// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2006 Intel Corporation * * Authors: * Eric Anholt */ #include #include #include "intel_bios.h" #include "psb_drv.h" #include "psb_intel_drv.h" #include "psb_intel_reg.h" #define TARGET_ADDR1 0x70 #define TARGET_ADDR2 0x72 static void *find_section(struct bdb_header *bdb, int section_id) { u8 *base = (u8 *)bdb; int index = 0; u16 total, current_size; u8 current_id; /* skip to first section */ index += bdb->header_size; total = bdb->bdb_size; /* walk the sections looking for section_id */ while (index < total) { current_id = *(base + index); index++; current_size = *((u16 *)(base + index)); index += 2; if (current_id == section_id) return base + index; index += current_size; } return NULL; } static void parse_edp(struct drm_psb_private *dev_priv, struct bdb_header *bdb) { struct bdb_edp *edp; struct edp_power_seq *edp_pps; struct edp_link_params *edp_link_params; uint8_t panel_type; edp = find_section(bdb, BDB_EDP); dev_priv->edp.bpp = 18; if (!edp) { if (dev_priv->edp.support) { DRM_DEBUG_KMS("No eDP BDB found but eDP panel supported, assume %dbpp panel color depth.\n", dev_priv->edp.bpp); } return; } panel_type = dev_priv->panel_type; switch ((edp->color_depth >> (panel_type * 2)) & 3) { case EDP_18BPP: dev_priv->edp.bpp = 18; break; case EDP_24BPP: dev_priv->edp.bpp = 24; break; case EDP_30BPP: dev_priv->edp.bpp = 30; break; } /* Get the eDP sequencing and link info */ edp_pps = &edp->power_seqs[panel_type]; edp_link_params = &edp->link_params[panel_type]; dev_priv->edp.pps = *edp_pps; DRM_DEBUG_KMS("EDP timing in vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", dev_priv->edp.pps.t1_t3, dev_priv->edp.pps.t8, dev_priv->edp.pps.t9, dev_priv->edp.pps.t10, dev_priv->edp.pps.t11_t12); dev_priv->edp.rate = edp_link_params->rate ? DP_LINK_BW_2_7 : DP_LINK_BW_1_62; switch (edp_link_params->lanes) { case 0: dev_priv->edp.lanes = 1; break; case 1: dev_priv->edp.lanes = 2; break; case 3: default: dev_priv->edp.lanes = 4; break; } DRM_DEBUG_KMS("VBT reports EDP: Lane_count %d, Lane_rate %d, Bpp %d\n", dev_priv->edp.lanes, dev_priv->edp.rate, dev_priv->edp.bpp); switch (edp_link_params->preemphasis) { case 0: dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; break; case 1: dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; break; case 2: dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; break; case 3: dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; break; } switch (edp_link_params->vswing) { case 0: dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; break; case 1: dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; break; case 2: dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; break; case 3: dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; break; } DRM_DEBUG_KMS("VBT reports EDP: VSwing %d, Preemph %d\n", dev_priv->edp.vswing, dev_priv->edp.preemphasis); } static u16 get_blocksize(void *p) { u16 *block_ptr, block_size; block_ptr = (u16 *)((char *)p - 2); block_size = *block_ptr; return block_size; } static void fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, struct lvds_dvo_timing *dvo_timing) { panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo; panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + dvo_timing->hsync_pulse_width; panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo; panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + dvo_timing->vsync_off; panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + dvo_timing->vsync_pulse_width; panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); panel_fixed_mode->clock = dvo_timing->clock * 10; panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; if (dvo_timing->hsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; if (dvo_timing->vsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; /* Some VBTs have bogus h/vtotal values */ if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; drm_mode_set_name(panel_fixed_mode); } static void parse_backlight_data(struct drm_psb_private *dev_priv, struct bdb_header *bdb) { struct bdb_lvds_backlight *vbt_lvds_bl = NULL; struct bdb_lvds_backlight *lvds_bl; u8 p_type = 0; void *bl_start = NULL; struct bdb_lvds_options *lvds_opts = find_section(bdb, BDB_LVDS_OPTIONS); dev_priv->lvds_bl = NULL; if (lvds_opts) p_type = lvds_opts->panel_type; else return; bl_start = find_section(bdb, BDB_LVDS_BACKLIGHT); vbt_lvds_bl = (struct bdb_lvds_backlight *)(bl_start + 1) + p_type; lvds_bl = kmemdup(vbt_lvds_bl, sizeof(*vbt_lvds_bl), GFP_KERNEL); if (!lvds_bl) { dev_err(dev_priv->dev.dev, "out of memory for backlight data\n"); return; } dev_priv->lvds_bl = lvds_bl; } /* Try to find integrated panel data */ static void parse_lfp_panel_data(struct drm_psb_private *dev_priv, struct bdb_header *bdb) { struct bdb_lvds_options *lvds_options; struct bdb_lvds_lfp_data *lvds_lfp_data; struct bdb_lvds_lfp_data_entry *entry; struct lvds_dvo_timing *dvo_timing; struct drm_display_mode *panel_fixed_mode; /* Defaults if we can't find VBT info */ dev_priv->lvds_dither = 0; dev_priv->lvds_vbt = 0; lvds_options = find_section(bdb, BDB_LVDS_OPTIONS); if (!lvds_options) return; dev_priv->lvds_dither = lvds_options->pixel_dither; dev_priv->panel_type = lvds_options->panel_type; if (lvds_options->panel_type == 0xff) return; lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA); if (!lvds_lfp_data) return; entry = &lvds_lfp_data->data[lvds_options->panel_type]; dvo_timing = &entry->dvo_timing; panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (panel_fixed_mode == NULL) { dev_err(dev_priv->dev.dev, "out of memory for fixed panel mode\n"); return; } dev_priv->lvds_vbt = 1; fill_detail_timing_data(panel_fixed_mode, dvo_timing); if (panel_fixed_mode->htotal > 0 && panel_fixed_mode->vtotal > 0) { dev_priv->lfp_lvds_vbt_mode = panel_fixed_mode; drm_mode_debug_printmodeline(panel_fixed_mode); } else { dev_dbg(dev_priv->dev.dev, "ignoring invalid LVDS VBT\n"); dev_priv->lvds_vbt = 0; kfree(panel_fixed_mode); } return; } /* Try to find sdvo panel data */ static void parse_sdvo_panel_data(struct drm_psb_private *dev_priv, struct bdb_header *bdb) { struct bdb_sdvo_lvds_options *sdvo_lvds_options; struct lvds_dvo_timing *dvo_timing; struct drm_display_mode *panel_fixed_mode; dev_priv->sdvo_lvds_vbt_mode = NULL; sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS); if (!sdvo_lvds_options) return; dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS); if (!dvo_timing) return; panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (!panel_fixed_mode) return; fill_detail_timing_data(panel_fixed_mode, dvo_timing + sdvo_lvds_options->panel_type); dev_priv->sdvo_lvds_vbt_mode = panel_fixed_mode; return; } static void parse_general_features(struct drm_psb_private *dev_priv, struct bdb_header *bdb) { struct bdb_general_features *general; /* Set sensible defaults in case we can't find the general block */ dev_priv->int_tv_support = 1; dev_priv->int_crt_support = 1; general = find_section(bdb, BDB_GENERAL_FEATURES); if (general) { dev_priv->int_tv_support = general->int_tv_support; dev_priv->int_crt_support = general->int_crt_support; dev_priv->lvds_use_ssc = general->enable_ssc; if (dev_priv->lvds_use_ssc) { dev_priv->lvds_ssc_freq = general->ssc_freq ? 100 : 96; } } } static void parse_sdvo_device_mapping(struct drm_psb_private *dev_priv, struct bdb_header *bdb) { struct sdvo_device_mapping *p_mapping; struct bdb_general_definitions *p_defs; struct child_device_config *p_child; int i, child_device_num, count; u16 block_size; p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (!p_defs) { DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n"); return; } /* judge whether the size of child device meets the requirements. * If the child device size obtained from general definition block * is different with sizeof(struct child_device_config), skip the * parsing of sdvo device info */ if (p_defs->child_dev_size != sizeof(*p_child)) { /* different child dev size . Ignore it */ DRM_DEBUG_KMS("different child size is found. Invalid.\n"); return; } /* get the block size of general definitions */ block_size = get_blocksize(p_defs); /* get the number of child device */ child_device_num = (block_size - sizeof(*p_defs)) / sizeof(*p_child); count = 0; for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->device_type) { /* skip the device block if device type is invalid */ continue; } if (p_child->target_addr != TARGET_ADDR1 && p_child->target_addr != TARGET_ADDR2) { /* * If the target address is neither 0x70 nor 0x72, * it is not a SDVO device. Skip it. */ continue; } if (p_child->dvo_port != DEVICE_PORT_DVOB && p_child->dvo_port != DEVICE_PORT_DVOC) { /* skip the incorrect SDVO port */ DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n"); continue; } DRM_DEBUG_KMS("the SDVO device with target addr %2x is found on" " %s port\n", p_child->target_addr, (p_child->dvo_port == DEVICE_PORT_DVOB) ? "SDVOB" : "SDVOC"); p_mapping = &(dev_priv->sdvo_mappings[p_child->dvo_port - 1]); if (!p_mapping->initialized) { p_mapping->dvo_port = p_child->dvo_port; p_mapping->target_addr = p_child->target_addr; p_mapping->dvo_wiring = p_child->dvo_wiring; p_mapping->ddc_pin = p_child->ddc_pin; p_mapping->i2c_pin = p_child->i2c_pin; p_mapping->initialized = 1; DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", p_mapping->dvo_port, p_mapping->target_addr, p_mapping->dvo_wiring, p_mapping->ddc_pin, p_mapping->i2c_pin); } else { DRM_DEBUG_KMS("Maybe one SDVO port is shared by " "two SDVO device.\n"); } if (p_child->target2_addr) { /* Maybe this is a SDVO device with multiple inputs */ /* And the mapping info is not added */ DRM_DEBUG_KMS("there exists the target2_addr. Maybe this" " is a SDVO device with multiple inputs.\n"); } count++; } if (!count) { /* No SDVO device info is found */ DRM_DEBUG_KMS("No SDVO device info is found in VBT\n"); } return; } static void parse_driver_features(struct drm_psb_private *dev_priv, struct bdb_header *bdb) { struct bdb_driver_features *driver; driver = find_section(bdb, BDB_DRIVER_FEATURES); if (!driver) return; if (driver->lvds_config == BDB_DRIVER_FEATURE_EDP) dev_priv->edp.support = 1; dev_priv->lvds_enabled_in_vbt = driver->lvds_config != 0; DRM_DEBUG_KMS("LVDS VBT config bits: 0x%x\n", driver->lvds_config); /* This bit means to use 96Mhz for DPLL_A or not */ if (driver->primary_lfp_id) dev_priv->dplla_96mhz = true; else dev_priv->dplla_96mhz = false; } static void parse_device_mapping(struct drm_psb_private *dev_priv, struct bdb_header *bdb) { struct bdb_general_definitions *p_defs; struct child_device_config *p_child, *child_dev_ptr; int i, child_device_num, count; u16 block_size; p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (!p_defs) { DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n"); return; } /* judge whether the size of child device meets the requirements. * If the child device size obtained from general definition block * is different with sizeof(struct child_device_config), skip the * parsing of sdvo device info */ if (p_defs->child_dev_size != sizeof(*p_child)) { /* different child dev size . Ignore it */ DRM_DEBUG_KMS("different child size is found. Invalid.\n"); return; } /* get the block size of general definitions */ block_size = get_blocksize(p_defs); /* get the number of child device */ child_device_num = (block_size - sizeof(*p_defs)) / sizeof(*p_child); count = 0; /* get the number of child devices that are present */ for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->device_type) { /* skip the device block if device type is invalid */ continue; } count++; } if (!count) { DRM_DEBUG_KMS("no child dev is parsed from VBT\n"); return; } dev_priv->child_dev = kcalloc(count, sizeof(*p_child), GFP_KERNEL); if (!dev_priv->child_dev) { DRM_DEBUG_KMS("No memory space for child devices\n"); return; } dev_priv->child_dev_num = count; count = 0; for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->device_type) { /* skip the device block if device type is invalid */ continue; } child_dev_ptr = dev_priv->child_dev + count; count++; memcpy((void *)child_dev_ptr, (void *)p_child, sizeof(*p_child)); } return; } /** * psb_intel_init_bios - initialize VBIOS settings & find VBT * @dev: DRM device * * Loads the Video BIOS and checks that the VBT exists. Sets scratch registers * to appropriate values. * * VBT existence is a sanity check that is relied on by other i830_bios.c code. * Note that it would be better to use a BIOS call to get the VBT, as BIOSes may * feed an updated VBT back through that, compared to what we'll fetch using * this method of groping around in the BIOS data. * * Returns 0 on success, nonzero on failure. */ int psb_intel_init_bios(struct drm_device *dev) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); struct pci_dev *pdev = to_pci_dev(dev->dev); struct vbt_header *vbt = NULL; struct bdb_header *bdb = NULL; u8 __iomem *bios = NULL; size_t size; int i; dev_priv->panel_type = 0xff; /* XXX Should this validation be moved to intel_opregion.c? */ if (dev_priv->opregion.vbt) { struct vbt_header *vbt = dev_priv->opregion.vbt; if (memcmp(vbt->signature, "$VBT", 4) == 0) { DRM_DEBUG_KMS("Using VBT from OpRegion: %20s\n", vbt->signature); bdb = (struct bdb_header *)((char *)vbt + vbt->bdb_offset); } else dev_priv->opregion.vbt = NULL; } if (bdb == NULL) { bios = pci_map_rom(pdev, &size); if (!bios) return -1; /* Scour memory looking for the VBT signature */ for (i = 0; i + 4 < size; i++) { if (!memcmp(bios + i, "$VBT", 4)) { vbt = (struct vbt_header *)(bios + i); break; } } if (!vbt) { dev_err(dev->dev, "VBT signature missing\n"); pci_unmap_rom(pdev, bios); return -1; } bdb = (struct bdb_header *)(bios + i + vbt->bdb_offset); } /* Grab useful general dxefinitions */ parse_general_features(dev_priv, bdb); parse_driver_features(dev_priv, bdb); parse_lfp_panel_data(dev_priv, bdb); parse_sdvo_panel_data(dev_priv, bdb); parse_sdvo_device_mapping(dev_priv, bdb); parse_device_mapping(dev_priv, bdb); parse_backlight_data(dev_priv, bdb); parse_edp(dev_priv, bdb); if (bios) pci_unmap_rom(pdev, bios); return 0; } /* * Destroy and free VBT data */ void psb_intel_destroy_bios(struct drm_device *dev) { struct drm_psb_private *dev_priv = to_drm_psb_private(dev); kfree(dev_priv->sdvo_lvds_vbt_mode); kfree(dev_priv->lfp_lvds_vbt_mode); kfree(dev_priv->lvds_bl); }