contains all the information required to program the * Dedicated part of the DMA Engine and get data copied. A non-executed * promise will live in the demands list on a contract. Once it has been * completed, it will be moved to the completed demands list for later freeing. * All linked promises will be freed when the corresponding contract is freed */ static struct sun4i_dma_promise * generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest, size_t len, struct dma_slave_config *sconfig) { struct sun4i_dma_promise *promise; int ret; promise = kzalloc(sizeof(*promise), GFP_NOWAIT); if (!promise) return NULL; promise->src = src; promise->dst = dest; promise->len = len; promise->cfg = SUN4I_DMA_CFG_LOADING | SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN; /* Source burst */ ret = convert_burst(sconfig->src_maxburst); if (ret < 0) goto fail; promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret); /* Destination burst */ ret = convert_burst(sconfig->dst_maxburst); if (ret < 0) goto fail; promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret); /* Source bus width */ ret = convert_buswidth(sconfig->src_addr_width); if (ret < 0) goto fail; promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret); /* Destination bus width */ ret = convert_buswidth(sconfig->dst_addr_width); if (ret < 0) goto fail; promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret); return promise; fail: kfree(promise); return NULL; } /* * Generate a contract * * Contracts function as DMA descriptors. As our hardware does not support * linked lists, we need to implement SG via software. We use a contract * to hold all the pieces of the request and process them serially one * after another. Each piece is represented as a promise. */ static struct sun4i_dma_contract *generate_dma_contract(void) { struct sun4i_dma_contract *contract; contract = kzalloc(sizeof(*contract), GFP_NOWAIT); if (!contract) return NULL; INIT_LIST_HEAD(&contract->demands); INIT_LIST_HEAD(&contract->completed_demands); return contract; } /* * Get next promise on a cyclic transfer * * Cyclic contracts contain a series of promises which are executed on a * loop. This function returns the next promise from a cyclic contract, * so it can be programmed into the hardware. */ static struct sun4i_dma_promise * get_next_cyclic_promise(struct sun4i_dma_contract *contract) { struct sun4i_dma_promise *promise; promise = list_first_entry_or_null(&contract->demands, struct sun4i_dma_promise, list); if (!promise) { list_splice_init(&contract->completed_demands, &contract->demands); promise = list_first_entry(&contract->demands, struct sun4i_dma_promise, list); } return promise; } /* * Free a contract and all its associated promises */ static void sun4i_dma_free_contract(struct virt_dma_desc *vd) { struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd); struct sun4i_dma_promise *promise, *tmp; /* Free all the demands and completed demands */ list_for_each_entry_safe(promise, tmp, &contract->demands, list) kfree(promise); list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list) kfree(promise); kfree(contract); } static struct dma_async_tx_descriptor * sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); struct dma_slave_config *sconfig = &vchan->cfg; struct sun4i_dma_promise *promise; struct sun4i_dma_contract *contract; contract = generate_dma_contract(); if (!contract) return NULL; /* * We can only do the copy to bus aligned addresses, so * choose the best one so we get decent performance. We also * maximize the burst size for this same reason. */ sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; sconfig->src_maxburst = 8; sconfig->dst_maxburst = 8; if (vchan->is_dedicated) promise = generate_ddma_promise(chan, src, dest, len, sconfig); else promise = generate_ndma_promise(chan, src, dest, len, sconfig, DMA_MEM_TO_MEM); if (!promise) { kfree(contract); return NULL; } /* Configure memcpy mode */ if (vchan->is_dedicated) { promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) | SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM); } else { promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) | SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM); } /* Fill the contract with our only promise */ list_add_tail(&promise->list, &contract->demands); /* And add it to the vchan */ return vchan_tx_prep(&vchan->vc, &contract->vd, flags); } static struct dma_async_tx_descriptor * sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); struct dma_slave_config *sconfig = &vchan->cfg; struct sun4i_dma_promise *promise; struct sun4i_dma_contract *contract; dma_addr_t src, dest; u32 endpoints; int nr_periods, offset, plength, i; u8 ram_type, io_mode, linear_mode; if (!is_slave_direction(dir)) { dev_err(chan2dev(chan), "Invalid DMA direction\n"); return NULL; } contract = generate_dma_contract(); if (!contract) return NULL; contract->is_cyclic = 1; if (vchan->is_dedicated) { io_mode = SUN4I_DDMA_ADDR_MODE_IO; linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR; ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM; } else { io_mode = SUN4I_NDMA_ADDR_MODE_IO; linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR; ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM; } if (dir == DMA_MEM_TO_DEV) { src = buf; dest = sconfig->dst_addr; endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) | SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) | SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) | SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode); } else { src = sconfig->src_addr; dest = buf; endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) | SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) | SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) | SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode); } /* * We will be using half done interrupts to make two periods * out of a promise, so we need to program the DMA engine less * often */ /* * The engine can interrupt on half-transfer, so we can use * this feature to program the engine half as often as if we * didn't use it (keep in mind the hardware doesn't support * linked lists). * * Say you have a set of periods (| marks the start/end, I for * interrupt, P for programming the engine to do a new * transfer), the easy but slow way would be to do * * |---|---|---|---| (periods / promises) * P I,P I,P I,P I * * Using half transfer interrupts you can do * * |-------|-------| (promises as configured on hw) * |---|---|---|---| (periods) * P I I,P I I * * Which requires half the engine programming for the same * functionality. * * This only works if two periods fit in a single promise. That will * always be the case for dedicated DMA, where the hardware has a much * larger maximum transfer size than advertised to clients. */ if (vchan->is_dedicated || period_len <= SUN4I_NDMA_MAX_SEG_SIZE / 2) { period_len *= 2; contract->use_half_int = 1; } nr_periods = DIV_ROUND_UP(len, period_len); for (i = 0; i < nr_periods; i++) { /* Calculate the offset in the buffer and the length needed */ offset = i * period_len; plength = min((len - offset), period_len); if (dir == DMA_MEM_TO_DEV) src = buf + offset; else dest = buf + offset; /* Make the promise */ if (vchan->is_dedicated) promise = generate_ddma_promise(chan, src, dest, plength, sconfig); else promise = generate_ndma_promise(chan, src, dest, plength, sconfig, dir); if (!promise) { /* TODO: should we free everything? */ return NULL; } promise->cfg |= endpoints; /* Then add it to the contract */ list_add_tail(&promise->list, &contract->demands); } /* And add it to the vchan */ return vchan_tx_prep(&vchan->vc, &contract->vd, flags); } static struct dma_async_tx_descriptor * sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags, void *context) { struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); struct dma_slave_config *sconfig = &vchan->cfg; struct sun4i_dma_promise *promise; struct sun4i_dma_contract *contract; u8 ram_type, io_mode, linear_mode; struct scatterlist *sg; dma_addr_t srcaddr, dstaddr; u32 endpoints, para; int i; if (!sgl) return NULL; if (!is_slave_direction(dir)) { dev_err(chan2dev(chan), "Invalid DMA direction\n"); return NULL; } contract = generate_dma_contract(); if (!contract) return NULL; if (vchan->is_dedicated) { io_mode = SUN4I_DDMA_ADDR_MODE_IO; linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR; ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM; } else { io_mode = SUN4I_NDMA_ADDR_MODE_IO; linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR; ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM; } if (dir == DMA_MEM_TO_DEV) endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) | SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) | SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) | SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode); else endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) | SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) | SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) | SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode); for_each_sg(sgl, sg, sg_len, i) { /* Figure out addresses */ if (dir == DMA_MEM_TO_DEV) { srcaddr = sg_dma_address(sg); dstaddr = sconfig->dst_addr; } else { srcaddr = sconfig->src_addr; dstaddr = sg_dma_address(sg); } /* * These are the magic DMA engine timings that keep SPI going. * I haven't seen any interface on DMAEngine to configure * timings, and so far they seem to work for everything we * support, so I've kept them here. I don't know if other * devices need different timings because, as usual, we only * have the "para" bitfield meanings, but no comment on what * the values should be when doing a certain operation :| */ para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS; /* And make a suitable promise */ if (vchan->is_dedicated) promise = generate_ddma_promise(chan, srcaddr, dstaddr, sg_dma_len(sg), sconfig); else promise = generate_ndma_promise(chan, srcaddr, dstaddr, sg_dma_len(sg), sconfig, dir); if (!promise) return NULL; /* TODO: should we free everything? */ promise->cfg |= endpoints; promise->para = para; /* Then add it to the contract */ list_add_tail(&promise->list, &contract->demands); } /* * Once we've got all the promises ready, add the contract * to the pending list on the vchan */ return vchan_tx_prep(&vchan->vc, &contract->vd, flags); } static int sun4i_dma_terminate_all(struct dma_chan *chan) { struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device); struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); struct sun4i_dma_pchan *pchan = vchan->pchan; LIST_HEAD(head); unsigned long flags; spin_lock_irqsave(&vchan->vc.lock, flags); vchan_get_all_descriptors(&vchan->vc, &head); spin_unlock_irqrestore(&vchan->vc.lock, flags); /* * Clearing the configuration register will halt the pchan. Interrupts * may still trigger, so don't forget to disable them. */ if (pchan) { if (pchan->is_dedicated) writel(0, pchan->base + SUN4I_DDMA_CFG_REG); else writel(0, pchan->base + SUN4I_NDMA_CFG_REG); set_pchan_interrupt(priv, pchan, 0, 0); release_pchan(priv, pchan); } spin_lock_irqsave(&vchan->vc.lock, flags); /* Clear these so the vchan is usable again */ vchan->processing = NULL; vchan->pchan = NULL; spin_unlock_irqrestore(&vchan->vc.lock, flags); vchan_dma_desc_free_list(&vchan->vc, &head); return 0; } static int sun4i_dma_config(struct dma_chan *chan, struct dma_slave_config *config) { struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); memcpy(&vchan->cfg, config, sizeof(*config)); return 0; } static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct sun4i_dma_dev *priv = ofdma->of_dma_data; struct sun4i_dma_vchan *vchan; struct dma_chan *chan; u8 is_dedicated = dma_spec->args[0]; u8 endpoint = dma_spec->args[1]; /* Check if type is Normal or Dedicated */ if (is_dedicated != 0 && is_dedicated != 1) return NULL; /* Make sure the endpoint looks sane */ if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) || (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT)) return NULL; chan = dma_get_any_slave_channel(&priv->slave); if (!chan) return NULL; /* Assign the endpoint to the vchan */ vchan = to_sun4i_dma_vchan(chan); vchan->is_dedicated = is_dedicated; vchan->endpoint = endpoint; return chan; } static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); struct sun4i_dma_pchan *pchan = vchan->pchan; struct sun4i_dma_contract *contract; struct sun4i_dma_promise *promise; struct virt_dma_desc *vd; unsigned long flags; enum dma_status ret; size_t bytes = 0; ret = dma_cookie_status(chan, cookie, state); if (!state || (ret == DMA_COMPLETE)) return ret; spin_lock_irqsave(&vchan->vc.lock, flags); vd = vchan_find_desc(&vchan->vc, cookie); if (!vd) goto exit; contract = to_sun4i_dma_contract(vd); list_for_each_entry(promise, &contract->demands, list) bytes += promise->len; /* * The hardware is configured to return the remaining byte * quantity. If possible, replace the first listed element's * full size with the actual remaining amount */ promise = list_first_entry_or_null(&contract->demands, struct sun4i_dma_promise, list); if (promise && pchan) { bytes -= promise->len; if (pchan->is_dedicated) bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG); else bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG); } exit: dma_set_residue(state, bytes); spin_unlock_irqrestore(&vchan->vc.lock, flags); return ret; } static void sun4i_dma_issue_pending(struct dma_chan *chan) { struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device); struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); unsigned long flags; spin_lock_irqsave(&vchan->vc.lock, flags); /* * If there are pending transactions for this vchan, push one of * them into the engine to get the ball rolling. */ if (vchan_issue_pending(&vchan->vc)) __execute_vchan_pending(priv, vchan); spin_unlock_irqrestore(&vchan->vc.lock, flags); } static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id) { struct sun4i_dma_dev *priv = dev_id; struct sun4i_dma_pchan *pchans = priv->pchans, *pchan; struct sun4i_dma_vchan *vchan; struct sun4i_dma_contract *contract; struct sun4i_dma_promise *promise; unsigned long pendirq, irqs, disableirqs; int bit, i, free_room, allow_mitigation = 1; pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); handle_pending: disableirqs = 0; free_room = 0; for_each_set_bit(bit, &pendirq, 32) { pchan = &pchans[bit >> 1]; vchan = pchan->vchan; if (!vchan) /* a terminated channel may still interrupt */ continue; contract = vchan->contract; /* * Disable the IRQ and free the pchan if it's an end * interrupt (odd bit) */ if (bit & 1) { spin_lock(&vchan->vc.lock); /* * Move the promise into the completed list now that * we're done with it */ list_move_tail(&vchan->processing->list, &contract->completed_demands); /* * Cyclic DMA transfers are special: * - There's always something we can dispatch * - We need to run the callback * - Latency is very important, as this is used by audio * We therefore just cycle through the list and dispatch * whatever we have here, reusing the pchan. There's * no need to run the thread after this. * * For non-cyclic transfers we need to look around, * so we can program some more work, or notify the * client that their transfers have been completed. */ if (contract->is_cyclic) { promise = get_next_cyclic_promise(contract); vchan->processing = promise; configure_pchan(pchan, promise); vchan_cyclic_callback(&contract->vd); } else { vchan->processing = NULL; vchan->pchan = NULL; free_room = 1; disableirqs |= BIT(bit); release_pchan(priv, pchan); } spin_unlock(&vchan->vc.lock); } else { /* Half done interrupt */ if (contract->is_cyclic) vchan_cyclic_callback(&contract->vd); else disableirqs |= BIT(bit); } } /* Disable the IRQs for events we handled */ spin_lock(&priv->lock); irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG); writel_relaxed(irqs & ~disableirqs, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); spin_unlock(&priv->lock); /* Writing 1 to the pending field will clear the pending interrupt */ writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); /* * If a pchan was freed, we may be able to schedule something else, * so have a look around */ if (free_room) { for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) { vchan = &priv->vchans[i]; spin_lock(&vchan->vc.lock); __execute_vchan_pending(priv, vchan); spin_unlock(&vchan->vc.lock); } } /* * Handle newer interrupts if some showed up, but only do it once * to avoid a too long a loop */ if (allow_mitigation) { pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); if (pendirq) { allow_mitigation = 0; goto handle_pending; } } return IRQ_HANDLED; } static int sun4i_dma_probe(struct platform_device *pdev) { struct sun4i_dma_dev *priv; int i, j, ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->irq = platform_get_irq(pdev, 0); if (priv->irq < 0) return priv->irq; priv->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(priv->clk)) { dev_err(&pdev->dev, "No clock specified\n"); return PTR_ERR(priv->clk); } platform_set_drvdata(pdev, priv); spin_lock_init(&priv->lock); dma_set_max_seg_size(&pdev->dev, SUN4I_DMA_MAX_SEG_SIZE); dma_cap_zero(priv->slave.cap_mask); dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask); dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask); dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask); dma_cap_set(DMA_SLAVE, priv->slave.cap_mask); INIT_LIST_HEAD(&priv->slave.channels); priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources; priv->slave.device_tx_status = sun4i_dma_tx_status; priv->slave.device_issue_pending = sun4i_dma_issue_pending; priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg; priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy; priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic; priv->slave.device_config = sun4i_dma_config; priv->slave.device_terminate_all = sun4i_dma_terminate_all; priv->slave.copy_align = 2; priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); priv->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; priv->slave.dev = &pdev->dev; priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS, sizeof(struct sun4i_dma_pchan), GFP_KERNEL); priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS, sizeof(struct sun4i_dma_vchan), GFP_KERNEL); if (!priv->vchans || !priv->pchans) return -ENOMEM; /* * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are * dedicated ones */ for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++) priv->pchans[i].base = priv->base + SUN4I_NDMA_CHANNEL_REG_BASE(i); for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) { priv->pchans[i].base = priv->base + SUN4I_DDMA_CHANNEL_REG_BASE(j); priv->pchans[i].is_dedicated = 1; } for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) { struct sun4i_dma_vchan *vchan = &priv->vchans[i]; spin_lock_init(&vchan->vc.lock); vchan->vc.desc_free = sun4i_dma_free_contract; vchan_init(&vchan->vc, &priv->slave); } ret = clk_prepare_enable(priv->clk); if (ret) { dev_err(&pdev->dev, "Couldn't enable the clock\n"); return ret; } /* * Make sure the IRQs are all disabled and accounted for. The bootloader * likes to leave these dirty */ writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt, 0, dev_name(&pdev->dev), priv); if (ret) { dev_err(&pdev->dev, "Cannot request IRQ\n"); goto err_clk_disable; } ret = dma_async_device_register(&priv->slave); if (ret) { dev_warn(&pdev->dev, "Failed to register DMA engine device\n"); goto err_clk_disable; } ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate, priv); if (ret) { dev_err(&pdev->dev, "of_dma_controller_register failed\n"); goto err_dma_unregister; } dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n"); return 0; err_dma_unregister: dma_async_device_unregister(&priv->slave); err_clk_disable: clk_disable_unprepare(priv->clk); return ret; } static void sun4i_dma_remove(struct platform_device *pdev) { struct sun4i_dma_dev *priv = platform_get_drvdata(pdev); /* Disable IRQ so no more work is scheduled */ disable_irq(priv->irq); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&priv->slave); clk_disable_unprepare(priv->clk); } static const struct of_device_id sun4i_dma_match[] = { { .compatible = "allwinner,sun4i-a10-dma" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, sun4i_dma_match); static struct platform_driver sun4i_dma_driver = { .probe = sun4i_dma_probe, .remove = sun4i_dma_remove, .driver = { .name = "sun4i-dma", .of_match_table = sun4i_dma_match, }, }; module_platform_driver(sun4i_dma_driver); MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver"); MODULE_AUTHOR("Emilio López "); MODULE_LICENSE("GPL");