// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2020-2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include "amdgpu_sync.h" #include "amdgpu_object.h" #include "amdgpu_vm.h" #include "amdgpu_res_cursor.h" #include "kfd_priv.h" #include "kfd_svm.h" #include "kfd_migrate.h" #include "kfd_smi_events.h" #ifdef dev_fmt #undef dev_fmt #endif #define dev_fmt(fmt) "kfd_migrate: " fmt static uint64_t svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) { return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); } static int svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) { struct amdgpu_device *adev = ring->adev; struct amdgpu_job *job; unsigned int num_dw, num_bytes; struct dma_fence *fence; uint64_t src_addr, dst_addr; uint64_t pte_flags; void *cpu_addr; int r; /* use gart window 0 */ *gart_addr = adev->gmc.gart_start; num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); num_bytes = npages * 8; r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, AMDGPU_FENCE_OWNER_UNDEFINED, num_dw * 4 + num_bytes, AMDGPU_IB_POOL_DELAYED, &job); if (r) return r; src_addr = num_dw * 4; src_addr += job->ibs[0].gpu_addr; dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, num_bytes, 0); amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) pte_flags |= AMDGPU_PTE_WRITEABLE; pte_flags |= adev->gart.gart_pte_flags; cpu_addr = &job->ibs[0].ptr[num_dw]; amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); fence = amdgpu_job_submit(job); dma_fence_put(fence); return r; } /** * svm_migrate_copy_memory_gart - sdma copy data between ram and vram * * @adev: amdgpu device the sdma ring running * @sys: system DMA pointer to be copied * @vram: vram destination DMA pointer * @npages: number of pages to copy * @direction: enum MIGRATION_COPY_DIR * @mfence: output, sdma fence to signal after sdma is done * * ram address uses GART table continuous entries mapping to ram pages, * vram address uses direct mapping of vram pages, which must have npages * number of continuous pages. * GART update and sdma uses same buf copy function ring, sdma is splited to * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for * the last sdma finish fence which is returned to check copy memory is done. * * Context: Process context, takes and releases gtt_window_lock * * Return: * 0 - OK, otherwise error code */ static int svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, uint64_t *vram, uint64_t npages, enum MIGRATION_COPY_DIR direction, struct dma_fence **mfence) { const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; uint64_t gart_s, gart_d; struct dma_fence *next; uint64_t size; int r; mutex_lock(&adev->mman.gtt_window_lock); while (npages) { size = min(GTT_MAX_PAGES, npages); if (direction == FROM_VRAM_TO_RAM) { gart_s = svm_migrate_direct_mapping_addr(adev, *vram); r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); } else if (direction == FROM_RAM_TO_VRAM) { r = svm_migrate_gart_map(ring, size, sys, &gart_s, KFD_IOCTL_SVM_FLAG_GPU_RO); gart_d = svm_migrate_direct_mapping_addr(adev, *vram); } if (r) { dev_err(adev->dev, "fail %d create gart mapping\n", r); goto out_unlock; } r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, NULL, &next, false, true, 0); if (r) { dev_err(adev->dev, "fail %d to copy memory\n", r); goto out_unlock; } dma_fence_put(*mfence); *mfence = next; npages -= size; if (npages) { sys += size; vram += size; } } out_unlock: mutex_unlock(&adev->mman.gtt_window_lock); return r; } /** * svm_migrate_copy_done - wait for memory copy sdma is done * * @adev: amdgpu device the sdma memory copy is executing on * @mfence: migrate fence * * Wait for dma fence is signaled, if the copy ssplit into multiple sdma * operations, this is the last sdma operation fence. * * Context: called after svm_migrate_copy_memory * * Return: * 0 - success * otherwise - error code from dma fence signal */ static int svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) { int r = 0; if (mfence) { r = dma_fence_wait(mfence, false); dma_fence_put(mfence); pr_debug("sdma copy memory fence done\n"); } return r; } unsigned long svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) { return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT; } static void svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) { struct page *page; page = pfn_to_page(pfn); svm_range_bo_ref(prange->svm_bo); page->zone_device_data = prange->svm_bo; zone_device_page_init(page); } static void svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) { struct page *page; page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); unlock_page(page); put_page(page); } static unsigned long svm_migrate_addr(struct amdgpu_device *adev, struct page *page) { unsigned long addr; addr = page_to_pfn(page) << PAGE_SHIFT; return (addr - adev->kfd.pgmap.range.start); } static struct page * svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) { struct page *page; page = alloc_page_vma(GFP_HIGHUSER, vma, addr); if (page) lock_page(page); return page; } static void svm_migrate_put_sys_page(unsigned long addr) { struct page *page; page = pfn_to_page(addr >> PAGE_SHIFT); unlock_page(page); put_page(page); } static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) { unsigned long upages = 0; unsigned long i; for (i = 0; i < migrate->npages; i++) { if (migrate->src[i] & MIGRATE_PFN_VALID && !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) upages++; } return upages; } static int svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange, struct migrate_vma *migrate, struct dma_fence **mfence, dma_addr_t *scratch, uint64_t ttm_res_offset) { uint64_t npages = migrate->cpages; struct amdgpu_device *adev = node->adev; struct device *dev = adev->dev; struct amdgpu_res_cursor cursor; dma_addr_t *src; uint64_t *dst; uint64_t i, j; int r; pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start, prange->last, ttm_res_offset); src = scratch; dst = (uint64_t *)(scratch + npages); amdgpu_res_first(prange->ttm_res, ttm_res_offset, npages << PAGE_SHIFT, &cursor); for (i = j = 0; i < npages; i++) { struct page *spage; dst[i] = cursor.start + (j << PAGE_SHIFT); migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); svm_migrate_get_vram_page(prange, migrate->dst[i]); migrate->dst[i] = migrate_pfn(migrate->dst[i]); spage = migrate_pfn_to_page(migrate->src[i]); if (spage && !is_zone_device_page(spage)) { src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, DMA_TO_DEVICE); r = dma_mapping_error(dev, src[i]); if (r) { dev_err(dev, "%s: fail %d dma_map_page\n", __func__, r); goto out_free_vram_pages; } } else { if (j) { r = svm_migrate_copy_memory_gart( adev, src + i - j, dst + i - j, j, FROM_RAM_TO_VRAM, mfence); if (r) goto out_free_vram_pages; amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); j = 0; } else { amdgpu_res_next(&cursor, PAGE_SIZE); } continue; } pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", src[i] >> PAGE_SHIFT, page_to_pfn(spage)); if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j + 1, FROM_RAM_TO_VRAM, mfence); if (r) goto out_free_vram_pages; amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); j = 0; } else { j++; } } r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, FROM_RAM_TO_VRAM, mfence); out_free_vram_pages: if (r) { pr_debug("failed %d to copy memory to vram\n", r); while (i--) { svm_migrate_put_vram_page(adev, dst[i]); migrate->dst[i] = 0; } } #ifdef DEBUG_FORCE_MIXED_DOMAINS for (i = 0, j = 0; i < npages; i += 4, j++) { if (j & 1) continue; svm_migrate_put_vram_page(adev, dst[i]); migrate->dst[i] = 0; svm_migrate_put_vram_page(adev, dst[i + 1]); migrate->dst[i + 1] = 0; svm_migrate_put_vram_page(adev, dst[i + 2]); migrate->dst[i + 2] = 0; svm_migrate_put_vram_page(adev, dst[i + 3]); migrate->dst[i + 3] = 0; } #endif return r; } static long svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange, struct vm_area_struct *vma, uint64_t start, uint64_t end, uint32_t trigger, uint64_t ttm_res_offset) { struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); uint64_t npages = (end - start) >> PAGE_SHIFT; struct amdgpu_device *adev = node->adev; struct kfd_process_device *pdd; struct dma_fence *mfence = NULL; struct migrate_vma migrate = { 0 }; unsigned long cpages = 0; unsigned long mpages = 0; dma_addr_t *scratch; void *buf; int r = -ENOMEM; memset(&migrate, 0, sizeof(migrate)); migrate.vma = vma; migrate.start = start; migrate.end = end; migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), GFP_KERNEL); if (!buf) goto out; migrate.src = buf; migrate.dst = migrate.src + npages; scratch = (dma_addr_t *)(migrate.dst + npages); kfd_smi_event_migration_start(node, p->lead_thread->pid, start >> PAGE_SHIFT, end >> PAGE_SHIFT, 0, node->id, prange->prefetch_loc, prange->preferred_loc, trigger); r = migrate_vma_setup(&migrate); if (r) { dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", __func__, r, prange->start, prange->last); goto out_free; } cpages = migrate.cpages; if (!cpages) { pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", prange->start, prange->last); goto out_free; } if (cpages != npages) pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", cpages, npages); else pr_debug("0x%lx pages collected\n", cpages); r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset); migrate_vma_pages(&migrate); svm_migrate_copy_done(adev, mfence); migrate_vma_finalize(&migrate); mpages = cpages - svm_migrate_unsuccessful_pages(&migrate); pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", mpages, cpages, migrate.npages); svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); out_free: kvfree(buf); kfd_smi_event_migration_end(node, p->lead_thread->pid, start >> PAGE_SHIFT, end >> PAGE_SHIFT, 0, node->id, trigger, r); out: if (!r && mpages) { pdd = svm_range_get_pdd_by_node(prange, node); if (pdd) WRITE_ONCE(pdd->page_in, pdd->page_in + mpages); return mpages; } return r; } /** * svm_migrate_ram_to_vram - migrate svm range from system to device * @prange: range structure * @best_loc: the device to migrate to * @start_mgr: start page to migrate * @last_mgr: last page to migrate * @mm: the process mm structure * @trigger: reason of migration * * Context: Process context, caller hold mmap read lock, svms lock, prange lock * * Return: * 0 - OK, otherwise error code */ static int svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, unsigned long start_mgr, unsigned long last_mgr, struct mm_struct *mm, uint32_t trigger) { unsigned long addr, start, end; struct vm_area_struct *vma; uint64_t ttm_res_offset; struct kfd_node *node; unsigned long mpages = 0; long r = 0; if (start_mgr < prange->start || last_mgr > prange->last) { pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", start_mgr, last_mgr, prange->start, prange->last); return -EFAULT; } node = svm_range_get_node_by_id(prange, best_loc); if (!node) { pr_debug("failed to get kfd node by id 0x%x\n", best_loc); return -ENODEV; } pr_debug("svms 0x%p [0x%lx 0x%lx] in [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, start_mgr, last_mgr, prange->start, prange->last, best_loc); start = start_mgr << PAGE_SHIFT; end = (last_mgr + 1) << PAGE_SHIFT; r = amdgpu_amdkfd_reserve_mem_limit(node->adev, prange->npages * PAGE_SIZE, KFD_IOC_ALLOC_MEM_FLAGS_VRAM, node->xcp ? node->xcp->id : 0); if (r) { dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r); return -ENOSPC; } r = svm_range_vram_node_new(node, prange, true); if (r) { dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r); goto out; } ttm_res_offset = (start_mgr - prange->start + prange->offset) << PAGE_SHIFT; for (addr = start; addr < end;) { unsigned long next; vma = vma_lookup(mm, addr); if (!vma) break; next = min(vma->vm_end, end); r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset); if (r < 0) { pr_debug("failed %ld to migrate\n", r); break; } else { mpages += r; } ttm_res_offset += next - addr; addr = next; } if (mpages) { prange->actual_loc = best_loc; prange->vram_pages += mpages; } else if (!prange->actual_loc) { /* if no page migrated and all pages from prange are at * sys ram drop svm_bo got from svm_range_vram_node_new */ svm_range_vram_node_free(prange); } out: amdgpu_amdkfd_unreserve_mem_limit(node->adev, prange->npages * PAGE_SIZE, KFD_IOC_ALLOC_MEM_FLAGS_VRAM, node->xcp ? node->xcp->id : 0); return r < 0 ? r : 0; } static void svm_migrate_page_free(struct page *page) { struct svm_range_bo *svm_bo = page->zone_device_data; if (svm_bo) { pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); svm_range_bo_unref_async(svm_bo); } } static int svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, struct migrate_vma *migrate, struct dma_fence **mfence, dma_addr_t *scratch, uint64_t npages) { struct device *dev = adev->dev; uint64_t *src; dma_addr_t *dst; struct page *dpage; uint64_t i = 0, j; uint64_t addr; int r = 0; pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); addr = migrate->start; src = (uint64_t *)(scratch + npages); dst = scratch; for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { struct page *spage; spage = migrate_pfn_to_page(migrate->src[i]); if (!spage || !is_zone_device_page(spage)) { pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); if (j) { r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, FROM_VRAM_TO_RAM, mfence); if (r) goto out_oom; j = 0; } continue; } src[i] = svm_migrate_addr(adev, spage); if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, FROM_VRAM_TO_RAM, mfence); if (r) goto out_oom; j = 0; } dpage = svm_migrate_get_sys_page(migrate->vma, addr); if (!dpage) { pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); r = -ENOMEM; goto out_oom; } dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); r = dma_mapping_error(dev, dst[i]); if (r) { dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); goto out_oom; } pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); j++; } r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, FROM_VRAM_TO_RAM, mfence); out_oom: if (r) { pr_debug("failed %d copy to ram\n", r); while (i--) { svm_migrate_put_sys_page(dst[i]); migrate->dst[i] = 0; } } return r; } /** * svm_migrate_vma_to_ram - migrate range inside one vma from device to system * * @prange: svm range structure * @vma: vm_area_struct that range [start, end] belongs to * @start: range start virtual address in pages * @end: range end virtual address in pages * @node: kfd node device to migrate from * @trigger: reason of migration * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback * * Context: Process context, caller hold mmap read lock, prange->migrate_mutex * * Return: * negative values - indicate error * positive values or zero - number of pages got migrated */ static long svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange, struct vm_area_struct *vma, uint64_t start, uint64_t end, uint32_t trigger, struct page *fault_page) { struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); uint64_t npages = (end - start) >> PAGE_SHIFT; unsigned long upages = npages; unsigned long cpages = 0; unsigned long mpages = 0; struct amdgpu_device *adev = node->adev; struct kfd_process_device *pdd; struct dma_fence *mfence = NULL; struct migrate_vma migrate = { 0 }; dma_addr_t *scratch; void *buf; int r = -ENOMEM; memset(&migrate, 0, sizeof(migrate)); migrate.vma = vma; migrate.start = start; migrate.end = end; migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); if (adev->gmc.xgmi.connected_to_cpu) migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; else migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), GFP_KERNEL); if (!buf) goto out; migrate.src = buf; migrate.dst = migrate.src + npages; migrate.fault_page = fault_page; scratch = (dma_addr_t *)(migrate.dst + npages); kfd_smi_event_migration_start(node, p->lead_thread->pid, start >> PAGE_SHIFT, end >> PAGE_SHIFT, node->id, 0, prange->prefetch_loc, prange->preferred_loc, trigger); r = migrate_vma_setup(&migrate); if (r) { dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", __func__, r, prange->start, prange->last); goto out_free; } cpages = migrate.cpages; if (!cpages) { pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", prange->start, prange->last); upages = svm_migrate_unsuccessful_pages(&migrate); goto out_free; } if (cpages != npages) pr_debug("partial migration, 0x%lx/0x%llx pages collected\n", cpages, npages); else pr_debug("0x%lx pages collected\n", cpages); r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, scratch, npages); migrate_vma_pages(&migrate); upages = svm_migrate_unsuccessful_pages(&migrate); pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", upages, cpages, migrate.npages); svm_migrate_copy_done(adev, mfence); migrate_vma_finalize(&migrate); svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages); out_free: kvfree(buf); kfd_smi_event_migration_end(node, p->lead_thread->pid, start >> PAGE_SHIFT, end >> PAGE_SHIFT, node->id, 0, trigger, r); out: if (!r && cpages) { mpages = cpages - upages; pdd = svm_range_get_pdd_by_node(prange, node); if (pdd) WRITE_ONCE(pdd->page_out, pdd->page_out + mpages); } return r ? r : mpages; } /** * svm_migrate_vram_to_ram - migrate svm range from device to system * @prange: range structure * @mm: process mm, use current->mm if NULL * @start_mgr: start page need be migrated to sys ram * @last_mgr: last page need be migrated to sys ram * @trigger: reason of migration * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback * * Context: Process context, caller hold mmap read lock, prange->migrate_mutex * * Return: * 0 - OK, otherwise error code */ int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, unsigned long start_mgr, unsigned long last_mgr, uint32_t trigger, struct page *fault_page) { struct kfd_node *node; struct vm_area_struct *vma; unsigned long addr; unsigned long start; unsigned long end; unsigned long mpages = 0; long r = 0; /* this pragne has no any vram page to migrate to sys ram */ if (!prange->actual_loc) { pr_debug("[0x%lx 0x%lx] already migrated to ram\n", prange->start, prange->last); return 0; } if (start_mgr < prange->start || last_mgr > prange->last) { pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n", start_mgr, last_mgr, prange->start, prange->last); return -EFAULT; } node = svm_range_get_node_by_id(prange, prange->actual_loc); if (!node) { pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc); return -ENODEV; } pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", prange->svms, prange, start_mgr, last_mgr, prange->actual_loc); start = start_mgr << PAGE_SHIFT; end = (last_mgr + 1) << PAGE_SHIFT; for (addr = start; addr < end;) { unsigned long next; vma = vma_lookup(mm, addr); if (!vma) { pr_debug("failed to find vma for prange %p\n", prange); r = -EFAULT; break; } next = min(vma->vm_end, end); r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger, fault_page); if (r < 0) { pr_debug("failed %ld to migrate prange %p\n", r, prange); break; } else { mpages += r; } addr = next; } if (r >= 0) { prange->vram_pages -= mpages; /* prange does not have vram page set its actual_loc to system * and drop its svm_bo ref */ if (prange->vram_pages == 0 && prange->ttm_res) { prange->actual_loc = 0; svm_range_vram_node_free(prange); } } return r < 0 ? r : 0; } /** * svm_migrate_vram_to_vram - migrate svm range from device to device * @prange: range structure * @best_loc: the device to migrate to * @start: start page need be migrated to sys ram * @last: last page need be migrated to sys ram * @mm: process mm, use current->mm if NULL * @trigger: reason of migration * * Context: Process context, caller hold mmap read lock, svms lock, prange lock * * migrate all vram pages in prange to sys ram, then migrate * [start, last] pages from sys ram to gpu node best_loc. * * Return: * 0 - OK, otherwise error code */ static int svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, unsigned long start, unsigned long last, struct mm_struct *mm, uint32_t trigger) { int r, retries = 3; /* * TODO: for both devices with PCIe large bar or on same xgmi hive, skip * system memory as migration bridge */ pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); do { r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, trigger, NULL); if (r) return r; } while (prange->actual_loc && --retries); if (prange->actual_loc) return -EDEADLK; return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger); } int svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, unsigned long start, unsigned long last, struct mm_struct *mm, uint32_t trigger) { if (!prange->actual_loc || prange->actual_loc == best_loc) return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger); else return svm_migrate_vram_to_vram(prange, best_loc, start, last, mm, trigger); } /** * svm_migrate_to_ram - CPU page fault handler * @vmf: CPU vm fault vma, address * * Context: vm fault handler, caller holds the mmap read lock * * Return: * 0 - OK * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault */ static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) { unsigned long start, last, size; unsigned long addr = vmf->address; struct svm_range_bo *svm_bo; struct svm_range *prange; struct kfd_process *p; struct mm_struct *mm; int r = 0; svm_bo = vmf->page->zone_device_data; if (!svm_bo) { pr_debug("failed get device page at addr 0x%lx\n", addr); return VM_FAULT_SIGBUS; } if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { pr_debug("addr 0x%lx of process mm is destroyed\n", addr); return VM_FAULT_SIGBUS; } mm = svm_bo->eviction_fence->mm; if (mm != vmf->vma->vm_mm) pr_debug("addr 0x%lx is COW mapping in child process\n", addr); p = kfd_lookup_process_by_mm(mm); if (!p) { pr_debug("failed find process at fault address 0x%lx\n", addr); r = VM_FAULT_SIGBUS; goto out_mmput; } if (READ_ONCE(p->svms.faulting_task) == current) { pr_debug("skipping ram migration\n"); r = 0; goto out_unref_process; } pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); addr >>= PAGE_SHIFT; mutex_lock(&p->svms.lock); prange = svm_range_from_addr(&p->svms, addr, NULL); if (!prange) { pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); r = -EFAULT; goto out_unlock_svms; } mutex_lock(&prange->migrate_mutex); if (!prange->actual_loc) goto out_unlock_prange; /* Align migration range start and size to granularity size */ size = 1UL << prange->granularity; start = max(ALIGN_DOWN(addr, size), prange->start); last = min(ALIGN(addr + 1, size) - 1, prange->last); r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, start, last, KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, vmf->page); if (r) pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", r, prange->svms, prange, start, last); out_unlock_prange: mutex_unlock(&prange->migrate_mutex); out_unlock_svms: mutex_unlock(&p->svms.lock); out_unref_process: pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); kfd_unref_process(p); out_mmput: mmput(mm); return r ? VM_FAULT_SIGBUS : 0; } static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { .page_free = svm_migrate_page_free, .migrate_to_ram = svm_migrate_to_ram, }; /* Each VRAM page uses sizeof(struct page) on system memory */ #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) int kgd2kfd_init_zone_device(struct amdgpu_device *adev) { struct amdgpu_kfd_dev *kfddev = &adev->kfd; struct dev_pagemap *pgmap; struct resource *res = NULL; unsigned long size; void *r; /* Page migration works on gfx9 or newer */ if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 1)) return -EINVAL; if (adev->flags & AMD_IS_APU) return 0; pgmap = &kfddev->pgmap; memset(pgmap, 0, sizeof(*pgmap)); /* TODO: register all vram to HMM for now. * should remove reserved size */ size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); if (adev->gmc.xgmi.connected_to_cpu) { pgmap->range.start = adev->gmc.aper_base; pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; pgmap->type = MEMORY_DEVICE_COHERENT; } else { res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); if (IS_ERR(res)) return PTR_ERR(res); pgmap->range.start = res->start; pgmap->range.end = res->end; pgmap->type = MEMORY_DEVICE_PRIVATE; } pgmap->nr_range = 1; pgmap->ops = &svm_migrate_pgmap_ops; pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); pgmap->flags = 0; /* Device manager releases device-specific resources, memory region and * pgmap when driver disconnects from device. */ r = devm_memremap_pages(adev->dev, pgmap); if (IS_ERR(r)) { pr_err("failed to register HMM device memory\n"); if (pgmap->type == MEMORY_DEVICE_PRIVATE) devm_release_mem_region(adev->dev, res->start, resource_size(res)); /* Disable SVM support capability */ pgmap->type = 0; return PTR_ERR(r); } pr_debug("reserve %ldMB system memory for VRAM pages struct\n", SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); pr_info("HMM registered %ldMB device memory\n", size >> 20); return 0; }