// SPDX-License-Identifier: GPL-2.0 // // Copyright (C) 2018 Socionext Inc. // Author: Masahiro Yamada #include #include #include #include #include #include #include #include #include #include #include #include #include #include "virt-dma.h" /* registers common for all channels */ #define UNIPHIER_MDMAC_CMD 0x000 /* issue DMA start/abort */ #define UNIPHIER_MDMAC_CMD_ABORT BIT(31) /* 1: abort, 0: start */ /* per-channel registers */ #define UNIPHIER_MDMAC_CH_OFFSET 0x100 #define UNIPHIER_MDMAC_CH_STRIDE 0x040 #define UNIPHIER_MDMAC_CH_IRQ_STAT 0x010 /* current hw status (RO) */ #define UNIPHIER_MDMAC_CH_IRQ_REQ 0x014 /* latched STAT (WOC) */ #define UNIPHIER_MDMAC_CH_IRQ_EN 0x018 /* IRQ enable mask */ #define UNIPHIER_MDMAC_CH_IRQ_DET 0x01c /* REQ & EN (RO) */ #define UNIPHIER_MDMAC_CH_IRQ__ABORT BIT(13) #define UNIPHIER_MDMAC_CH_IRQ__DONE BIT(1) #define UNIPHIER_MDMAC_CH_SRC_MODE 0x020 /* mode of source */ #define UNIPHIER_MDMAC_CH_DEST_MODE 0x024 /* mode of destination */ #define UNIPHIER_MDMAC_CH_MODE__ADDR_INC (0 << 4) #define UNIPHIER_MDMAC_CH_MODE__ADDR_DEC (1 << 4) #define UNIPHIER_MDMAC_CH_MODE__ADDR_FIXED (2 << 4) #define UNIPHIER_MDMAC_CH_SRC_ADDR 0x028 /* source address */ #define UNIPHIER_MDMAC_CH_DEST_ADDR 0x02c /* destination address */ #define UNIPHIER_MDMAC_CH_SIZE 0x030 /* transfer bytes */ #define UNIPHIER_MDMAC_SLAVE_BUSWIDTHS \ (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) struct uniphier_mdmac_desc { struct virt_dma_desc vd; struct scatterlist *sgl; unsigned int sg_len; unsigned int sg_cur; enum dma_transfer_direction dir; }; struct uniphier_mdmac_chan { struct virt_dma_chan vc; struct uniphier_mdmac_device *mdev; struct uniphier_mdmac_desc *md; void __iomem *reg_ch_base; unsigned int chan_id; }; struct uniphier_mdmac_device { struct dma_device ddev; struct clk *clk; void __iomem *reg_base; struct uniphier_mdmac_chan channels[]; }; static struct uniphier_mdmac_chan * to_uniphier_mdmac_chan(struct virt_dma_chan *vc) { return container_of(vc, struct uniphier_mdmac_chan, vc); } static struct uniphier_mdmac_desc * to_uniphier_mdmac_desc(struct virt_dma_desc *vd) { return container_of(vd, struct uniphier_mdmac_desc, vd); } /* mc->vc.lock must be held by caller */ static struct uniphier_mdmac_desc * uniphier_mdmac_next_desc(struct uniphier_mdmac_chan *mc) { struct virt_dma_desc *vd; vd = vchan_next_desc(&mc->vc); if (!vd) { mc->md = NULL; return NULL; } list_del(&vd->node); mc->md = to_uniphier_mdmac_desc(vd); return mc->md; } /* mc->vc.lock must be held by caller */ static void uniphier_mdmac_handle(struct uniphier_mdmac_chan *mc, struct uniphier_mdmac_desc *md) { struct uniphier_mdmac_device *mdev = mc->mdev; struct scatterlist *sg; u32 irq_flag = UNIPHIER_MDMAC_CH_IRQ__DONE; u32 src_mode, src_addr, dest_mode, dest_addr, chunk_size; sg = &md->sgl[md->sg_cur]; if (md->dir == DMA_MEM_TO_DEV) { src_mode = UNIPHIER_MDMAC_CH_MODE__ADDR_INC; src_addr = sg_dma_address(sg); dest_mode = UNIPHIER_MDMAC_CH_MODE__ADDR_FIXED; dest_addr = 0; } else { src_mode = UNIPHIER_MDMAC_CH_MODE__ADDR_FIXED; src_addr = 0; dest_mode = UNIPHIER_MDMAC_CH_MODE__ADDR_INC; dest_addr = sg_dma_address(sg); } chunk_size = sg_dma_len(sg); writel(src_mode, mc->reg_ch_base + UNIPHIER_MDMAC_CH_SRC_MODE); writel(dest_mode, mc->reg_ch_base + UNIPHIER_MDMAC_CH_DEST_MODE); writel(src_addr, mc->reg_ch_base + UNIPHIER_MDMAC_CH_SRC_ADDR); writel(dest_addr, mc->reg_ch_base + UNIPHIER_MDMAC_CH_DEST_ADDR); writel(chunk_size, mc->reg_ch_base + UNIPHIER_MDMAC_CH_SIZE); /* write 1 to clear */ writel(irq_flag, mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_REQ); writel(irq_flag, mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_EN); writel(BIT(mc->chan_id), mdev->reg_base + UNIPHIER_MDMAC_CMD); } /* mc->vc.lock must be held by caller */ static void uniphier_mdmac_start(struct uniphier_mdmac_chan *mc) { struct uniphier_mdmac_desc *md; md = uniphier_mdmac_next_desc(mc); if (md) uniphier_mdmac_handle(mc, md); } /* mc->vc.lock must be held by caller */ static int uniphier_mdmac_abort(struct uniphier_mdmac_chan *mc) { struct uniphier_mdmac_device *mdev = mc->mdev; u32 irq_flag = UNIPHIER_MDMAC_CH_IRQ__ABORT; u32 val; /* write 1 to clear */ writel(irq_flag, mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_REQ); writel(UNIPHIER_MDMAC_CMD_ABORT | BIT(mc->chan_id), mdev->reg_base + UNIPHIER_MDMAC_CMD); /* * Abort should be accepted soon. We poll the bit here instead of * waiting for the interrupt. */ return readl_poll_timeout(mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_REQ, val, val & irq_flag, 0, 20); } static irqreturn_t uniphier_mdmac_interrupt(int irq, void *dev_id) { struct uniphier_mdmac_chan *mc = dev_id; struct uniphier_mdmac_desc *md; irqreturn_t ret = IRQ_HANDLED; u32 irq_stat; spin_lock(&mc->vc.lock); irq_stat = readl(mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_DET); /* * Some channels share a single interrupt line. If the IRQ status is 0, * this is probably triggered by a different channel. */ if (!irq_stat) { ret = IRQ_NONE; goto out; } /* write 1 to clear */ writel(irq_stat, mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_REQ); /* * UNIPHIER_MDMAC_CH_IRQ__DONE interrupt is asserted even when the DMA * is aborted. To distinguish the normal completion and the abort, * check mc->md. If it is NULL, we are aborting. */ md = mc->md; if (!md) goto out; md->sg_cur++; if (md->sg_cur >= md->sg_len) { vchan_cookie_complete(&md->vd); md = uniphier_mdmac_next_desc(mc); if (!md) goto out; } uniphier_mdmac_handle(mc, md); out: spin_unlock(&mc->vc.lock); return ret; } static void uniphier_mdmac_free_chan_resources(struct dma_chan *chan) { vchan_free_chan_resources(to_virt_chan(chan)); } static struct dma_async_tx_descriptor * uniphier_mdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct virt_dma_chan *vc = to_virt_chan(chan); struct uniphier_mdmac_desc *md; if (!is_slave_direction(direction)) return NULL; md = kzalloc(sizeof(*md), GFP_NOWAIT); if (!md) return NULL; md->sgl = sgl; md->sg_len = sg_len; md->dir = direction; return vchan_tx_prep(vc, &md->vd, flags); } static int uniphier_mdmac_terminate_all(struct dma_chan *chan) { struct virt_dma_chan *vc = to_virt_chan(chan); struct uniphier_mdmac_chan *mc = to_uniphier_mdmac_chan(vc); unsigned long flags; int ret = 0; LIST_HEAD(head); spin_lock_irqsave(&vc->lock, flags); if (mc->md) { vchan_terminate_vdesc(&mc->md->vd); mc->md = NULL; ret = uniphier_mdmac_abort(mc); } vchan_get_all_descriptors(vc, &head); spin_unlock_irqrestore(&vc->lock, flags); vchan_dma_desc_free_list(vc, &head); return ret; } static void uniphier_mdmac_synchronize(struct dma_chan *chan) { vchan_synchronize(to_virt_chan(chan)); } static enum dma_status uniphier_mdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct virt_dma_chan *vc; struct virt_dma_desc *vd; struct uniphier_mdmac_chan *mc; struct uniphier_mdmac_desc *md = NULL; enum dma_status stat; unsigned long flags; int i; stat = dma_cookie_status(chan, cookie, txstate); /* Return immediately if we do not need to compute the residue. */ if (stat == DMA_COMPLETE || !txstate) return stat; vc = to_virt_chan(chan); spin_lock_irqsave(&vc->lock, flags); mc = to_uniphier_mdmac_chan(vc); if (mc->md && mc->md->vd.tx.cookie == cookie) { /* residue from the on-flight chunk */ txstate->residue = readl(mc->reg_ch_base + UNIPHIER_MDMAC_CH_SIZE); md = mc->md; } if (!md) { vd = vchan_find_desc(vc, cookie); if (vd) md = to_uniphier_mdmac_desc(vd); } if (md) { /* residue from the queued chunks */ for (i = md->sg_cur; i < md->sg_len; i++) txstate->residue += sg_dma_len(&md->sgl[i]); } spin_unlock_irqrestore(&vc->lock, flags); return stat; } static void uniphier_mdmac_issue_pending(struct dma_chan *chan) { struct virt_dma_chan *vc = to_virt_chan(chan); struct uniphier_mdmac_chan *mc = to_uniphier_mdmac_chan(vc); unsigned long flags; spin_lock_irqsave(&vc->lock, flags); if (vchan_issue_pending(vc) && !mc->md) uniphier_mdmac_start(mc); spin_unlock_irqrestore(&vc->lock, flags); } static void uniphier_mdmac_desc_free(struct virt_dma_desc *vd) { kfree(to_uniphier_mdmac_desc(vd)); } static int uniphier_mdmac_chan_init(struct platform_device *pdev, struct uniphier_mdmac_device *mdev, int chan_id) { struct device *dev = &pdev->dev; struct uniphier_mdmac_chan *mc = &mdev->channels[chan_id]; char *irq_name; int irq, ret; irq = platform_get_irq(pdev, chan_id); if (irq < 0) return irq; irq_name = devm_kasprintf(dev, GFP_KERNEL, "uniphier-mio-dmac-ch%d", chan_id); if (!irq_name) return -ENOMEM; ret = devm_request_irq(dev, irq, uniphier_mdmac_interrupt, IRQF_SHARED, irq_name, mc); if (ret) return ret; mc->mdev = mdev; mc->reg_ch_base = mdev->reg_base + UNIPHIER_MDMAC_CH_OFFSET + UNIPHIER_MDMAC_CH_STRIDE * chan_id; mc->chan_id = chan_id; mc->vc.desc_free = uniphier_mdmac_desc_free; vchan_init(&mc->vc, &mdev->ddev); return 0; } static int uniphier_mdmac_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct uniphier_mdmac_device *mdev; struct dma_device *ddev; int nr_chans, ret, i; nr_chans = platform_irq_count(pdev); if (nr_chans < 0) return nr_chans; ret = dma_set_mask(dev, DMA_BIT_MASK(32)); if (ret) return ret; mdev = devm_kzalloc(dev, struct_size(mdev, channels, nr_chans), GFP_KERNEL); if (!mdev) return -ENOMEM; mdev->reg_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mdev->reg_base)) return PTR_ERR(mdev->reg_base); mdev->clk = devm_clk_get(dev, NULL); if (IS_ERR(mdev->clk)) { dev_err(dev, "failed to get clock\n"); return PTR_ERR(mdev->clk); } ret = clk_prepare_enable(mdev->clk); if (ret) return ret; ddev = &mdev->ddev; ddev->dev = dev; dma_cap_set(DMA_PRIVATE, ddev->cap_mask); ddev->src_addr_widths = UNIPHIER_MDMAC_SLAVE_BUSWIDTHS; ddev->dst_addr_widths = UNIPHIER_MDMAC_SLAVE_BUSWIDTHS; ddev->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; ddev->device_free_chan_resources = uniphier_mdmac_free_chan_resources; ddev->device_prep_slave_sg = uniphier_mdmac_prep_slave_sg; ddev->device_terminate_all = uniphier_mdmac_terminate_all; ddev->device_synchronize = uniphier_mdmac_synchronize; ddev->device_tx_status = uniphier_mdmac_tx_status; ddev->device_issue_pending = uniphier_mdmac_issue_pending; INIT_LIST_HEAD(&ddev->channels); for (i = 0; i < nr_chans; i++) { ret = uniphier_mdmac_chan_init(pdev, mdev, i); if (ret) goto disable_clk; } ret = dma_async_device_register(ddev); if (ret) goto disable_clk; ret = of_dma_controller_register(dev->of_node, of_dma_xlate_by_chan_id, ddev); if (ret) goto unregister_dmac; platform_set_drvdata(pdev, mdev); return 0; unregister_dmac: dma_async_device_unregister(ddev); disable_clk: clk_disable_unprepare(mdev->clk); return ret; } static void uniphier_mdmac_remove(struct platform_device *pdev) { struct uniphier_mdmac_device *mdev = platform_get_drvdata(pdev); struct dma_chan *chan; int ret; /* * Before reaching here, almost all descriptors have been freed by the * ->device_free_chan_resources() hook. However, each channel might * be still holding one descriptor that was on-flight at that moment. * Terminate it to make sure this hardware is no longer running. Then, * free the channel resources once again to avoid memory leak. */ list_for_each_entry(chan, &mdev->ddev.channels, device_node) { ret = dmaengine_terminate_sync(chan); if (ret) { /* * This results in resource leakage and maybe also * use-after-free errors as e.g. *mdev is kfreed. */ dev_alert(&pdev->dev, "Failed to terminate channel %d (%pe)\n", chan->chan_id, ERR_PTR(ret)); return; } uniphier_mdmac_free_chan_resources(chan); } of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&mdev->ddev); clk_disable_unprepare(mdev->clk); } static const struct of_device_id uniphier_mdmac_match[] = { { .compatible = "socionext,uniphier-mio-dmac" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, uniphier_mdmac_match); static struct platform_driver uniphier_mdmac_driver = { .probe = uniphier_mdmac_probe, .remove = uniphier_mdmac_remove, .driver = { .name = "uniphier-mio-dmac", .of_match_table = uniphier_mdmac_match, }, }; module_platform_driver(uniphier_mdmac_driver); MODULE_AUTHOR("Masahiro Yamada "); MODULE_DESCRIPTION("UniPhier MIO DMAC driver"); MODULE_LICENSE("GPL v2");