// SPDX-License-Identifier: GPL-2.0-or-later /* * Char device for device raw access * * Copyright (C) 2005-2007 Kristian Hoegsberg */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* required for linux/wait.h */ #include #include #include #include #include #include #include #include #include "core.h" #include #include "packet-header-definitions.h" /* * ABI version history is documented in linux/firewire-cdev.h. */ #define FW_CDEV_KERNEL_VERSION 5 #define FW_CDEV_VERSION_EVENT_REQUEST2 4 #define FW_CDEV_VERSION_ALLOCATE_REGION_END 4 #define FW_CDEV_VERSION_AUTO_FLUSH_ISO_OVERFLOW 5 #define FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP 6 struct client { u32 version; struct fw_device *device; spinlock_t lock; bool in_shutdown; struct xarray resource_xa; struct list_head event_list; wait_queue_head_t wait; wait_queue_head_t tx_flush_wait; u64 bus_reset_closure; struct fw_iso_context *iso_context; u64 iso_closure; struct fw_iso_buffer buffer; unsigned long vm_start; bool buffer_is_mapped; struct list_head phy_receiver_link; u64 phy_receiver_closure; struct list_head link; struct kref kref; }; static inline void client_get(struct client *client) { kref_get(&client->kref); } static void client_release(struct kref *kref) { struct client *client = container_of(kref, struct client, kref); fw_device_put(client->device); kfree(client); } static void client_put(struct client *client) { kref_put(&client->kref, client_release); } struct client_resource; typedef void (*client_resource_release_fn_t)(struct client *, struct client_resource *); struct client_resource { client_resource_release_fn_t release; int handle; }; struct address_handler_resource { struct client_resource resource; struct fw_address_handler handler; __u64 closure; struct client *client; }; struct outbound_transaction_resource { struct client_resource resource; struct fw_transaction transaction; }; struct inbound_transaction_resource { struct client_resource resource; struct fw_card *card; struct fw_request *request; bool is_fcp; void *data; size_t length; }; struct descriptor_resource { struct client_resource resource; struct fw_descriptor descriptor; u32 data[]; }; struct iso_resource { struct client_resource resource; struct client *client; /* Schedule work and access todo only with client->lock held. */ struct delayed_work work; enum {ISO_RES_ALLOC, ISO_RES_REALLOC, ISO_RES_DEALLOC, ISO_RES_ALLOC_ONCE, ISO_RES_DEALLOC_ONCE,} todo; int generation; u64 channels; s32 bandwidth; struct iso_resource_event *e_alloc, *e_dealloc; }; static struct address_handler_resource *to_address_handler_resource(struct client_resource *resource) { return container_of(resource, struct address_handler_resource, resource); } static struct inbound_transaction_resource *to_inbound_transaction_resource(struct client_resource *resource) { return container_of(resource, struct inbound_transaction_resource, resource); } static struct descriptor_resource *to_descriptor_resource(struct client_resource *resource) { return container_of(resource, struct descriptor_resource, resource); } static struct iso_resource *to_iso_resource(struct client_resource *resource) { return container_of(resource, struct iso_resource, resource); } static void release_iso_resource(struct client *, struct client_resource *); static int is_iso_resource(const struct client_resource *resource) { return resource->release == release_iso_resource; } static void release_transaction(struct client *client, struct client_resource *resource); static int is_outbound_transaction_resource(const struct client_resource *resource) { return resource->release == release_transaction; } static void schedule_iso_resource(struct iso_resource *r, unsigned long delay) { client_get(r->client); if (!queue_delayed_work(fw_workqueue, &r->work, delay)) client_put(r->client); } /* * dequeue_event() just kfree()'s the event, so the event has to be * the first field in a struct XYZ_event. */ struct event { struct { void *data; size_t size; } v[2]; struct list_head link; }; struct bus_reset_event { struct event event; struct fw_cdev_event_bus_reset reset; }; struct outbound_transaction_event { struct event event; struct client *client; struct outbound_transaction_resource r; union { struct fw_cdev_event_response without_tstamp; struct fw_cdev_event_response2 with_tstamp; } rsp; }; struct inbound_transaction_event { struct event event; union { struct fw_cdev_event_request request; struct fw_cdev_event_request2 request2; struct fw_cdev_event_request3 with_tstamp; } req; }; struct iso_interrupt_event { struct event event; struct fw_cdev_event_iso_interrupt interrupt; }; struct iso_interrupt_mc_event { struct event event; struct fw_cdev_event_iso_interrupt_mc interrupt; }; struct iso_resource_event { struct event event; struct fw_cdev_event_iso_resource iso_resource; }; struct outbound_phy_packet_event { struct event event; struct client *client; struct fw_packet p; union { struct fw_cdev_event_phy_packet without_tstamp; struct fw_cdev_event_phy_packet2 with_tstamp; } phy_packet; }; struct inbound_phy_packet_event { struct event event; union { struct fw_cdev_event_phy_packet without_tstamp; struct fw_cdev_event_phy_packet2 with_tstamp; } phy_packet; }; #ifdef CONFIG_COMPAT static void __user *u64_to_uptr(u64 value) { if (in_compat_syscall()) return compat_ptr(value); else return (void __user *)(unsigned long)value; } static u64 uptr_to_u64(void __user *ptr) { if (in_compat_syscall()) return ptr_to_compat(ptr); else return (u64)(unsigned long)ptr; } #else static inline void __user *u64_to_uptr(u64 value) { return (void __user *)(unsigned long)value; } static inline u64 uptr_to_u64(void __user *ptr) { return (u64)(unsigned long)ptr; } #endif /* CONFIG_COMPAT */ static int fw_device_op_open(struct inode *inode, struct file *file) { struct fw_device *device; struct client *client; device = fw_device_get_by_devt(inode->i_rdev); if (device == NULL) return -ENODEV; if (fw_device_is_shutdown(device)) { fw_device_put(device); return -ENODEV; } client = kzalloc(sizeof(*client), GFP_KERNEL); if (client == NULL) { fw_device_put(device); return -ENOMEM; } client->device = device; spin_lock_init(&client->lock); xa_init_flags(&client->resource_xa, XA_FLAGS_ALLOC1 | XA_FLAGS_LOCK_BH); INIT_LIST_HEAD(&client->event_list); init_waitqueue_head(&client->wait); init_waitqueue_head(&client->tx_flush_wait); INIT_LIST_HEAD(&client->phy_receiver_link); INIT_LIST_HEAD(&client->link); kref_init(&client->kref); file->private_data = client; return nonseekable_open(inode, file); } static void queue_event(struct client *client, struct event *event, void *data0, size_t size0, void *data1, size_t size1) { event->v[0].data = data0; event->v[0].size = size0; event->v[1].data = data1; event->v[1].size = size1; scoped_guard(spinlock_irqsave, &client->lock) { if (client->in_shutdown) kfree(event); else list_add_tail(&event->link, &client->event_list); } wake_up_interruptible(&client->wait); } static int dequeue_event(struct client *client, char __user *buffer, size_t count) { struct event *event; size_t size, total; int i, ret; ret = wait_event_interruptible(client->wait, !list_empty(&client->event_list) || fw_device_is_shutdown(client->device)); if (ret < 0) return ret; if (list_empty(&client->event_list) && fw_device_is_shutdown(client->device)) return -ENODEV; scoped_guard(spinlock_irq, &client->lock) { event = list_first_entry(&client->event_list, struct event, link); list_del(&event->link); } total = 0; for (i = 0; i < ARRAY_SIZE(event->v) && total < count; i++) { size = min(event->v[i].size, count - total); if (copy_to_user(buffer + total, event->v[i].data, size)) { ret = -EFAULT; goto out; } total += size; } ret = total; out: kfree(event); return ret; } static ssize_t fw_device_op_read(struct file *file, char __user *buffer, size_t count, loff_t *offset) { struct client *client = file->private_data; return dequeue_event(client, buffer, count); } static void fill_bus_reset_event(struct fw_cdev_event_bus_reset *event, struct client *client) { struct fw_card *card = client->device->card; guard(spinlock_irq)(&card->lock); event->closure = client->bus_reset_closure; event->type = FW_CDEV_EVENT_BUS_RESET; event->generation = client->device->generation; event->node_id = client->device->node_id; event->local_node_id = card->local_node->node_id; event->bm_node_id = card->bm_node_id; event->irm_node_id = card->irm_node->node_id; event->root_node_id = card->root_node->node_id; } static void for_each_client(struct fw_device *device, void (*callback)(struct client *client)) { struct client *c; guard(mutex)(&device->client_list_mutex); list_for_each_entry(c, &device->client_list, link) callback(c); } static void queue_bus_reset_event(struct client *client) { struct bus_reset_event *e; struct client_resource *resource; unsigned long index; e = kzalloc(sizeof(*e), GFP_KERNEL); if (e == NULL) return; fill_bus_reset_event(&e->reset, client); queue_event(client, &e->event, &e->reset, sizeof(e->reset), NULL, 0); guard(spinlock_irq)(&client->lock); xa_for_each(&client->resource_xa, index, resource) { if (is_iso_resource(resource)) schedule_iso_resource(to_iso_resource(resource), 0); } } void fw_device_cdev_update(struct fw_device *device) { for_each_client(device, queue_bus_reset_event); } static void wake_up_client(struct client *client) { wake_up_interruptible(&client->wait); } void fw_device_cdev_remove(struct fw_device *device) { for_each_client(device, wake_up_client); } union ioctl_arg { struct fw_cdev_get_info get_info; struct fw_cdev_send_request send_request; struct fw_cdev_allocate allocate; struct fw_cdev_deallocate deallocate; struct fw_cdev_send_response send_response; struct fw_cdev_initiate_bus_reset initiate_bus_reset; struct fw_cdev_add_descriptor add_descriptor; struct fw_cdev_remove_descriptor remove_descriptor; struct fw_cdev_create_iso_context create_iso_context; struct fw_cdev_queue_iso queue_iso; struct fw_cdev_start_iso start_iso; struct fw_cdev_stop_iso stop_iso; struct fw_cdev_get_cycle_timer get_cycle_timer; struct fw_cdev_allocate_iso_resource allocate_iso_resource; struct fw_cdev_send_stream_packet send_stream_packet; struct fw_cdev_get_cycle_timer2 get_cycle_timer2; struct fw_cdev_send_phy_packet send_phy_packet; struct fw_cdev_receive_phy_packets receive_phy_packets; struct fw_cdev_set_iso_channels set_iso_channels; struct fw_cdev_flush_iso flush_iso; }; static int ioctl_get_info(struct client *client, union ioctl_arg *arg) { struct fw_cdev_get_info *a = &arg->get_info; struct fw_cdev_event_bus_reset bus_reset; unsigned long ret = 0; client->version = a->version; a->version = FW_CDEV_KERNEL_VERSION; a->card = client->device->card->index; scoped_guard(rwsem_read, &fw_device_rwsem) { if (a->rom != 0) { size_t want = a->rom_length; size_t have = client->device->config_rom_length * 4; ret = copy_to_user(u64_to_uptr(a->rom), client->device->config_rom, min(want, have)); if (ret != 0) return -EFAULT; } a->rom_length = client->device->config_rom_length * 4; } guard(mutex)(&client->device->client_list_mutex); client->bus_reset_closure = a->bus_reset_closure; if (a->bus_reset != 0) { fill_bus_reset_event(&bus_reset, client); /* unaligned size of bus_reset is 36 bytes */ ret = copy_to_user(u64_to_uptr(a->bus_reset), &bus_reset, 36); } if (ret == 0 && list_empty(&client->link)) list_add_tail(&client->link, &client->device->client_list); return ret ? -EFAULT : 0; } static int add_client_resource(struct client *client, struct client_resource *resource, gfp_t gfp_mask) { int ret; scoped_guard(spinlock_irqsave, &client->lock) { u32 index; if (client->in_shutdown) { ret = -ECANCELED; } else { if (gfpflags_allow_blocking(gfp_mask)) { ret = xa_alloc(&client->resource_xa, &index, resource, xa_limit_32b, GFP_NOWAIT); } else { ret = xa_alloc_bh(&client->resource_xa, &index, resource, xa_limit_32b, GFP_NOWAIT); } } if (ret >= 0) { resource->handle = index; client_get(client); if (is_iso_resource(resource)) schedule_iso_resource(to_iso_resource(resource), 0); } } return ret < 0 ? ret : 0; } static int release_client_resource(struct client *client, u32 handle, client_resource_release_fn_t release, struct client_resource **return_resource) { unsigned long index = handle; struct client_resource *resource; scoped_guard(spinlock_irq, &client->lock) { if (client->in_shutdown) return -EINVAL; resource = xa_load(&client->resource_xa, index); if (!resource || resource->release != release) return -EINVAL; xa_erase(&client->resource_xa, handle); } if (return_resource) *return_resource = resource; else resource->release(client, resource); client_put(client); return 0; } static void release_transaction(struct client *client, struct client_resource *resource) { } static void complete_transaction(struct fw_card *card, int rcode, u32 request_tstamp, u32 response_tstamp, void *payload, size_t length, void *data) { struct outbound_transaction_event *e = data; struct client *client = e->client; unsigned long index = e->r.resource.handle; scoped_guard(spinlock_irqsave, &client->lock) { xa_erase(&client->resource_xa, index); if (client->in_shutdown) wake_up(&client->tx_flush_wait); } switch (e->rsp.without_tstamp.type) { case FW_CDEV_EVENT_RESPONSE: { struct fw_cdev_event_response *rsp = &e->rsp.without_tstamp; if (length < rsp->length) rsp->length = length; if (rcode == RCODE_COMPLETE) memcpy(rsp->data, payload, rsp->length); rsp->rcode = rcode; // In the case that sizeof(*rsp) doesn't align with the position of the // data, and the read is short, preserve an extra copy of the data // to stay compatible with a pre-2.6.27 bug. Since the bug is harmless // for short reads and some apps depended on it, this is both safe // and prudent for compatibility. if (rsp->length <= sizeof(*rsp) - offsetof(typeof(*rsp), data)) queue_event(client, &e->event, rsp, sizeof(*rsp), rsp->data, rsp->length); else queue_event(client, &e->event, rsp, sizeof(*rsp) + rsp->length, NULL, 0); break; } case FW_CDEV_EVENT_RESPONSE2: { struct fw_cdev_event_response2 *rsp = &e->rsp.with_tstamp; if (length < rsp->length) rsp->length = length; if (rcode == RCODE_COMPLETE) memcpy(rsp->data, payload, rsp->length); rsp->rcode = rcode; rsp->request_tstamp = request_tstamp; rsp->response_tstamp = response_tstamp; queue_event(client, &e->event, rsp, sizeof(*rsp) + rsp->length, NULL, 0); break; } default: WARN_ON(1); break; } // Drop the xarray's reference. client_put(client); } static int init_request(struct client *client, struct fw_cdev_send_request *request, int destination_id, int speed) { struct outbound_transaction_event *e; void *payload; int ret; if (request->tcode != TCODE_STREAM_DATA && (request->length > 4096 || request->length > 512 << speed)) return -EIO; if (request->tcode == TCODE_WRITE_QUADLET_REQUEST && request->length < 4) return -EINVAL; e = kmalloc(sizeof(*e) + request->length, GFP_KERNEL); if (e == NULL) return -ENOMEM; e->client = client; if (client->version < FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP) { struct fw_cdev_event_response *rsp = &e->rsp.without_tstamp; rsp->type = FW_CDEV_EVENT_RESPONSE; rsp->length = request->length; rsp->closure = request->closure; payload = rsp->data; } else { struct fw_cdev_event_response2 *rsp = &e->rsp.with_tstamp; rsp->type = FW_CDEV_EVENT_RESPONSE2; rsp->length = request->length; rsp->closure = request->closure; payload = rsp->data; } if (request->data && copy_from_user(payload, u64_to_uptr(request->data), request->length)) { ret = -EFAULT; goto failed; } e->r.resource.release = release_transaction; ret = add_client_resource(client, &e->r.resource, GFP_KERNEL); if (ret < 0) goto failed; fw_send_request_with_tstamp(client->device->card, &e->r.transaction, request->tcode, destination_id, request->generation, speed, request->offset, payload, request->length, complete_transaction, e); return 0; failed: kfree(e); return ret; } static int ioctl_send_request(struct client *client, union ioctl_arg *arg) { switch (arg->send_request.tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: case TCODE_READ_QUADLET_REQUEST: case TCODE_READ_BLOCK_REQUEST: case TCODE_LOCK_MASK_SWAP: case TCODE_LOCK_COMPARE_SWAP: case TCODE_LOCK_FETCH_ADD: case TCODE_LOCK_LITTLE_ADD: case TCODE_LOCK_BOUNDED_ADD: case TCODE_LOCK_WRAP_ADD: case TCODE_LOCK_VENDOR_DEPENDENT: break; default: return -EINVAL; } return init_request(client, &arg->send_request, client->device->node_id, client->device->max_speed); } static void release_request(struct client *client, struct client_resource *resource) { struct inbound_transaction_resource *r = to_inbound_transaction_resource(resource); if (r->is_fcp) fw_request_put(r->request); else fw_send_response(r->card, r->request, RCODE_CONFLICT_ERROR); fw_card_put(r->card); kfree(r); } static void handle_request(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *payload, size_t length, void *callback_data) { struct address_handler_resource *handler = callback_data; bool is_fcp = is_in_fcp_region(offset, length); struct inbound_transaction_resource *r; struct inbound_transaction_event *e; size_t event_size0; int ret; /* card may be different from handler->client->device->card */ fw_card_get(card); // Extend the lifetime of data for request so that its payload is safely accessible in // the process context for the client. if (is_fcp) fw_request_get(request); r = kmalloc(sizeof(*r), GFP_ATOMIC); e = kmalloc(sizeof(*e), GFP_ATOMIC); if (r == NULL || e == NULL) goto failed; r->card = card; r->request = request; r->is_fcp = is_fcp; r->data = payload; r->length = length; r->resource.release = release_request; ret = add_client_resource(handler->client, &r->resource, GFP_ATOMIC); if (ret < 0) goto failed; if (handler->client->version < FW_CDEV_VERSION_EVENT_REQUEST2) { struct fw_cdev_event_request *req = &e->req.request; if (tcode & 0x10) tcode = TCODE_LOCK_REQUEST; req->type = FW_CDEV_EVENT_REQUEST; req->tcode = tcode; req->offset = offset; req->length = length; req->handle = r->resource.handle; req->closure = handler->closure; event_size0 = sizeof(*req); } else if (handler->client->version < FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP) { struct fw_cdev_event_request2 *req = &e->req.request2; req->type = FW_CDEV_EVENT_REQUEST2; req->tcode = tcode; req->offset = offset; req->source_node_id = source; req->destination_node_id = destination; req->card = card->index; req->generation = generation; req->length = length; req->handle = r->resource.handle; req->closure = handler->closure; event_size0 = sizeof(*req); } else { struct fw_cdev_event_request3 *req = &e->req.with_tstamp; req->type = FW_CDEV_EVENT_REQUEST3; req->tcode = tcode; req->offset = offset; req->source_node_id = source; req->destination_node_id = destination; req->card = card->index; req->generation = generation; req->length = length; req->handle = r->resource.handle; req->closure = handler->closure; req->tstamp = fw_request_get_timestamp(request); event_size0 = sizeof(*req); } queue_event(handler->client, &e->event, &e->req, event_size0, r->data, length); return; failed: kfree(r); kfree(e); if (!is_fcp) fw_send_response(card, request, RCODE_CONFLICT_ERROR); else fw_request_put(request); fw_card_put(card); } static void release_address_handler(struct client *client, struct client_resource *resource) { struct address_handler_resource *r = to_address_handler_resource(resource); fw_core_remove_address_handler(&r->handler); kfree(r); } static int ioctl_allocate(struct client *client, union ioctl_arg *arg) { struct fw_cdev_allocate *a = &arg->allocate; struct address_handler_resource *r; struct fw_address_region region; int ret; r = kmalloc(sizeof(*r), GFP_KERNEL); if (r == NULL) return -ENOMEM; region.start = a->offset; if (client->version < FW_CDEV_VERSION_ALLOCATE_REGION_END) region.end = a->offset + a->length; else region.end = a->region_end; r->handler.length = a->length; r->handler.address_callback = handle_request; r->handler.callback_data = r; r->closure = a->closure; r->client = client; ret = fw_core_add_address_handler(&r->handler, ®ion); if (ret < 0) { kfree(r); return ret; } a->offset = r->handler.offset; r->resource.release = release_address_handler; ret = add_client_resource(client, &r->resource, GFP_KERNEL); if (ret < 0) { release_address_handler(client, &r->resource); return ret; } a->handle = r->resource.handle; return 0; } static int ioctl_deallocate(struct client *client, union ioctl_arg *arg) { return release_client_resource(client, arg->deallocate.handle, release_address_handler, NULL); } static int ioctl_send_response(struct client *client, union ioctl_arg *arg) { struct fw_cdev_send_response *a = &arg->send_response; struct client_resource *resource; struct inbound_transaction_resource *r; int ret = 0; if (release_client_resource(client, a->handle, release_request, &resource) < 0) return -EINVAL; r = to_inbound_transaction_resource(resource); if (r->is_fcp) { fw_request_put(r->request); goto out; } if (a->length != fw_get_response_length(r->request)) { ret = -EINVAL; fw_request_put(r->request); goto out; } if (copy_from_user(r->data, u64_to_uptr(a->data), a->length)) { ret = -EFAULT; fw_request_put(r->request); goto out; } fw_send_response(r->card, r->request, a->rcode); out: fw_card_put(r->card); kfree(r); return ret; } static int ioctl_initiate_bus_reset(struct client *client, union ioctl_arg *arg) { fw_schedule_bus_reset(client->device->card, true, arg->initiate_bus_reset.type == FW_CDEV_SHORT_RESET); return 0; } static void release_descriptor(struct client *client, struct client_resource *resource) { struct descriptor_resource *r = to_descriptor_resource(resource); fw_core_remove_descriptor(&r->descriptor); kfree(r); } static int ioctl_add_descriptor(struct client *client, union ioctl_arg *arg) { struct fw_cdev_add_descriptor *a = &arg->add_descriptor; struct descriptor_resource *r; int ret; /* Access policy: Allow this ioctl only on local nodes' device files. */ if (!client->device->is_local) return -ENOSYS; if (a->length > 256) return -EINVAL; r = kmalloc(sizeof(*r) + a->length * 4, GFP_KERNEL); if (r == NULL) return -ENOMEM; if (copy_from_user(r->data, u64_to_uptr(a->data), a->length * 4)) { ret = -EFAULT; goto failed; } r->descriptor.length = a->length; r->descriptor.immediate = a->immediate; r->descriptor.key = a->key; r->descriptor.data = r->data; ret = fw_core_add_descriptor(&r->descriptor); if (ret < 0) goto failed; r->resource.release = release_descriptor; ret = add_client_resource(client, &r->resource, GFP_KERNEL); if (ret < 0) { fw_core_remove_descriptor(&r->descriptor); goto failed; } a->handle = r->resource.handle; return 0; failed: kfree(r); return ret; } static int ioctl_remove_descriptor(struct client *client, union ioctl_arg *arg) { return release_client_resource(client, arg->remove_descriptor.handle, release_descriptor, NULL); } static void iso_callback(struct fw_iso_context *context, u32 cycle, size_t header_length, void *header, void *data) { struct client *client = data; struct iso_interrupt_event *e; e = kmalloc(sizeof(*e) + header_length, GFP_KERNEL); if (e == NULL) return; e->interrupt.type = FW_CDEV_EVENT_ISO_INTERRUPT; e->interrupt.closure = client->iso_closure; e->interrupt.cycle = cycle; e->interrupt.header_length = header_length; memcpy(e->interrupt.header, header, header_length); queue_event(client, &e->event, &e->interrupt, sizeof(e->interrupt) + header_length, NULL, 0); } static void iso_mc_callback(struct fw_iso_context *context, dma_addr_t completed, void *data) { struct client *client = data; struct iso_interrupt_mc_event *e; e = kmalloc(sizeof(*e), GFP_KERNEL); if (e == NULL) return; e->interrupt.type = FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL; e->interrupt.closure = client->iso_closure; e->interrupt.completed = fw_iso_buffer_lookup(&client->buffer, completed); queue_event(client, &e->event, &e->interrupt, sizeof(e->interrupt), NULL, 0); } static enum dma_data_direction iso_dma_direction(struct fw_iso_context *context) { if (context->type == FW_ISO_CONTEXT_TRANSMIT) return DMA_TO_DEVICE; else return DMA_FROM_DEVICE; } static struct fw_iso_context *fw_iso_mc_context_create(struct fw_card *card, fw_iso_mc_callback_t callback, void *callback_data) { struct fw_iso_context *ctx; ctx = fw_iso_context_create(card, FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL, 0, 0, 0, NULL, callback_data); if (!IS_ERR(ctx)) ctx->callback.mc = callback; return ctx; } static int ioctl_create_iso_context(struct client *client, union ioctl_arg *arg) { struct fw_cdev_create_iso_context *a = &arg->create_iso_context; struct fw_iso_context *context; union fw_iso_callback cb; int ret; BUILD_BUG_ON(FW_CDEV_ISO_CONTEXT_TRANSMIT != FW_ISO_CONTEXT_TRANSMIT || FW_CDEV_ISO_CONTEXT_RECEIVE != FW_ISO_CONTEXT_RECEIVE || FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL != FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL); switch (a->type) { case FW_ISO_CONTEXT_TRANSMIT: if (a->speed > SCODE_3200 || a->channel > 63) return -EINVAL; cb.sc = iso_callback; break; case FW_ISO_CONTEXT_RECEIVE: if (a->header_size < 4 || (a->header_size & 3) || a->channel > 63) return -EINVAL; cb.sc = iso_callback; break; case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: cb.mc = iso_mc_callback; break; default: return -EINVAL; } if (a->type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) context = fw_iso_mc_context_create(client->device->card, cb.mc, client); else context = fw_iso_context_create(client->device->card, a->type, a->channel, a->speed, a->header_size, cb.sc, client); if (IS_ERR(context)) return PTR_ERR(context); if (client->version < FW_CDEV_VERSION_AUTO_FLUSH_ISO_OVERFLOW) context->drop_overflow_headers = true; // We only support one context at this time. guard(spinlock_irq)(&client->lock); if (client->iso_context != NULL) { fw_iso_context_destroy(context); return -EBUSY; } if (!client->buffer_is_mapped) { ret = fw_iso_buffer_map_dma(&client->buffer, client->device->card, iso_dma_direction(context)); if (ret < 0) { fw_iso_context_destroy(context); return ret; } client->buffer_is_mapped = true; } client->iso_closure = a->closure; client->iso_context = context; a->handle = 0; return 0; } static int ioctl_set_iso_channels(struct client *client, union ioctl_arg *arg) { struct fw_cdev_set_iso_channels *a = &arg->set_iso_channels; struct fw_iso_context *ctx = client->iso_context; if (ctx == NULL || a->handle != 0) return -EINVAL; return fw_iso_context_set_channels(ctx, &a->channels); } /* Macros for decoding the iso packet control header. */ #define GET_PAYLOAD_LENGTH(v) ((v) & 0xffff) #define GET_INTERRUPT(v) (((v) >> 16) & 0x01) #define GET_SKIP(v) (((v) >> 17) & 0x01) #define GET_TAG(v) (((v) >> 18) & 0x03) #define GET_SY(v) (((v) >> 20) & 0x0f) #define GET_HEADER_LENGTH(v) (((v) >> 24) & 0xff) static int ioctl_queue_iso(struct client *client, union ioctl_arg *arg) { struct fw_cdev_queue_iso *a = &arg->queue_iso; struct fw_cdev_iso_packet __user *p, *end, *next; struct fw_iso_context *ctx = client->iso_context; unsigned long payload, buffer_end, transmit_header_bytes = 0; u32 control; int count; struct { struct fw_iso_packet packet; u8 header[256]; } u; if (ctx == NULL || a->handle != 0) return -EINVAL; /* * If the user passes a non-NULL data pointer, has mmap()'ed * the iso buffer, and the pointer points inside the buffer, * we setup the payload pointers accordingly. Otherwise we * set them both to 0, which will still let packets with * payload_length == 0 through. In other words, if no packets * use the indirect payload, the iso buffer need not be mapped * and the a->data pointer is ignored. */ payload = (unsigned long)a->data - client->vm_start; buffer_end = client->buffer.page_count << PAGE_SHIFT; if (a->data == 0 || client->buffer.pages == NULL || payload >= buffer_end) { payload = 0; buffer_end = 0; } if (ctx->type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL && payload & 3) return -EINVAL; p = (struct fw_cdev_iso_packet __user *)u64_to_uptr(a->packets); end = (void __user *)p + a->size; count = 0; while (p < end) { if (get_user(control, &p->control)) return -EFAULT; u.packet.payload_length = GET_PAYLOAD_LENGTH(control); u.packet.interrupt = GET_INTERRUPT(control); u.packet.skip = GET_SKIP(control); u.packet.tag = GET_TAG(control); u.packet.sy = GET_SY(control); u.packet.header_length = GET_HEADER_LENGTH(control); switch (ctx->type) { case FW_ISO_CONTEXT_TRANSMIT: if (u.packet.header_length & 3) return -EINVAL; transmit_header_bytes = u.packet.header_length; break; case FW_ISO_CONTEXT_RECEIVE: if (u.packet.header_length == 0 || u.packet.header_length % ctx->header_size != 0) return -EINVAL; break; case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL: if (u.packet.payload_length == 0 || u.packet.payload_length & 3) return -EINVAL; break; } next = (struct fw_cdev_iso_packet __user *) &p->header[transmit_header_bytes / 4]; if (next > end) return -EINVAL; if (copy_from_user (u.packet.header, p->header, transmit_header_bytes)) return -EFAULT; if (u.packet.skip && ctx->type == FW_ISO_CONTEXT_TRANSMIT && u.packet.header_length + u.packet.payload_length > 0) return -EINVAL; if (payload + u.packet.payload_length > buffer_end) return -EINVAL; if (fw_iso_context_queue(ctx, &u.packet, &client->buffer, payload)) break; p = next; payload += u.packet.payload_length; count++; } fw_iso_context_queue_flush(ctx); a->size -= uptr_to_u64(p) - a->packets; a->packets = uptr_to_u64(p); a->data = client->vm_start + payload; return count; } static int ioctl_start_iso(struct client *client, union ioctl_arg *arg) { struct fw_cdev_start_iso *a = &arg->start_iso; BUILD_BUG_ON( FW_CDEV_ISO_CONTEXT_MATCH_TAG0 != FW_ISO_CONTEXT_MATCH_TAG0 || FW_CDEV_ISO_CONTEXT_MATCH_TAG1 != FW_ISO_CONTEXT_MATCH_TAG1 || FW_CDEV_ISO_CONTEXT_MATCH_TAG2 != FW_ISO_CONTEXT_MATCH_TAG2 || FW_CDEV_ISO_CONTEXT_MATCH_TAG3 != FW_ISO_CONTEXT_MATCH_TAG3 || FW_CDEV_ISO_CONTEXT_MATCH_ALL_TAGS != FW_ISO_CONTEXT_MATCH_ALL_TAGS); if (client->iso_context == NULL || a->handle != 0) return -EINVAL; if (client->iso_context->type == FW_ISO_CONTEXT_RECEIVE && (a->tags == 0 || a->tags > 15 || a->sync > 15)) return -EINVAL; return fw_iso_context_start(client->iso_context, a->cycle, a->sync, a->tags); } static int ioctl_stop_iso(struct client *client, union ioctl_arg *arg) { struct fw_cdev_stop_iso *a = &arg->stop_iso; if (client->iso_context == NULL || a->handle != 0) return -EINVAL; return fw_iso_context_stop(client->iso_context); } static int ioctl_flush_iso(struct client *client, union ioctl_arg *arg) { struct fw_cdev_flush_iso *a = &arg->flush_iso; if (client->iso_context == NULL || a->handle != 0) return -EINVAL; return fw_iso_context_flush_completions(client->iso_context); } static int ioctl_get_cycle_timer2(struct client *client, union ioctl_arg *arg) { struct fw_cdev_get_cycle_timer2 *a = &arg->get_cycle_timer2; struct fw_card *card = client->device->card; struct timespec64 ts = {0, 0}; u32 cycle_time = 0; int ret; guard(irq)(); ret = fw_card_read_cycle_time(card, &cycle_time); if (ret < 0) return ret; switch (a->clk_id) { case CLOCK_REALTIME: ktime_get_real_ts64(&ts); break; case CLOCK_MONOTONIC: ktime_get_ts64(&ts); break; case CLOCK_MONOTONIC_RAW: ktime_get_raw_ts64(&ts); break; default: return -EINVAL; } a->tv_sec = ts.tv_sec; a->tv_nsec = ts.tv_nsec; a->cycle_timer = cycle_time; return 0; } static int ioctl_get_cycle_timer(struct client *client, union ioctl_arg *arg) { struct fw_cdev_get_cycle_timer *a = &arg->get_cycle_timer; struct fw_cdev_get_cycle_timer2 ct2; ct2.clk_id = CLOCK_REALTIME; ioctl_get_cycle_timer2(client, (union ioctl_arg *)&ct2); a->local_time = ct2.tv_sec * USEC_PER_SEC + ct2.tv_nsec / NSEC_PER_USEC; a->cycle_timer = ct2.cycle_timer; return 0; } static void iso_resource_work(struct work_struct *work) { struct iso_resource_event *e; struct iso_resource *r = container_of(work, struct iso_resource, work.work); struct client *client = r->client; unsigned long index = r->resource.handle; int generation, channel, bandwidth, todo; bool skip, free, success; scoped_guard(spinlock_irq, &client->lock) { generation = client->device->generation; todo = r->todo; // Allow 1000ms grace period for other reallocations. if (todo == ISO_RES_ALLOC && time_before64(get_jiffies_64(), client->device->card->reset_jiffies + HZ)) { schedule_iso_resource(r, DIV_ROUND_UP(HZ, 3)); skip = true; } else { // We could be called twice within the same generation. skip = todo == ISO_RES_REALLOC && r->generation == generation; } free = todo == ISO_RES_DEALLOC || todo == ISO_RES_ALLOC_ONCE || todo == ISO_RES_DEALLOC_ONCE; r->generation = generation; } if (skip) goto out; bandwidth = r->bandwidth; fw_iso_resource_manage(client->device->card, generation, r->channels, &channel, &bandwidth, todo == ISO_RES_ALLOC || todo == ISO_RES_REALLOC || todo == ISO_RES_ALLOC_ONCE); /* * Is this generation outdated already? As long as this resource sticks * in the xarray, it will be scheduled again for a newer generation or at * shutdown. */ if (channel == -EAGAIN && (todo == ISO_RES_ALLOC || todo == ISO_RES_REALLOC)) goto out; success = channel >= 0 || bandwidth > 0; scoped_guard(spinlock_irq, &client->lock) { // Transit from allocation to reallocation, except if the client // requested deallocation in the meantime. if (r->todo == ISO_RES_ALLOC) r->todo = ISO_RES_REALLOC; // Allocation or reallocation failure? Pull this resource out of the // xarray and prepare for deletion, unless the client is shutting down. if (r->todo == ISO_RES_REALLOC && !success && !client->in_shutdown && xa_erase(&client->resource_xa, index)) { client_put(client); free = true; } } if (todo == ISO_RES_ALLOC && channel >= 0) r->channels = 1ULL << channel; if (todo == ISO_RES_REALLOC && success) goto out; if (todo == ISO_RES_ALLOC || todo == ISO_RES_ALLOC_ONCE) { e = r->e_alloc; r->e_alloc = NULL; } else { e = r->e_dealloc; r->e_dealloc = NULL; } e->iso_resource.handle = r->resource.handle; e->iso_resource.channel = channel; e->iso_resource.bandwidth = bandwidth; queue_event(client, &e->event, &e->iso_resource, sizeof(e->iso_resource), NULL, 0); if (free) { cancel_delayed_work(&r->work); kfree(r->e_alloc); kfree(r->e_dealloc); kfree(r); } out: client_put(client); } static void release_iso_resource(struct client *client, struct client_resource *resource) { struct iso_resource *r = to_iso_resource(resource); guard(spinlock_irq)(&client->lock); r->todo = ISO_RES_DEALLOC; schedule_iso_resource(r, 0); } static int init_iso_resource(struct client *client, struct fw_cdev_allocate_iso_resource *request, int todo) { struct iso_resource_event *e1, *e2; struct iso_resource *r; int ret; if ((request->channels == 0 && request->bandwidth == 0) || request->bandwidth > BANDWIDTH_AVAILABLE_INITIAL) return -EINVAL; r = kmalloc(sizeof(*r), GFP_KERNEL); e1 = kmalloc(sizeof(*e1), GFP_KERNEL); e2 = kmalloc(sizeof(*e2), GFP_KERNEL); if (r == NULL || e1 == NULL || e2 == NULL) { ret = -ENOMEM; goto fail; } INIT_DELAYED_WORK(&r->work, iso_resource_work); r->client = client; r->todo = todo; r->generation = -1; r->channels = request->channels; r->bandwidth = request->bandwidth; r->e_alloc = e1; r->e_dealloc = e2; e1->iso_resource.closure = request->closure; e1->iso_resource.type = FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED; e2->iso_resource.closure = request->closure; e2->iso_resource.type = FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED; if (todo == ISO_RES_ALLOC) { r->resource.release = release_iso_resource; ret = add_client_resource(client, &r->resource, GFP_KERNEL); if (ret < 0) goto fail; } else { r->resource.release = NULL; r->resource.handle = -1; schedule_iso_resource(r, 0); } request->handle = r->resource.handle; return 0; fail: kfree(r); kfree(e1); kfree(e2); return ret; } static int ioctl_allocate_iso_resource(struct client *client, union ioctl_arg *arg) { return init_iso_resource(client, &arg->allocate_iso_resource, ISO_RES_ALLOC); } static int ioctl_deallocate_iso_resource(struct client *client, union ioctl_arg *arg) { return release_client_resource(client, arg->deallocate.handle, release_iso_resource, NULL); } static int ioctl_allocate_iso_resource_once(struct client *client, union ioctl_arg *arg) { return init_iso_resource(client, &arg->allocate_iso_resource, ISO_RES_ALLOC_ONCE); } static int ioctl_deallocate_iso_resource_once(struct client *client, union ioctl_arg *arg) { return init_iso_resource(client, &arg->allocate_iso_resource, ISO_RES_DEALLOC_ONCE); } /* * Returns a speed code: Maximum speed to or from this device, * limited by the device's link speed, the local node's link speed, * and all PHY port speeds between the two links. */ static int ioctl_get_speed(struct client *client, union ioctl_arg *arg) { return client->device->max_speed; } static int ioctl_send_broadcast_request(struct client *client, union ioctl_arg *arg) { struct fw_cdev_send_request *a = &arg->send_request; switch (a->tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: break; default: return -EINVAL; } /* Security policy: Only allow accesses to Units Space. */ if (a->offset < CSR_REGISTER_BASE + CSR_CONFIG_ROM_END) return -EACCES; return init_request(client, a, LOCAL_BUS | 0x3f, SCODE_100); } static int ioctl_send_stream_packet(struct client *client, union ioctl_arg *arg) { struct fw_cdev_send_stream_packet *a = &arg->send_stream_packet; struct fw_cdev_send_request request; int dest; if (a->speed > client->device->card->link_speed || a->length > 1024 << a->speed) return -EIO; if (a->tag > 3 || a->channel > 63 || a->sy > 15) return -EINVAL; dest = fw_stream_packet_destination_id(a->tag, a->channel, a->sy); request.tcode = TCODE_STREAM_DATA; request.length = a->length; request.closure = a->closure; request.data = a->data; request.generation = a->generation; return init_request(client, &request, dest, a->speed); } static void outbound_phy_packet_callback(struct fw_packet *packet, struct fw_card *card, int status) { struct outbound_phy_packet_event *e = container_of(packet, struct outbound_phy_packet_event, p); struct client *e_client = e->client; u32 rcode; trace_async_phy_outbound_complete((uintptr_t)packet, card->index, status, packet->generation, packet->timestamp); switch (status) { // expected: case ACK_COMPLETE: rcode = RCODE_COMPLETE; break; // should never happen with PHY packets: case ACK_PENDING: rcode = RCODE_COMPLETE; break; case ACK_BUSY_X: case ACK_BUSY_A: case ACK_BUSY_B: rcode = RCODE_BUSY; break; case ACK_DATA_ERROR: rcode = RCODE_DATA_ERROR; break; case ACK_TYPE_ERROR: rcode = RCODE_TYPE_ERROR; break; // stale generation; cancelled; on certain controllers: no ack default: rcode = status; break; } switch (e->phy_packet.without_tstamp.type) { case FW_CDEV_EVENT_PHY_PACKET_SENT: { struct fw_cdev_event_phy_packet *pp = &e->phy_packet.without_tstamp; pp->rcode = rcode; pp->data[0] = packet->timestamp; queue_event(e->client, &e->event, &e->phy_packet, sizeof(*pp) + pp->length, NULL, 0); break; } case FW_CDEV_EVENT_PHY_PACKET_SENT2: { struct fw_cdev_event_phy_packet2 *pp = &e->phy_packet.with_tstamp; pp->rcode = rcode; pp->tstamp = packet->timestamp; queue_event(e->client, &e->event, &e->phy_packet, sizeof(*pp) + pp->length, NULL, 0); break; } default: WARN_ON(1); break; } client_put(e_client); } static int ioctl_send_phy_packet(struct client *client, union ioctl_arg *arg) { struct fw_cdev_send_phy_packet *a = &arg->send_phy_packet; struct fw_card *card = client->device->card; struct outbound_phy_packet_event *e; /* Access policy: Allow this ioctl only on local nodes' device files. */ if (!client->device->is_local) return -ENOSYS; e = kzalloc(sizeof(*e) + sizeof(a->data), GFP_KERNEL); if (e == NULL) return -ENOMEM; client_get(client); e->client = client; e->p.speed = SCODE_100; e->p.generation = a->generation; async_header_set_tcode(e->p.header, TCODE_LINK_INTERNAL); e->p.header[1] = a->data[0]; e->p.header[2] = a->data[1]; e->p.header_length = 12; e->p.callback = outbound_phy_packet_callback; if (client->version < FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP) { struct fw_cdev_event_phy_packet *pp = &e->phy_packet.without_tstamp; pp->closure = a->closure; pp->type = FW_CDEV_EVENT_PHY_PACKET_SENT; if (is_ping_packet(a->data)) pp->length = 4; } else { struct fw_cdev_event_phy_packet2 *pp = &e->phy_packet.with_tstamp; pp->closure = a->closure; pp->type = FW_CDEV_EVENT_PHY_PACKET_SENT2; // Keep the data field so that application can match the response event to the // request. pp->length = sizeof(a->data); memcpy(pp->data, a->data, sizeof(a->data)); } trace_async_phy_outbound_initiate((uintptr_t)&e->p, card->index, e->p.generation, e->p.header[1], e->p.header[2]); card->driver->send_request(card, &e->p); return 0; } static int ioctl_receive_phy_packets(struct client *client, union ioctl_arg *arg) { struct fw_cdev_receive_phy_packets *a = &arg->receive_phy_packets; struct fw_card *card = client->device->card; /* Access policy: Allow this ioctl only on local nodes' device files. */ if (!client->device->is_local) return -ENOSYS; guard(spinlock_irq)(&card->lock); list_move_tail(&client->phy_receiver_link, &card->phy_receiver_list); client->phy_receiver_closure = a->closure; return 0; } void fw_cdev_handle_phy_packet(struct fw_card *card, struct fw_packet *p) { struct client *client; guard(spinlock_irqsave)(&card->lock); list_for_each_entry(client, &card->phy_receiver_list, phy_receiver_link) { struct inbound_phy_packet_event *e = kmalloc(sizeof(*e) + 8, GFP_ATOMIC); if (e == NULL) break; if (client->version < FW_CDEV_VERSION_EVENT_ASYNC_TSTAMP) { struct fw_cdev_event_phy_packet *pp = &e->phy_packet.without_tstamp; pp->closure = client->phy_receiver_closure; pp->type = FW_CDEV_EVENT_PHY_PACKET_RECEIVED; pp->rcode = RCODE_COMPLETE; pp->length = 8; pp->data[0] = p->header[1]; pp->data[1] = p->header[2]; queue_event(client, &e->event, &e->phy_packet, sizeof(*pp) + 8, NULL, 0); } else { struct fw_cdev_event_phy_packet2 *pp = &e->phy_packet.with_tstamp; pp = &e->phy_packet.with_tstamp; pp->closure = client->phy_receiver_closure; pp->type = FW_CDEV_EVENT_PHY_PACKET_RECEIVED2; pp->rcode = RCODE_COMPLETE; pp->length = 8; pp->tstamp = p->timestamp; pp->data[0] = p->header[1]; pp->data[1] = p->header[2]; queue_event(client, &e->event, &e->phy_packet, sizeof(*pp) + 8, NULL, 0); } } } static int (* const ioctl_handlers[])(struct client *, union ioctl_arg *) = { [0x00] = ioctl_get_info, [0x01] = ioctl_send_request, [0x02] = ioctl_allocate, [0x03] = ioctl_deallocate, [0x04] = ioctl_send_response, [0x05] = ioctl_initiate_bus_reset, [0x06] = ioctl_add_descriptor, [0x07] = ioctl_remove_descriptor, [0x08] = ioctl_create_iso_context, [0x09] = ioctl_queue_iso, [0x0a] = ioctl_start_iso, [0x0b] = ioctl_stop_iso, [0x0c] = ioctl_get_cycle_timer, [0x0d] = ioctl_allocate_iso_resource, [0x0e] = ioctl_deallocate_iso_resource, [0x0f] = ioctl_allocate_iso_resource_once, [0x10] = ioctl_deallocate_iso_resource_once, [0x11] = ioctl_get_speed, [0x12] = ioctl_send_broadcast_request, [0x13] = ioctl_send_stream_packet, [0x14] = ioctl_get_cycle_timer2, [0x15] = ioctl_send_phy_packet, [0x16] = ioctl_receive_phy_packets, [0x17] = ioctl_set_iso_channels, [0x18] = ioctl_flush_iso, }; static int dispatch_ioctl(struct client *client, unsigned int cmd, void __user *arg) { union ioctl_arg buffer; int ret; if (fw_device_is_shutdown(client->device)) return -ENODEV; if (_IOC_TYPE(cmd) != '#' || _IOC_NR(cmd) >= ARRAY_SIZE(ioctl_handlers) || _IOC_SIZE(cmd) > sizeof(buffer)) return -ENOTTY; memset(&buffer, 0, sizeof(buffer)); if (_IOC_DIR(cmd) & _IOC_WRITE) if (copy_from_user(&buffer, arg, _IOC_SIZE(cmd))) return -EFAULT; ret = ioctl_handlers[_IOC_NR(cmd)](client, &buffer); if (ret < 0) return ret; if (_IOC_DIR(cmd) & _IOC_READ) if (copy_to_user(arg, &buffer, _IOC_SIZE(cmd))) return -EFAULT; return ret; } static long fw_device_op_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return dispatch_ioctl(file->private_data, cmd, (void __user *)arg); } static int fw_device_op_mmap(struct file *file, struct vm_area_struct *vma) { struct client *client = file->private_data; unsigned long size; int page_count, ret; if (fw_device_is_shutdown(client->device)) return -ENODEV; /* FIXME: We could support multiple buffers, but we don't. */ if (client->buffer.pages != NULL) return -EBUSY; if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; if (vma->vm_start & ~PAGE_MASK) return -EINVAL; client->vm_start = vma->vm_start; size = vma->vm_end - vma->vm_start; page_count = size >> PAGE_SHIFT; if (size & ~PAGE_MASK) return -EINVAL; ret = fw_iso_buffer_alloc(&client->buffer, page_count); if (ret < 0) return ret; scoped_guard(spinlock_irq, &client->lock) { if (client->iso_context) { ret = fw_iso_buffer_map_dma(&client->buffer, client->device->card, iso_dma_direction(client->iso_context)); if (ret < 0) goto fail; client->buffer_is_mapped = true; } } ret = vm_map_pages_zero(vma, client->buffer.pages, client->buffer.page_count); if (ret < 0) goto fail; return 0; fail: fw_iso_buffer_destroy(&client->buffer, client->device->card); return ret; } static bool has_outbound_transactions(struct client *client) { struct client_resource *resource; unsigned long index; guard(spinlock_irq)(&client->lock); xa_for_each(&client->resource_xa, index, resource) { if (is_outbound_transaction_resource(resource)) return true; } return false; } static int fw_device_op_release(struct inode *inode, struct file *file) { struct client *client = file->private_data; struct event *event, *next_event; struct client_resource *resource; unsigned long index; scoped_guard(spinlock_irq, &client->device->card->lock) list_del(&client->phy_receiver_link); scoped_guard(mutex, &client->device->client_list_mutex) list_del(&client->link); if (client->iso_context) fw_iso_context_destroy(client->iso_context); if (client->buffer.pages) fw_iso_buffer_destroy(&client->buffer, client->device->card); // Freeze client->resource_xa and client->event_list. scoped_guard(spinlock_irq, &client->lock) client->in_shutdown = true; wait_event(client->tx_flush_wait, !has_outbound_transactions(client)); xa_for_each(&client->resource_xa, index, resource) { resource->release(client, resource); client_put(client); } xa_destroy(&client->resource_xa); list_for_each_entry_safe(event, next_event, &client->event_list, link) kfree(event); client_put(client); return 0; } static __poll_t fw_device_op_poll(struct file *file, poll_table * pt) { struct client *client = file->private_data; __poll_t mask = 0; poll_wait(file, &client->wait, pt); if (fw_device_is_shutdown(client->device)) mask |= EPOLLHUP | EPOLLERR; if (!list_empty(&client->event_list)) mask |= EPOLLIN | EPOLLRDNORM; return mask; } const struct file_operations fw_device_ops = { .owner = THIS_MODULE, .open = fw_device_op_open, .read = fw_device_op_read, .unlocked_ioctl = fw_device_op_ioctl, .mmap = fw_device_op_mmap, .release = fw_device_op_release, .poll = fw_device_op_poll, .compat_ioctl = compat_ptr_ioctl, };