/* * Copyright 2017 Red Hat * Parts ported from amdgpu (fence wait code). * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * */ /** * DOC: Overview * * DRM synchronisation objects (syncobj, see struct &drm_syncobj) provide a * container for a synchronization primitive which can be used by userspace * to explicitly synchronize GPU commands, can be shared between userspace * processes, and can be shared between different DRM drivers. * Their primary use-case is to implement Vulkan fences and semaphores. * The syncobj userspace API provides ioctls for several operations: * * - Creation and destruction of syncobjs * - Import and export of syncobjs to/from a syncobj file descriptor * - Import and export a syncobj's underlying fence to/from a sync file * - Reset a syncobj (set its fence to NULL) * - Signal a syncobj (set a trivially signaled fence) * - Wait for a syncobj's fence to appear and be signaled * * The syncobj userspace API also provides operations to manipulate a syncobj * in terms of a timeline of struct &dma_fence_chain rather than a single * struct &dma_fence, through the following operations: * * - Signal a given point on the timeline * - Wait for a given point to appear and/or be signaled * - Import and export from/to a given point of a timeline * * At it's core, a syncobj is simply a wrapper around a pointer to a struct * &dma_fence which may be NULL. * When a syncobj is first created, its pointer is either NULL or a pointer * to an already signaled fence depending on whether the * &DRM_SYNCOBJ_CREATE_SIGNALED flag is passed to * &DRM_IOCTL_SYNCOBJ_CREATE. * * If the syncobj is considered as a binary (its state is either signaled or * unsignaled) primitive, when GPU work is enqueued in a DRM driver to signal * the syncobj, the syncobj's fence is replaced with a fence which will be * signaled by the completion of that work. * If the syncobj is considered as a timeline primitive, when GPU work is * enqueued in a DRM driver to signal the a given point of the syncobj, a new * struct &dma_fence_chain pointing to the DRM driver's fence and also * pointing to the previous fence that was in the syncobj. The new struct * &dma_fence_chain fence replace the syncobj's fence and will be signaled by * completion of the DRM driver's work and also any work associated with the * fence previously in the syncobj. * * When GPU work which waits on a syncobj is enqueued in a DRM driver, at the * time the work is enqueued, it waits on the syncobj's fence before * submitting the work to hardware. That fence is either : * * - The syncobj's current fence if the syncobj is considered as a binary * primitive. * - The struct &dma_fence associated with a given point if the syncobj is * considered as a timeline primitive. * * If the syncobj's fence is NULL or not present in the syncobj's timeline, * the enqueue operation is expected to fail. * * With binary syncobj, all manipulation of the syncobjs's fence happens in * terms of the current fence at the time the ioctl is called by userspace * regardless of whether that operation is an immediate host-side operation * (signal or reset) or or an operation which is enqueued in some driver * queue. &DRM_IOCTL_SYNCOBJ_RESET and &DRM_IOCTL_SYNCOBJ_SIGNAL can be used * to manipulate a syncobj from the host by resetting its pointer to NULL or * setting its pointer to a fence which is already signaled. * * With a timeline syncobj, all manipulation of the synobj's fence happens in * terms of a u64 value referring to point in the timeline. See * dma_fence_chain_find_seqno() to see how a given point is found in the * timeline. * * Note that applications should be careful to always use timeline set of * ioctl() when dealing with syncobj considered as timeline. Using a binary * set of ioctl() with a syncobj considered as timeline could result incorrect * synchronization. The use of binary syncobj is supported through the * timeline set of ioctl() by using a point value of 0, this will reproduce * the behavior of the binary set of ioctl() (for example replace the * syncobj's fence when signaling). * * * Host-side wait on syncobjs * -------------------------- * * &DRM_IOCTL_SYNCOBJ_WAIT takes an array of syncobj handles and does a * host-side wait on all of the syncobj fences simultaneously. * If &DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL is set, the wait ioctl will wait on * all of the syncobj fences to be signaled before it returns. * Otherwise, it returns once at least one syncobj fence has been signaled * and the index of a signaled fence is written back to the client. * * Unlike the enqueued GPU work dependencies which fail if they see a NULL * fence in a syncobj, if &DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT is set, * the host-side wait will first wait for the syncobj to receive a non-NULL * fence and then wait on that fence. * If &DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT is not set and any one of the * syncobjs in the array has a NULL fence, -EINVAL will be returned. * Assuming the syncobj starts off with a NULL fence, this allows a client * to do a host wait in one thread (or process) which waits on GPU work * submitted in another thread (or process) without having to manually * synchronize between the two. * This requirement is inherited from the Vulkan fence API. * * If &DRM_SYNCOBJ_WAIT_FLAGS_WAIT_DEADLINE is set, the ioctl will also set * a fence deadline hint on the backing fences before waiting, to provide the * fence signaler with an appropriate sense of urgency. The deadline is * specified as an absolute &CLOCK_MONOTONIC value in units of ns. * * Similarly, &DRM_IOCTL_SYNCOBJ_TIMELINE_WAIT takes an array of syncobj * handles as well as an array of u64 points and does a host-side wait on all * of syncobj fences at the given points simultaneously. * * &DRM_IOCTL_SYNCOBJ_TIMELINE_WAIT also adds the ability to wait for a given * fence to materialize on the timeline without waiting for the fence to be * signaled by using the &DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE flag. This * requirement is inherited from the wait-before-signal behavior required by * the Vulkan timeline semaphore API. * * Alternatively, &DRM_IOCTL_SYNCOBJ_EVENTFD can be used to wait without * blocking: an eventfd will be signaled when the syncobj is. This is useful to * integrate the wait in an event loop. * * * Import/export of syncobjs * ------------------------- * * &DRM_IOCTL_SYNCOBJ_FD_TO_HANDLE and &DRM_IOCTL_SYNCOBJ_HANDLE_TO_FD * provide two mechanisms for import/export of syncobjs. * * The first lets the client import or export an entire syncobj to a file * descriptor. * These fd's are opaque and have no other use case, except passing the * syncobj between processes. * All exported file descriptors and any syncobj handles created as a * result of importing those file descriptors own a reference to the * same underlying struct &drm_syncobj and the syncobj can be used * persistently across all the processes with which it is shared. * The syncobj is freed only once the last reference is dropped. * Unlike dma-buf, importing a syncobj creates a new handle (with its own * reference) for every import instead of de-duplicating. * The primary use-case of this persistent import/export is for shared * Vulkan fences and semaphores. * * The second import/export mechanism, which is indicated by * &DRM_SYNCOBJ_FD_TO_HANDLE_FLAGS_IMPORT_SYNC_FILE or * &DRM_SYNCOBJ_HANDLE_TO_FD_FLAGS_EXPORT_SYNC_FILE lets the client * import/export the syncobj's current fence from/to a &sync_file. * When a syncobj is exported to a sync file, that sync file wraps the * sycnobj's fence at the time of export and any later signal or reset * operations on the syncobj will not affect the exported sync file. * When a sync file is imported into a syncobj, the syncobj's fence is set * to the fence wrapped by that sync file. * Because sync files are immutable, resetting or signaling the syncobj * will not affect any sync files whose fences have been imported into the * syncobj. * * * Import/export of timeline points in timeline syncobjs * ----------------------------------------------------- * * &DRM_IOCTL_SYNCOBJ_TRANSFER provides a mechanism to transfer a struct * &dma_fence_chain of a syncobj at a given u64 point to another u64 point * into another syncobj. * * Note that if you want to transfer a struct &dma_fence_chain from a given * point on a timeline syncobj from/into a binary syncobj, you can use the * point 0 to mean take/replace the fence in the syncobj. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm_internal.h" struct syncobj_wait_entry { struct list_head node; struct task_struct *task; struct dma_fence *fence; struct dma_fence_cb fence_cb; u64 point; }; static void syncobj_wait_syncobj_func(struct drm_syncobj *syncobj, struct syncobj_wait_entry *wait); struct syncobj_eventfd_entry { struct list_head node; struct dma_fence *fence; struct dma_fence_cb fence_cb; struct drm_syncobj *syncobj; struct eventfd_ctx *ev_fd_ctx; u64 point; u32 flags; }; static void syncobj_eventfd_entry_func(struct drm_syncobj *syncobj, struct syncobj_eventfd_entry *entry); /** * drm_syncobj_find - lookup and reference a sync object. * @file_private: drm file private pointer * @handle: sync object handle to lookup. * * Returns a reference to the syncobj pointed to by handle or NULL. The * reference must be released by calling drm_syncobj_put(). */ struct drm_syncobj *drm_syncobj_find(struct drm_file *file_private, u32 handle) { struct drm_syncobj *syncobj; spin_lock(&file_private->syncobj_table_lock); /* Check if we currently have a reference on the object */ syncobj = idr_find(&file_private->syncobj_idr, handle); if (syncobj) drm_syncobj_get(syncobj); spin_unlock(&file_private->syncobj_table_lock); return syncobj; } EXPORT_SYMBOL(drm_syncobj_find); static void drm_syncobj_fence_add_wait(struct drm_syncobj *syncobj, struct syncobj_wait_entry *wait) { struct dma_fence *fence; if (wait->fence) return; spin_lock(&syncobj->lock); /* We've already tried once to get a fence and failed. Now that we * have the lock, try one more time just to be sure we don't add a * callback when a fence has already been set. */ fence = dma_fence_get(rcu_dereference_protected(syncobj->fence, 1)); if (!fence || dma_fence_chain_find_seqno(&fence, wait->point)) { dma_fence_put(fence); list_add_tail(&wait->node, &syncobj->cb_list); } else if (!fence) { wait->fence = dma_fence_get_stub(); } else { wait->fence = fence; } spin_unlock(&syncobj->lock); } static void drm_syncobj_remove_wait(struct drm_syncobj *syncobj, struct syncobj_wait_entry *wait) { if (!wait->node.next) return; spin_lock(&syncobj->lock); list_del_init(&wait->node); spin_unlock(&syncobj->lock); } static void syncobj_eventfd_entry_free(struct syncobj_eventfd_entry *entry) { eventfd_ctx_put(entry->ev_fd_ctx); dma_fence_put(entry->fence); /* This happens either inside the syncobj lock, or after the node has * already been removed from the list. */ list_del(&entry->node); kfree(entry); } static void drm_syncobj_add_eventfd(struct drm_syncobj *syncobj, struct syncobj_eventfd_entry *entry) { spin_lock(&syncobj->lock); list_add_tail(&entry->node, &syncobj->ev_fd_list); syncobj_eventfd_entry_func(syncobj, entry); spin_unlock(&syncobj->lock); } /** * drm_syncobj_add_point - add new timeline point to the syncobj * @syncobj: sync object to add timeline point do * @chain: chain node to use to add the point * @fence: fence to encapsulate in the chain node * @point: sequence number to use for the point * * Add the chain node as new timeline point to the syncobj. */ void drm_syncobj_add_point(struct drm_syncobj *syncobj, struct dma_fence_chain *chain, struct dma_fence *fence, uint64_t point) { struct syncobj_wait_entry *wait_cur, *wait_tmp; struct syncobj_eventfd_entry *ev_fd_cur, *ev_fd_tmp; struct dma_fence *prev; dma_fence_get(fence); spin_lock(&syncobj->lock); prev = drm_syncobj_fence_get(syncobj); /* You are adding an unorder point to timeline, which could cause payload returned from query_ioctl is 0! */ if (prev && prev->seqno >= point) DRM_DEBUG("You are adding an unorder point to timeline!\n"); dma_fence_chain_init(chain, prev, fence, point); rcu_assign_pointer(syncobj->fence, &chain->base); list_for_each_entry_safe(wait_cur, wait_tmp, &syncobj->cb_list, node) syncobj_wait_syncobj_func(syncobj, wait_cur); list_for_each_entry_safe(ev_fd_cur, ev_fd_tmp, &syncobj->ev_fd_list, node) syncobj_eventfd_entry_func(syncobj, ev_fd_cur); spin_unlock(&syncobj->lock); /* Walk the chain once to trigger garbage collection */ dma_fence_chain_for_each(fence, prev); dma_fence_put(prev); } EXPORT_SYMBOL(drm_syncobj_add_point); /** * drm_syncobj_replace_fence - replace fence in a sync object. * @syncobj: Sync object to replace fence in * @fence: fence to install in sync file. * * This replaces the fence on a sync object. */ void drm_syncobj_replace_fence(struct drm_syncobj *syncobj, struct dma_fence *fence) { struct dma_fence *old_fence; struct syncobj_wait_entry *wait_cur, *wait_tmp; struct syncobj_eventfd_entry *ev_fd_cur, *ev_fd_tmp; if (fence) dma_fence_get(fence); spin_lock(&syncobj->lock); old_fence = rcu_dereference_protected(syncobj->fence, lockdep_is_held(&syncobj->lock)); rcu_assign_pointer(syncobj->fence, fence); if (fence != old_fence) { list_for_each_entry_safe(wait_cur, wait_tmp, &syncobj->cb_list, node) syncobj_wait_syncobj_func(syncobj, wait_cur); list_for_each_entry_safe(ev_fd_cur, ev_fd_tmp, &syncobj->ev_fd_list, node) syncobj_eventfd_entry_func(syncobj, ev_fd_cur); } spin_unlock(&syncobj->lock); dma_fence_put(old_fence); } EXPORT_SYMBOL(drm_syncobj_replace_fence); /** * drm_syncobj_assign_null_handle - assign a stub fence to the sync object * @syncobj: sync object to assign the fence on * * Assign a already signaled stub fence to the sync object. */ static int drm_syncobj_assign_null_handle(struct drm_syncobj *syncobj) { struct dma_fence *fence = dma_fence_allocate_private_stub(ktime_get()); if (!fence) return -ENOMEM; drm_syncobj_replace_fence(syncobj, fence); dma_fence_put(fence); return 0; } /* 5s default for wait submission */ #define DRM_SYNCOBJ_WAIT_FOR_SUBMIT_TIMEOUT 5000000000ULL /** * drm_syncobj_find_fence - lookup and reference the fence in a sync object * @file_private: drm file private pointer * @handle: sync object handle to lookup. * @point: timeline point * @flags: DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT or not * @fence: out parameter for the fence * * This is just a convenience function that combines drm_syncobj_find() and * drm_syncobj_fence_get(). * * Returns 0 on success or a negative error value on failure. On success @fence * contains a reference to the fence, which must be released by calling * dma_fence_put(). */ int drm_syncobj_find_fence(struct drm_file *file_private, u32 handle, u64 point, u64 flags, struct dma_fence **fence) { struct drm_syncobj *syncobj = drm_syncobj_find(file_private, handle); struct syncobj_wait_entry wait; u64 timeout = nsecs_to_jiffies64(DRM_SYNCOBJ_WAIT_FOR_SUBMIT_TIMEOUT); int ret; if (flags & ~DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT) return -EINVAL; if (!syncobj) return -ENOENT; /* Waiting for userspace with locks help is illegal cause that can * trivial deadlock with page faults for example. Make lockdep complain * about it early on. */ if (flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT) { might_sleep(); lockdep_assert_none_held_once(); } *fence = drm_syncobj_fence_get(syncobj); if (*fence) { ret = dma_fence_chain_find_seqno(fence, point); if (!ret) { /* If the requested seqno is already signaled * drm_syncobj_find_fence may return a NULL * fence. To make sure the recipient gets * signalled, use a new fence instead. */ if (!*fence) *fence = dma_fence_get_stub(); goto out; } dma_fence_put(*fence); } else { ret = -EINVAL; } if (!(flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT)) goto out; memset(&wait, 0, sizeof(wait)); wait.task = current; wait.point = point; drm_syncobj_fence_add_wait(syncobj, &wait); do { set_current_state(TASK_INTERRUPTIBLE); if (wait.fence) { ret = 0; break; } if (timeout == 0) { ret = -ETIME; break; } if (signal_pending(current)) { ret = -ERESTARTSYS; break; } timeout = schedule_timeout(timeout); } while (1); __set_current_state(TASK_RUNNING); *fence = wait.fence; if (wait.node.next) drm_syncobj_remove_wait(syncobj, &wait); out: drm_syncobj_put(syncobj); return ret; } EXPORT_SYMBOL(drm_syncobj_find_fence); /** * drm_syncobj_free - free a sync object. * @kref: kref to free. * * Only to be called from kref_put in drm_syncobj_put. */ void drm_syncobj_free(struct kref *kref) { struct drm_syncobj *syncobj = container_of(kref, struct drm_syncobj, refcount); struct syncobj_eventfd_entry *ev_fd_cur, *ev_fd_tmp; drm_syncobj_replace_fence(syncobj, NULL); list_for_each_entry_safe(ev_fd_cur, ev_fd_tmp, &syncobj->ev_fd_list, node) syncobj_eventfd_entry_free(ev_fd_cur); kfree(syncobj); } EXPORT_SYMBOL(drm_syncobj_free); /** * drm_syncobj_create - create a new syncobj * @out_syncobj: returned syncobj * @flags: DRM_SYNCOBJ_* flags * @fence: if non-NULL, the syncobj will represent this fence * * This is the first function to create a sync object. After creating, drivers * probably want to make it available to userspace, either through * drm_syncobj_get_handle() or drm_syncobj_get_fd(). * * Returns 0 on success or a negative error value on failure. */ int drm_syncobj_create(struct drm_syncobj **out_syncobj, uint32_t flags, struct dma_fence *fence) { int ret; struct drm_syncobj *syncobj; syncobj = kzalloc(sizeof(struct drm_syncobj), GFP_KERNEL); if (!syncobj) return -ENOMEM; kref_init(&syncobj->refcount); INIT_LIST_HEAD(&syncobj->cb_list); INIT_LIST_HEAD(&syncobj->ev_fd_list); spin_lock_init(&syncobj->lock); if (flags & DRM_SYNCOBJ_CREATE_SIGNALED) { ret = drm_syncobj_assign_null_handle(syncobj); if (ret < 0) { drm_syncobj_put(syncobj); return ret; } } if (fence) drm_syncobj_replace_fence(syncobj, fence); *out_syncobj = syncobj; return 0; } EXPORT_SYMBOL(drm_syncobj_create); /** * drm_syncobj_get_handle - get a handle from a syncobj * @file_private: drm file private pointer * @syncobj: Sync object to export * @handle: out parameter with the new handle * * Exports a sync object created with drm_syncobj_create() as a handle on * @file_private to userspace. * * Returns 0 on success or a negative error value on failure. */ int drm_syncobj_get_handle(struct drm_file *file_private, struct drm_syncobj *syncobj, u32 *handle) { int ret; /* take a reference to put in the idr */ drm_syncobj_get(syncobj); idr_preload(GFP_KERNEL); spin_lock(&file_private->syncobj_table_lock); ret = idr_alloc(&file_private->syncobj_idr, syncobj, 1, 0, GFP_NOWAIT); spin_unlock(&file_private->syncobj_table_lock); idr_preload_end(); if (ret < 0) { drm_syncobj_put(syncobj); return ret; } *handle = ret; return 0; } EXPORT_SYMBOL(drm_syncobj_get_handle); static int drm_syncobj_create_as_handle(struct drm_file *file_private, u32 *handle, uint32_t flags) { int ret; struct drm_syncobj *syncobj; ret = drm_syncobj_create(&syncobj, flags, NULL); if (ret) return ret; ret = drm_syncobj_get_handle(file_private, syncobj, handle); drm_syncobj_put(syncobj); return ret; } static int drm_syncobj_destroy(struct drm_file *file_private, u32 handle) { struct drm_syncobj *syncobj; spin_lock(&file_private->syncobj_table_lock); syncobj = idr_remove(&file_private->syncobj_idr, handle); spin_unlock(&file_private->syncobj_table_lock); if (!syncobj) return -EINVAL; drm_syncobj_put(syncobj); return 0; } static int drm_syncobj_file_release(struct inode *inode, struct file *file) { struct drm_syncobj *syncobj = file->private_data; drm_syncobj_put(syncobj); return 0; } static const struct file_operations drm_syncobj_file_fops = { .release = drm_syncobj_file_release, }; /** * drm_syncobj_get_fd - get a file descriptor from a syncobj * @syncobj: Sync object to export * @p_fd: out parameter with the new file descriptor * * Exports a sync object created with drm_syncobj_create() as a file descriptor. * * Returns 0 on success or a negative error value on failure. */ int drm_syncobj_get_fd(struct drm_syncobj *syncobj, int *p_fd) { struct file *file; int fd; fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) return fd; file = anon_inode_getfile("syncobj_file", &drm_syncobj_file_fops, syncobj, 0); if (IS_ERR(file)) { put_unused_fd(fd); return PTR_ERR(file); } drm_syncobj_get(syncobj); fd_install(fd, file); *p_fd = fd; return 0; } EXPORT_SYMBOL(drm_syncobj_get_fd); static int drm_syncobj_handle_to_fd(struct drm_file *file_private, u32 handle, int *p_fd) { struct drm_syncobj *syncobj = drm_syncobj_find(file_private, handle); int ret; if (!syncobj) return -EINVAL; ret = drm_syncobj_get_fd(syncobj, p_fd); drm_syncobj_put(syncobj); return ret; } static int drm_syncobj_fd_to_handle(struct drm_file *file_private, int fd, u32 *handle) { struct drm_syncobj *syncobj; CLASS(fd, f)(fd); int ret; if (fd_empty(f)) return -EINVAL; if (fd_file(f)->f_op != &drm_syncobj_file_fops) return -EINVAL; /* take a reference to put in the idr */ syncobj = fd_file(f)->private_data; drm_syncobj_get(syncobj); idr_preload(GFP_KERNEL); spin_lock(&file_private->syncobj_table_lock); ret = idr_alloc(&file_private->syncobj_idr, syncobj, 1, 0, GFP_NOWAIT); spin_unlock(&file_private->syncobj_table_lock); idr_preload_end(); if (ret > 0) { *handle = ret; ret = 0; } else drm_syncobj_put(syncobj); return ret; } static int drm_syncobj_import_sync_file_fence(struct drm_file *file_private, int fd, int handle) { struct dma_fence *fence = sync_file_get_fence(fd); struct drm_syncobj *syncobj; if (!fence) return -EINVAL; syncobj = drm_syncobj_find(file_private, handle); if (!syncobj) { dma_fence_put(fence); return -ENOENT; } drm_syncobj_replace_fence(syncobj, fence); dma_fence_put(fence); drm_syncobj_put(syncobj); return 0; } static int drm_syncobj_export_sync_file(struct drm_file *file_private, int handle, int *p_fd) { int ret; struct dma_fence *fence; struct sync_file *sync_file; int fd = get_unused_fd_flags(O_CLOEXEC); if (fd < 0) return fd; ret = drm_syncobj_find_fence(file_private, handle, 0, 0, &fence); if (ret) goto err_put_fd; sync_file = sync_file_create(fence); dma_fence_put(fence); if (!sync_file) { ret = -EINVAL; goto err_put_fd; } fd_install(fd, sync_file->file); *p_fd = fd; return 0; err_put_fd: put_unused_fd(fd); return ret; } /** * drm_syncobj_open - initializes syncobj file-private structures at devnode open time * @file_private: drm file-private structure to set up * * Called at device open time, sets up the structure for handling refcounting * of sync objects. */ void drm_syncobj_open(struct drm_file *file_private) { idr_init_base(&file_private->syncobj_idr, 1); spin_lock_init(&file_private->syncobj_table_lock); } static int drm_syncobj_release_handle(int id, void *ptr, void *data) { struct drm_syncobj *syncobj = ptr; drm_syncobj_put(syncobj); return 0; } /** * drm_syncobj_release - release file-private sync object resources * @file_private: drm file-private structure to clean up * * Called at close time when the filp is going away. * * Releases any remaining references on objects by this filp. */ void drm_syncobj_release(struct drm_file *file_private) { idr_for_each(&file_private->syncobj_idr, &drm_syncobj_release_handle, file_private); idr_destroy(&file_private->syncobj_idr); } int drm_syncobj_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_create *args = data; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ)) return -EOPNOTSUPP; /* no valid flags yet */ if (args->flags & ~DRM_SYNCOBJ_CREATE_SIGNALED) return -EINVAL; return drm_syncobj_create_as_handle(file_private, &args->handle, args->flags); } int drm_syncobj_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_destroy *args = data; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ)) return -EOPNOTSUPP; /* make sure padding is empty */ if (args->pad) return -EINVAL; return drm_syncobj_destroy(file_private, args->handle); } int drm_syncobj_handle_to_fd_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_handle *args = data; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ)) return -EOPNOTSUPP; if (args->pad) return -EINVAL; if (args->flags != 0 && args->flags != DRM_SYNCOBJ_HANDLE_TO_FD_FLAGS_EXPORT_SYNC_FILE) return -EINVAL; if (args->flags & DRM_SYNCOBJ_HANDLE_TO_FD_FLAGS_EXPORT_SYNC_FILE) return drm_syncobj_export_sync_file(file_private, args->handle, &args->fd); return drm_syncobj_handle_to_fd(file_private, args->handle, &args->fd); } int drm_syncobj_fd_to_handle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_handle *args = data; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ)) return -EOPNOTSUPP; if (args->pad) return -EINVAL; if (args->flags != 0 && args->flags != DRM_SYNCOBJ_FD_TO_HANDLE_FLAGS_IMPORT_SYNC_FILE) return -EINVAL; if (args->flags & DRM_SYNCOBJ_FD_TO_HANDLE_FLAGS_IMPORT_SYNC_FILE) return drm_syncobj_import_sync_file_fence(file_private, args->fd, args->handle); return drm_syncobj_fd_to_handle(file_private, args->fd, &args->handle); } static int drm_syncobj_transfer_to_timeline(struct drm_file *file_private, struct drm_syncobj_transfer *args) { struct drm_syncobj *timeline_syncobj = NULL; struct dma_fence *fence, *tmp; struct dma_fence_chain *chain; int ret; timeline_syncobj = drm_syncobj_find(file_private, args->dst_handle); if (!timeline_syncobj) { return -ENOENT; } ret = drm_syncobj_find_fence(file_private, args->src_handle, args->src_point, args->flags, &tmp); if (ret) goto err_put_timeline; fence = dma_fence_unwrap_merge(tmp); dma_fence_put(tmp); if (!fence) { ret = -ENOMEM; goto err_put_timeline; } chain = dma_fence_chain_alloc(); if (!chain) { ret = -ENOMEM; goto err_free_fence; } drm_syncobj_add_point(timeline_syncobj, chain, fence, args->dst_point); err_free_fence: dma_fence_put(fence); err_put_timeline: drm_syncobj_put(timeline_syncobj); return ret; } static int drm_syncobj_transfer_to_binary(struct drm_file *file_private, struct drm_syncobj_transfer *args) { struct drm_syncobj *binary_syncobj = NULL; struct dma_fence *fence; int ret; binary_syncobj = drm_syncobj_find(file_private, args->dst_handle); if (!binary_syncobj) return -ENOENT; ret = drm_syncobj_find_fence(file_private, args->src_handle, args->src_point, args->flags, &fence); if (ret) goto err; drm_syncobj_replace_fence(binary_syncobj, fence); dma_fence_put(fence); err: drm_syncobj_put(binary_syncobj); return ret; } int drm_syncobj_transfer_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_transfer *args = data; int ret; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ_TIMELINE)) return -EOPNOTSUPP; if (args->pad) return -EINVAL; if (args->dst_point) ret = drm_syncobj_transfer_to_timeline(file_private, args); else ret = drm_syncobj_transfer_to_binary(file_private, args); return ret; } static void syncobj_wait_fence_func(struct dma_fence *fence, struct dma_fence_cb *cb) { struct syncobj_wait_entry *wait = container_of(cb, struct syncobj_wait_entry, fence_cb); wake_up_process(wait->task); } static void syncobj_wait_syncobj_func(struct drm_syncobj *syncobj, struct syncobj_wait_entry *wait) { struct dma_fence *fence; /* This happens inside the syncobj lock */ fence = rcu_dereference_protected(syncobj->fence, lockdep_is_held(&syncobj->lock)); dma_fence_get(fence); if (!fence || dma_fence_chain_find_seqno(&fence, wait->point)) { dma_fence_put(fence); return; } else if (!fence) { wait->fence = dma_fence_get_stub(); } else { wait->fence = fence; } wake_up_process(wait->task); list_del_init(&wait->node); } static signed long drm_syncobj_array_wait_timeout(struct drm_syncobj **syncobjs, void __user *user_points, uint32_t count, uint32_t flags, signed long timeout, uint32_t *idx, ktime_t *deadline) { struct syncobj_wait_entry *entries; struct dma_fence *fence; uint64_t *points; uint32_t signaled_count, i; if (flags & (DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT | DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE)) { might_sleep(); lockdep_assert_none_held_once(); } points = kmalloc_array(count, sizeof(*points), GFP_KERNEL); if (points == NULL) return -ENOMEM; if (!user_points) { memset(points, 0, count * sizeof(uint64_t)); } else if (copy_from_user(points, user_points, sizeof(uint64_t) * count)) { timeout = -EFAULT; goto err_free_points; } entries = kcalloc(count, sizeof(*entries), GFP_KERNEL); if (!entries) { timeout = -ENOMEM; goto err_free_points; } /* Walk the list of sync objects and initialize entries. We do * this up-front so that we can properly return -EINVAL if there is * a syncobj with a missing fence and then never have the chance of * returning -EINVAL again. */ signaled_count = 0; for (i = 0; i < count; ++i) { struct dma_fence *fence; entries[i].task = current; entries[i].point = points[i]; fence = drm_syncobj_fence_get(syncobjs[i]); if (!fence || dma_fence_chain_find_seqno(&fence, points[i])) { dma_fence_put(fence); if (flags & (DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT | DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE)) { continue; } else { timeout = -EINVAL; goto cleanup_entries; } } if (fence) entries[i].fence = fence; else entries[i].fence = dma_fence_get_stub(); if ((flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE) || dma_fence_is_signaled(entries[i].fence)) { if (signaled_count == 0 && idx) *idx = i; signaled_count++; } } if (signaled_count == count || (signaled_count > 0 && !(flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL))) goto cleanup_entries; /* There's a very annoying laxness in the dma_fence API here, in * that backends are not required to automatically report when a * fence is signaled prior to fence->ops->enable_signaling() being * called. So here if we fail to match signaled_count, we need to * fallthough and try a 0 timeout wait! */ if (flags & (DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT | DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE)) { for (i = 0; i < count; ++i) drm_syncobj_fence_add_wait(syncobjs[i], &entries[i]); } if (deadline) { for (i = 0; i < count; ++i) { fence = entries[i].fence; if (!fence) continue; dma_fence_set_deadline(fence, *deadline); } } do { set_current_state(TASK_INTERRUPTIBLE); signaled_count = 0; for (i = 0; i < count; ++i) { fence = entries[i].fence; if (!fence) continue; if ((flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE) || dma_fence_is_signaled(fence) || (!entries[i].fence_cb.func && dma_fence_add_callback(fence, &entries[i].fence_cb, syncobj_wait_fence_func))) { /* The fence has been signaled */ if (flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL) { signaled_count++; } else { if (idx) *idx = i; goto done_waiting; } } } if (signaled_count == count) goto done_waiting; if (timeout == 0) { timeout = -ETIME; goto done_waiting; } if (signal_pending(current)) { timeout = -ERESTARTSYS; goto done_waiting; } timeout = schedule_timeout(timeout); } while (1); done_waiting: __set_current_state(TASK_RUNNING); cleanup_entries: for (i = 0; i < count; ++i) { drm_syncobj_remove_wait(syncobjs[i], &entries[i]); if (entries[i].fence_cb.func) dma_fence_remove_callback(entries[i].fence, &entries[i].fence_cb); dma_fence_put(entries[i].fence); } kfree(entries); err_free_points: kfree(points); return timeout; } /** * drm_timeout_abs_to_jiffies - calculate jiffies timeout from absolute value * * @timeout_nsec: timeout nsec component in ns, 0 for poll * * Calculate the timeout in jiffies from an absolute time in sec/nsec. */ signed long drm_timeout_abs_to_jiffies(int64_t timeout_nsec) { ktime_t abs_timeout, now; u64 timeout_ns, timeout_jiffies64; /* make 0 timeout means poll - absolute 0 doesn't seem valid */ if (timeout_nsec == 0) return 0; abs_timeout = ns_to_ktime(timeout_nsec); now = ktime_get(); if (!ktime_after(abs_timeout, now)) return 0; timeout_ns = ktime_to_ns(ktime_sub(abs_timeout, now)); timeout_jiffies64 = nsecs_to_jiffies64(timeout_ns); /* clamp timeout to avoid infinite timeout */ if (timeout_jiffies64 >= MAX_SCHEDULE_TIMEOUT - 1) return MAX_SCHEDULE_TIMEOUT - 1; return timeout_jiffies64 + 1; } EXPORT_SYMBOL(drm_timeout_abs_to_jiffies); static int drm_syncobj_array_wait(struct drm_device *dev, struct drm_file *file_private, struct drm_syncobj_wait *wait, struct drm_syncobj_timeline_wait *timeline_wait, struct drm_syncobj **syncobjs, bool timeline, ktime_t *deadline) { signed long timeout = 0; uint32_t first = ~0; if (!timeline) { timeout = drm_timeout_abs_to_jiffies(wait->timeout_nsec); timeout = drm_syncobj_array_wait_timeout(syncobjs, NULL, wait->count_handles, wait->flags, timeout, &first, deadline); if (timeout < 0) return timeout; wait->first_signaled = first; } else { timeout = drm_timeout_abs_to_jiffies(timeline_wait->timeout_nsec); timeout = drm_syncobj_array_wait_timeout(syncobjs, u64_to_user_ptr(timeline_wait->points), timeline_wait->count_handles, timeline_wait->flags, timeout, &first, deadline); if (timeout < 0) return timeout; timeline_wait->first_signaled = first; } return 0; } static int drm_syncobj_array_find(struct drm_file *file_private, void __user *user_handles, uint32_t count_handles, struct drm_syncobj ***syncobjs_out) { uint32_t i, *handles; struct drm_syncobj **syncobjs; int ret; handles = kmalloc_array(count_handles, sizeof(*handles), GFP_KERNEL); if (handles == NULL) return -ENOMEM; if (copy_from_user(handles, user_handles, sizeof(uint32_t) * count_handles)) { ret = -EFAULT; goto err_free_handles; } syncobjs = kmalloc_array(count_handles, sizeof(*syncobjs), GFP_KERNEL); if (syncobjs == NULL) { ret = -ENOMEM; goto err_free_handles; } for (i = 0; i < count_handles; i++) { syncobjs[i] = drm_syncobj_find(file_private, handles[i]); if (!syncobjs[i]) { ret = -ENOENT; goto err_put_syncobjs; } } kfree(handles); *syncobjs_out = syncobjs; return 0; err_put_syncobjs: while (i-- > 0) drm_syncobj_put(syncobjs[i]); kfree(syncobjs); err_free_handles: kfree(handles); return ret; } static void drm_syncobj_array_free(struct drm_syncobj **syncobjs, uint32_t count) { uint32_t i; for (i = 0; i < count; i++) drm_syncobj_put(syncobjs[i]); kfree(syncobjs); } int drm_syncobj_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_wait *args = data; struct drm_syncobj **syncobjs; unsigned int possible_flags; ktime_t t, *tp = NULL; int ret = 0; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ)) return -EOPNOTSUPP; possible_flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL | DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT | DRM_SYNCOBJ_WAIT_FLAGS_WAIT_DEADLINE; if (args->flags & ~possible_flags) return -EINVAL; if (args->count_handles == 0) return 0; ret = drm_syncobj_array_find(file_private, u64_to_user_ptr(args->handles), args->count_handles, &syncobjs); if (ret < 0) return ret; if (args->flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_DEADLINE) { t = ns_to_ktime(args->deadline_nsec); tp = &t; } ret = drm_syncobj_array_wait(dev, file_private, args, NULL, syncobjs, false, tp); drm_syncobj_array_free(syncobjs, args->count_handles); return ret; } int drm_syncobj_timeline_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_timeline_wait *args = data; struct drm_syncobj **syncobjs; unsigned int possible_flags; ktime_t t, *tp = NULL; int ret = 0; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ_TIMELINE)) return -EOPNOTSUPP; possible_flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL | DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT | DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE | DRM_SYNCOBJ_WAIT_FLAGS_WAIT_DEADLINE; if (args->flags & ~possible_flags) return -EINVAL; if (args->count_handles == 0) return 0; ret = drm_syncobj_array_find(file_private, u64_to_user_ptr(args->handles), args->count_handles, &syncobjs); if (ret < 0) return ret; if (args->flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_DEADLINE) { t = ns_to_ktime(args->deadline_nsec); tp = &t; } ret = drm_syncobj_array_wait(dev, file_private, NULL, args, syncobjs, true, tp); drm_syncobj_array_free(syncobjs, args->count_handles); return ret; } static void syncobj_eventfd_entry_fence_func(struct dma_fence *fence, struct dma_fence_cb *cb) { struct syncobj_eventfd_entry *entry = container_of(cb, struct syncobj_eventfd_entry, fence_cb); eventfd_signal(entry->ev_fd_ctx); syncobj_eventfd_entry_free(entry); } static void syncobj_eventfd_entry_func(struct drm_syncobj *syncobj, struct syncobj_eventfd_entry *entry) { int ret; struct dma_fence *fence; /* This happens inside the syncobj lock */ fence = dma_fence_get(rcu_dereference_protected(syncobj->fence, 1)); if (!fence) return; ret = dma_fence_chain_find_seqno(&fence, entry->point); if (ret != 0) { /* The given seqno has not been submitted yet. */ dma_fence_put(fence); return; } else if (!fence) { /* If dma_fence_chain_find_seqno returns 0 but sets the fence * to NULL, it implies that the given seqno is signaled and a * later seqno has already been submitted. Assign a stub fence * so that the eventfd still gets signaled below. */ fence = dma_fence_get_stub(); } list_del_init(&entry->node); entry->fence = fence; if (entry->flags & DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE) { eventfd_signal(entry->ev_fd_ctx); syncobj_eventfd_entry_free(entry); } else { ret = dma_fence_add_callback(fence, &entry->fence_cb, syncobj_eventfd_entry_fence_func); if (ret == -ENOENT) { eventfd_signal(entry->ev_fd_ctx); syncobj_eventfd_entry_free(entry); } } } int drm_syncobj_eventfd_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_eventfd *args = data; struct drm_syncobj *syncobj; struct eventfd_ctx *ev_fd_ctx; struct syncobj_eventfd_entry *entry; int ret; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ_TIMELINE)) return -EOPNOTSUPP; if (args->flags & ~DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE) return -EINVAL; if (args->pad) return -EINVAL; syncobj = drm_syncobj_find(file_private, args->handle); if (!syncobj) return -ENOENT; ev_fd_ctx = eventfd_ctx_fdget(args->fd); if (IS_ERR(ev_fd_ctx)) { ret = PTR_ERR(ev_fd_ctx); goto err_fdget; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { ret = -ENOMEM; goto err_kzalloc; } entry->syncobj = syncobj; entry->ev_fd_ctx = ev_fd_ctx; entry->point = args->point; entry->flags = args->flags; drm_syncobj_add_eventfd(syncobj, entry); drm_syncobj_put(syncobj); return 0; err_kzalloc: eventfd_ctx_put(ev_fd_ctx); err_fdget: drm_syncobj_put(syncobj); return ret; } int drm_syncobj_reset_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_array *args = data; struct drm_syncobj **syncobjs; uint32_t i; int ret; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ)) return -EOPNOTSUPP; if (args->pad != 0) return -EINVAL; if (args->count_handles == 0) return -EINVAL; ret = drm_syncobj_array_find(file_private, u64_to_user_ptr(args->handles), args->count_handles, &syncobjs); if (ret < 0) return ret; for (i = 0; i < args->count_handles; i++) drm_syncobj_replace_fence(syncobjs[i], NULL); drm_syncobj_array_free(syncobjs, args->count_handles); return 0; } int drm_syncobj_signal_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_array *args = data; struct drm_syncobj **syncobjs; uint32_t i; int ret; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ)) return -EOPNOTSUPP; if (args->pad != 0) return -EINVAL; if (args->count_handles == 0) return -EINVAL; ret = drm_syncobj_array_find(file_private, u64_to_user_ptr(args->handles), args->count_handles, &syncobjs); if (ret < 0) return ret; for (i = 0; i < args->count_handles; i++) { ret = drm_syncobj_assign_null_handle(syncobjs[i]); if (ret < 0) break; } drm_syncobj_array_free(syncobjs, args->count_handles); return ret; } int drm_syncobj_timeline_signal_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_timeline_array *args = data; struct drm_syncobj **syncobjs; struct dma_fence_chain **chains; uint64_t *points; uint32_t i, j; int ret; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ_TIMELINE)) return -EOPNOTSUPP; if (args->flags != 0) return -EINVAL; if (args->count_handles == 0) return -EINVAL; ret = drm_syncobj_array_find(file_private, u64_to_user_ptr(args->handles), args->count_handles, &syncobjs); if (ret < 0) return ret; points = kmalloc_array(args->count_handles, sizeof(*points), GFP_KERNEL); if (!points) { ret = -ENOMEM; goto out; } if (!u64_to_user_ptr(args->points)) { memset(points, 0, args->count_handles * sizeof(uint64_t)); } else if (copy_from_user(points, u64_to_user_ptr(args->points), sizeof(uint64_t) * args->count_handles)) { ret = -EFAULT; goto err_points; } chains = kmalloc_array(args->count_handles, sizeof(void *), GFP_KERNEL); if (!chains) { ret = -ENOMEM; goto err_points; } for (i = 0; i < args->count_handles; i++) { chains[i] = dma_fence_chain_alloc(); if (!chains[i]) { for (j = 0; j < i; j++) dma_fence_chain_free(chains[j]); ret = -ENOMEM; goto err_chains; } } for (i = 0; i < args->count_handles; i++) { struct dma_fence *fence = dma_fence_get_stub(); drm_syncobj_add_point(syncobjs[i], chains[i], fence, points[i]); dma_fence_put(fence); } err_chains: kfree(chains); err_points: kfree(points); out: drm_syncobj_array_free(syncobjs, args->count_handles); return ret; } int drm_syncobj_query_ioctl(struct drm_device *dev, void *data, struct drm_file *file_private) { struct drm_syncobj_timeline_array *args = data; struct drm_syncobj **syncobjs; uint64_t __user *points = u64_to_user_ptr(args->points); uint32_t i; int ret; if (!drm_core_check_feature(dev, DRIVER_SYNCOBJ_TIMELINE)) return -EOPNOTSUPP; if (args->flags & ~DRM_SYNCOBJ_QUERY_FLAGS_LAST_SUBMITTED) return -EINVAL; if (args->count_handles == 0) return -EINVAL; ret = drm_syncobj_array_find(file_private, u64_to_user_ptr(args->handles), args->count_handles, &syncobjs); if (ret < 0) return ret; for (i = 0; i < args->count_handles; i++) { struct dma_fence_chain *chain; struct dma_fence *fence; uint64_t point; fence = drm_syncobj_fence_get(syncobjs[i]); chain = to_dma_fence_chain(fence); if (chain) { struct dma_fence *iter, *last_signaled = dma_fence_get(fence); if (args->flags & DRM_SYNCOBJ_QUERY_FLAGS_LAST_SUBMITTED) { point = fence->seqno; } else { dma_fence_chain_for_each(iter, fence) { if (iter->context != fence->context) { dma_fence_put(iter); /* It is most likely that timeline has * unorder points. */ break; } dma_fence_put(last_signaled); last_signaled = dma_fence_get(iter); } point = dma_fence_is_signaled(last_signaled) ? last_signaled->seqno : to_dma_fence_chain(last_signaled)->prev_seqno; } dma_fence_put(last_signaled); } else { point = 0; } dma_fence_put(fence); ret = copy_to_user(&points[i], &point, sizeof(uint64_t)); ret = ret ? -EFAULT : 0; if (ret) break; } drm_syncobj_array_free(syncobjs, args->count_handles); return ret; }