// SPDX-License-Identifier: MIT /* * Copyright © 2020 Intel Corporation * * DisplayPort support for G4x,ILK,SNB,IVB,VLV,CHV (HSW+ handled by the DDI code). */ #include #include "g4x_dp.h" #include "i915_reg.h" #include "intel_audio.h" #include "intel_backlight.h" #include "intel_connector.h" #include "intel_crtc.h" #include "intel_de.h" #include "intel_display_power.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_dp_aux.h" #include "intel_dp_link_training.h" #include "intel_dp_test.h" #include "intel_dpio_phy.h" #include "intel_encoder.h" #include "intel_fifo_underrun.h" #include "intel_hdmi.h" #include "intel_hotplug.h" #include "intel_pch_display.h" #include "intel_pps.h" #include "vlv_sideband.h" static const struct dpll g4x_dpll[] = { { .dot = 162000, .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8, }, { .dot = 270000, .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2, }, }; static const struct dpll pch_dpll[] = { { .dot = 162000, .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9, }, { .dot = 270000, .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8, }, }; static const struct dpll vlv_dpll[] = { { .dot = 162000, .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81, }, { .dot = 270000, .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27, }, }; static const struct dpll chv_dpll[] = { /* m2 is .22 binary fixed point */ { .dot = 162000, .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a /* 32.4 */ }, { .dot = 270000, .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 /* 27.0 */ }, }; const struct dpll *vlv_get_dpll(struct drm_i915_private *i915) { return IS_CHERRYVIEW(i915) ? &chv_dpll[0] : &vlv_dpll[0]; } void g4x_dp_set_clock(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct dpll *divisor = NULL; int i, count = 0; if (IS_G4X(dev_priv)) { divisor = g4x_dpll; count = ARRAY_SIZE(g4x_dpll); } else if (HAS_PCH_SPLIT(dev_priv)) { divisor = pch_dpll; count = ARRAY_SIZE(pch_dpll); } else if (IS_CHERRYVIEW(dev_priv)) { divisor = chv_dpll; count = ARRAY_SIZE(chv_dpll); } else if (IS_VALLEYVIEW(dev_priv)) { divisor = vlv_dpll; count = ARRAY_SIZE(vlv_dpll); } if (divisor && count) { for (i = 0; i < count; i++) { if (pipe_config->port_clock == divisor[i].dot) { pipe_config->dpll = divisor[i]; pipe_config->clock_set = true; break; } } } } static void intel_dp_prepare(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct intel_display *display = to_intel_display(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); enum port port = encoder->port; struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; intel_dp_set_link_params(intel_dp, pipe_config->port_clock, pipe_config->lane_count); /* * There are four kinds of DP registers: * IBX PCH * SNB CPU * IVB CPU * CPT PCH * * IBX PCH and CPU are the same for almost everything, * except that the CPU DP PLL is configured in this * register * * CPT PCH is quite different, having many bits moved * to the TRANS_DP_CTL register instead. That * configuration happens (oddly) in ilk_pch_enable */ /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ intel_dp->DP = intel_de_read(display, intel_dp->output_reg) & DP_DETECTED; /* Handle DP bits in common between all three register formats */ intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); /* Split out the IBX/CPU vs CPT settings */ if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; intel_de_rmw(display, TRANS_DP_CTL(crtc->pipe), TRANS_DP_ENH_FRAMING, pipe_config->enhanced_framing ? TRANS_DP_ENH_FRAMING : 0); } else { if (IS_G4X(dev_priv) && pipe_config->limited_color_range) intel_dp->DP |= DP_COLOR_RANGE_16_235; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF; if (pipe_config->enhanced_framing) intel_dp->DP |= DP_ENHANCED_FRAMING; if (IS_CHERRYVIEW(dev_priv)) intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); else intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); } } static void assert_dp_port(struct intel_dp *intel_dp, bool state) { struct intel_display *display = to_intel_display(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); bool cur_state = intel_de_read(display, intel_dp->output_reg) & DP_PORT_EN; INTEL_DISPLAY_STATE_WARN(display, cur_state != state, "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", dig_port->base.base.base.id, dig_port->base.base.name, str_on_off(state), str_on_off(cur_state)); } #define assert_dp_port_disabled(d) assert_dp_port((d), false) static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) { struct intel_display *display = &dev_priv->display; bool cur_state = intel_de_read(display, DP_A) & DP_PLL_ENABLE; INTEL_DISPLAY_STATE_WARN(display, cur_state != state, "eDP PLL state assertion failure (expected %s, current %s)\n", str_on_off(state), str_on_off(cur_state)); } #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) static void ilk_edp_pll_on(struct intel_dp *intel_dp, const struct intel_crtc_state *pipe_config) { struct intel_display *display = to_intel_display(intel_dp); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); assert_transcoder_disabled(dev_priv, pipe_config->cpu_transcoder); assert_dp_port_disabled(intel_dp); assert_edp_pll_disabled(dev_priv); drm_dbg_kms(display->drm, "enabling eDP PLL for clock %d\n", pipe_config->port_clock); intel_dp->DP &= ~DP_PLL_FREQ_MASK; if (pipe_config->port_clock == 162000) intel_dp->DP |= DP_PLL_FREQ_162MHZ; else intel_dp->DP |= DP_PLL_FREQ_270MHZ; intel_de_write(display, DP_A, intel_dp->DP); intel_de_posting_read(display, DP_A); udelay(500); /* * [DevILK] Work around required when enabling DP PLL * while a pipe is enabled going to FDI: * 1. Wait for the start of vertical blank on the enabled pipe going to FDI * 2. Program DP PLL enable */ if (IS_IRONLAKE(dev_priv)) intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); intel_dp->DP |= DP_PLL_ENABLE; intel_de_write(display, DP_A, intel_dp->DP); intel_de_posting_read(display, DP_A); udelay(200); } static void ilk_edp_pll_off(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct intel_display *display = to_intel_display(intel_dp); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); assert_transcoder_disabled(dev_priv, old_crtc_state->cpu_transcoder); assert_dp_port_disabled(intel_dp); assert_edp_pll_enabled(dev_priv); drm_dbg_kms(display->drm, "disabling eDP PLL\n"); intel_dp->DP &= ~DP_PLL_ENABLE; intel_de_write(display, DP_A, intel_dp->DP); intel_de_posting_read(display, DP_A); udelay(200); } static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, enum port port, enum pipe *pipe) { struct intel_display *display = &dev_priv->display; enum pipe p; for_each_pipe(display, p) { u32 val = intel_de_read(display, TRANS_DP_CTL(p)); if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { *pipe = p; return true; } } drm_dbg_kms(display->drm, "No pipe for DP port %c found\n", port_name(port)); /* must initialize pipe to something for the asserts */ *pipe = PIPE_A; return false; } bool g4x_dp_port_enabled(struct drm_i915_private *dev_priv, i915_reg_t dp_reg, enum port port, enum pipe *pipe) { struct intel_display *display = &dev_priv->display; bool ret; u32 val; val = intel_de_read(display, dp_reg); ret = val & DP_PORT_EN; /* asserts want to know the pipe even if the port is disabled */ if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) ret &= cpt_dp_port_selected(dev_priv, port, pipe); else if (IS_CHERRYVIEW(dev_priv)) *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; else *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; return ret; } static bool intel_dp_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_wakeref_t wakeref; bool ret; wakeref = intel_display_power_get_if_enabled(dev_priv, encoder->power_domain); if (!wakeref) return false; ret = g4x_dp_port_enabled(dev_priv, intel_dp->output_reg, encoder->port, pipe); intel_display_power_put(dev_priv, encoder->power_domain, wakeref); return ret; } static void g4x_dp_get_m_n(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); if (crtc_state->has_pch_encoder) { intel_pch_transcoder_get_m1_n1(crtc, &crtc_state->dp_m_n); intel_pch_transcoder_get_m2_n2(crtc, &crtc_state->dp_m2_n2); } else { intel_cpu_transcoder_get_m1_n1(crtc, crtc_state->cpu_transcoder, &crtc_state->dp_m_n); intel_cpu_transcoder_get_m2_n2(crtc, crtc_state->cpu_transcoder, &crtc_state->dp_m2_n2); } } static void intel_dp_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct intel_display *display = to_intel_display(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); u32 tmp, flags = 0; enum port port = encoder->port; struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); if (encoder->type == INTEL_OUTPUT_EDP) pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); else pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); tmp = intel_de_read(display, intel_dp->output_reg); pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { u32 trans_dp = intel_de_read(display, TRANS_DP_CTL(crtc->pipe)); if (trans_dp & TRANS_DP_ENH_FRAMING) pipe_config->enhanced_framing = true; if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } else { if (tmp & DP_ENHANCED_FRAMING) pipe_config->enhanced_framing = true; if (tmp & DP_SYNC_HS_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & DP_SYNC_VS_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } pipe_config->hw.adjusted_mode.flags |= flags; if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) pipe_config->limited_color_range = true; pipe_config->lane_count = ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; g4x_dp_get_m_n(pipe_config); if (port == PORT_A) { if ((intel_de_read(display, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) pipe_config->port_clock = 162000; else pipe_config->port_clock = 270000; } pipe_config->hw.adjusted_mode.crtc_clock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); if (intel_dp_is_edp(intel_dp)) intel_edp_fixup_vbt_bpp(encoder, pipe_config->pipe_bpp); intel_audio_codec_get_config(encoder, pipe_config); } static void intel_dp_link_down(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state) { struct intel_display *display = to_intel_display(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); enum port port = encoder->port; if (drm_WARN_ON(display->drm, (intel_de_read(display, intel_dp->output_reg) & DP_PORT_EN) == 0)) return; drm_dbg_kms(display->drm, "\n"); if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { intel_dp->DP &= ~DP_LINK_TRAIN_MASK_CPT; intel_dp->DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; } else { intel_dp->DP &= ~DP_LINK_TRAIN_MASK; intel_dp->DP |= DP_LINK_TRAIN_PAT_IDLE; } intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); intel_dp->DP &= ~DP_PORT_EN; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); /* * HW workaround for IBX, we need to move the port * to transcoder A after disabling it to allow the * matching HDMI port to be enabled on transcoder A. */ if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { /* * We get CPU/PCH FIFO underruns on the other pipe when * doing the workaround. Sweep them under the rug. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); /* always enable with pattern 1 (as per spec) */ intel_dp->DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); intel_dp->DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | DP_LINK_TRAIN_PAT_1; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); intel_dp->DP &= ~DP_PORT_EN; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); intel_wait_for_vblank_if_active(dev_priv, PIPE_A); intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); } msleep(intel_dp->pps.panel_power_down_delay); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) vlv_pps_port_disable(encoder, old_crtc_state); } static void g4x_dp_audio_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(encoder); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (!crtc_state->has_audio) return; /* Enable audio presence detect */ intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_audio_codec_enable(encoder, crtc_state, conn_state); } static void g4x_dp_audio_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_display *display = to_intel_display(encoder); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (!old_crtc_state->has_audio) return; intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); /* Disable audio presence detect */ intel_dp->DP &= ~DP_AUDIO_OUTPUT_ENABLE; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); } static void intel_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_dp->link_trained = false; /* * Make sure the panel is off before trying to change the mode. * But also ensure that we have vdd while we switch off the panel. */ intel_pps_vdd_on(intel_dp); intel_edp_backlight_off(old_conn_state); intel_dp_set_power(intel_dp, DP_SET_POWER_D3); intel_pps_off(intel_dp); } static void g4x_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); } static void vlv_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); } static void g4x_post_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); enum port port = encoder->port; /* * Bspec does not list a specific disable sequence for g4x DP. * Follow the ilk+ sequence (disable pipe before the port) for * g4x DP as it does not suffer from underruns like the normal * g4x modeset sequence (disable pipe after the port). */ intel_dp_link_down(encoder, old_crtc_state); /* Only ilk+ has port A */ if (port == PORT_A) ilk_edp_pll_off(intel_dp, old_crtc_state); } static void vlv_post_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_dp_link_down(encoder, old_crtc_state); } static void chv_post_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); intel_dp_link_down(encoder, old_crtc_state); vlv_dpio_get(dev_priv); /* Assert data lane reset */ chv_data_lane_soft_reset(encoder, old_crtc_state, true); vlv_dpio_put(dev_priv); } static void cpt_set_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, u8 dp_train_pat) { struct intel_display *display = to_intel_display(intel_dp); intel_dp->DP &= ~DP_LINK_TRAIN_MASK_CPT; switch (intel_dp_training_pattern_symbol(dp_train_pat)) { case DP_TRAINING_PATTERN_DISABLE: intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; break; case DP_TRAINING_PATTERN_1: intel_dp->DP |= DP_LINK_TRAIN_PAT_1_CPT; break; case DP_TRAINING_PATTERN_2: intel_dp->DP |= DP_LINK_TRAIN_PAT_2_CPT; break; default: MISSING_CASE(intel_dp_training_pattern_symbol(dp_train_pat)); return; } intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); } static void g4x_set_link_train(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, u8 dp_train_pat) { struct intel_display *display = to_intel_display(intel_dp); intel_dp->DP &= ~DP_LINK_TRAIN_MASK; switch (intel_dp_training_pattern_symbol(dp_train_pat)) { case DP_TRAINING_PATTERN_DISABLE: intel_dp->DP |= DP_LINK_TRAIN_OFF; break; case DP_TRAINING_PATTERN_1: intel_dp->DP |= DP_LINK_TRAIN_PAT_1; break; case DP_TRAINING_PATTERN_2: intel_dp->DP |= DP_LINK_TRAIN_PAT_2; break; default: MISSING_CASE(intel_dp_training_pattern_symbol(dp_train_pat)); return; } intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); } static void intel_dp_enable_port(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); /* enable with pattern 1 (as per spec) */ intel_dp_program_link_training_pattern(intel_dp, crtc_state, DP_PHY_DPRX, DP_TRAINING_PATTERN_1); /* * Magic for VLV/CHV. We _must_ first set up the register * without actually enabling the port, and then do another * write to enable the port. Otherwise link training will * fail when the power sequencer is freshly used for this port. */ intel_dp->DP |= DP_PORT_EN; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); } static void intel_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(state); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); u32 dp_reg = intel_de_read(display, intel_dp->output_reg); intel_wakeref_t wakeref; if (drm_WARN_ON(display->drm, dp_reg & DP_PORT_EN)) return; with_intel_pps_lock(intel_dp, wakeref) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) vlv_pps_port_enable_unlocked(encoder, pipe_config); intel_dp_enable_port(intel_dp, pipe_config); intel_pps_vdd_on_unlocked(intel_dp); intel_pps_on_unlocked(intel_dp); intel_pps_vdd_off_unlocked(intel_dp, true); } if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { unsigned int lane_mask = 0x0; if (IS_CHERRYVIEW(dev_priv)) lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); vlv_wait_port_ready(display, dp_to_dig_port(intel_dp), lane_mask); } intel_dp_set_power(intel_dp, DP_SET_POWER_D0); intel_dp_configure_protocol_converter(intel_dp, pipe_config); intel_dp_check_frl_training(intel_dp); intel_dp_pcon_dsc_configure(intel_dp, pipe_config); intel_dp_start_link_train(state, intel_dp, pipe_config); intel_dp_stop_link_train(intel_dp, pipe_config); } static void g4x_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_enable_dp(state, encoder, pipe_config, conn_state); intel_edp_backlight_on(pipe_config, conn_state); } static void vlv_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_edp_backlight_on(pipe_config, conn_state); } static void g4x_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); enum port port = encoder->port; intel_dp_prepare(encoder, pipe_config); /* Only ilk+ has port A */ if (port == PORT_A) ilk_edp_pll_on(intel_dp, pipe_config); } static void vlv_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { vlv_phy_pre_encoder_enable(encoder, pipe_config); intel_enable_dp(state, encoder, pipe_config, conn_state); } static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_dp_prepare(encoder, pipe_config); vlv_phy_pre_pll_enable(encoder, pipe_config); } static void chv_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { chv_phy_pre_encoder_enable(encoder, pipe_config); intel_enable_dp(state, encoder, pipe_config, conn_state); /* Second common lane will stay alive on its own now */ chv_phy_release_cl2_override(encoder); } static void chv_dp_pre_pll_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_dp_prepare(encoder, pipe_config); chv_phy_pre_pll_enable(encoder, pipe_config); } static void chv_dp_post_pll_disable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { chv_phy_post_pll_disable(encoder, old_crtc_state); } static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; } static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; } static u8 intel_dp_preemph_max_2(struct intel_dp *intel_dp) { return DP_TRAIN_PRE_EMPH_LEVEL_2; } static u8 intel_dp_preemph_max_3(struct intel_dp *intel_dp) { return DP_TRAIN_PRE_EMPH_LEVEL_3; } static void vlv_set_signal_levels(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); unsigned long demph_reg_value, preemph_reg_value, uniqtranscale_reg_value; u8 train_set = intel_dp->train_set[0]; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: preemph_reg_value = 0x0004000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x552AB83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5548B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: demph_reg_value = 0x2B245555; uniqtranscale_reg_value = 0x5560B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x5598DA3A; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_1: preemph_reg_value = 0x0002000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5552B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B404848; uniqtranscale_reg_value = 0x5580B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_2: preemph_reg_value = 0x0000000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B305555; uniqtranscale_reg_value = 0x5570B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B2B4040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_3: preemph_reg_value = 0x0006000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x1B405555; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return; } break; default: return; } vlv_set_phy_signal_level(encoder, crtc_state, demph_reg_value, preemph_reg_value, uniqtranscale_reg_value, 0); } static void chv_set_signal_levels(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); u32 deemph_reg_value, margin_reg_value; bool uniq_trans_scale = false; u8 train_set = intel_dp->train_set[0]; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 128; margin_reg_value = 52; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 128; margin_reg_value = 77; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: deemph_reg_value = 128; margin_reg_value = 102; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: deemph_reg_value = 128; margin_reg_value = 154; uniq_trans_scale = true; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_1: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 85; margin_reg_value = 78; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 85; margin_reg_value = 116; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: deemph_reg_value = 85; margin_reg_value = 154; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_2: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 64; margin_reg_value = 104; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 64; margin_reg_value = 154; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_3: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 43; margin_reg_value = 154; break; default: return; } break; default: return; } chv_set_phy_signal_level(encoder, crtc_state, deemph_reg_value, margin_reg_value, uniq_trans_scale); } static u32 g4x_signal_levels(u8 train_set) { u32 signal_levels = 0; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: default: signal_levels |= DP_VOLTAGE_0_4; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: signal_levels |= DP_VOLTAGE_0_6; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: signal_levels |= DP_VOLTAGE_0_8; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: signal_levels |= DP_VOLTAGE_1_2; break; } switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: default: signal_levels |= DP_PRE_EMPHASIS_0; break; case DP_TRAIN_PRE_EMPH_LEVEL_1: signal_levels |= DP_PRE_EMPHASIS_3_5; break; case DP_TRAIN_PRE_EMPH_LEVEL_2: signal_levels |= DP_PRE_EMPHASIS_6; break; case DP_TRAIN_PRE_EMPH_LEVEL_3: signal_levels |= DP_PRE_EMPHASIS_9_5; break; } return signal_levels; } static void g4x_set_signal_levels(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(encoder); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); u8 train_set = intel_dp->train_set[0]; u32 signal_levels; signal_levels = g4x_signal_levels(train_set); drm_dbg_kms(display->drm, "Using signal levels %08x\n", signal_levels); intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK); intel_dp->DP |= signal_levels; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); } /* SNB CPU eDP voltage swing and pre-emphasis control */ static u32 snb_cpu_edp_signal_levels(u8 train_set) { u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; default: MISSING_CASE(signal_levels); return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; } } static void snb_cpu_edp_set_signal_levels(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(encoder); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); u8 train_set = intel_dp->train_set[0]; u32 signal_levels; signal_levels = snb_cpu_edp_signal_levels(train_set); drm_dbg_kms(display->drm, "Using signal levels %08x\n", signal_levels); intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; intel_dp->DP |= signal_levels; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); } /* IVB CPU eDP voltage swing and pre-emphasis control */ static u32 ivb_cpu_edp_signal_levels(u8 train_set) { u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_400MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_400MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: return EDP_LINK_TRAIN_400MV_6DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_600MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_600MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_800MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_800MV_3_5DB_IVB; default: MISSING_CASE(signal_levels); return EDP_LINK_TRAIN_500MV_0DB_IVB; } } static void ivb_cpu_edp_set_signal_levels(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(encoder); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); u8 train_set = intel_dp->train_set[0]; u32 signal_levels; signal_levels = ivb_cpu_edp_signal_levels(train_set); drm_dbg_kms(display->drm, "Using signal levels %08x\n", signal_levels); intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; intel_dp->DP |= signal_levels; intel_de_write(display, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(display, intel_dp->output_reg); } /* * If display is now connected check links status, * there has been known issues of link loss triggering * long pulse. * * Some sinks (eg. ASUS PB287Q) seem to perform some * weird HPD ping pong during modesets. So we can apparently * end up with HPD going low during a modeset, and then * going back up soon after. And once that happens we must * retrain the link to get a picture. That's in case no * userspace component reacted to intermittent HPD dip. */ static enum intel_hotplug_state intel_dp_hotplug(struct intel_encoder *encoder, struct intel_connector *connector) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); enum intel_hotplug_state state; if (intel_dp_test_phy(intel_dp)) return INTEL_HOTPLUG_UNCHANGED; state = intel_encoder_hotplug(encoder, connector); intel_dp_check_link_state(intel_dp); /* * Keeping it consistent with intel_ddi_hotplug() and * intel_hdmi_hotplug(). */ if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries) state = INTEL_HOTPLUG_RETRY; return state; } static bool ibx_digital_port_connected(struct intel_encoder *encoder) { struct intel_display *display = to_intel_display(encoder); u32 bit = display->hotplug.pch_hpd[encoder->hpd_pin]; return intel_de_read(display, SDEISR) & bit; } static bool g4x_digital_port_connected(struct intel_encoder *encoder) { struct intel_display *display = to_intel_display(encoder); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; break; case HPD_PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; break; case HPD_PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; break; default: MISSING_CASE(encoder->hpd_pin); return false; } return intel_de_read(display, PORT_HOTPLUG_STAT(display)) & bit; } static bool ilk_digital_port_connected(struct intel_encoder *encoder) { struct intel_display *display = to_intel_display(encoder); u32 bit = display->hotplug.hpd[encoder->hpd_pin]; return intel_de_read(display, DEISR) & bit; } static void g4x_dp_suspend_complete(struct intel_encoder *encoder) { /* * TODO: Move this to intel_dp_encoder_suspend(), * once modeset locking around that is removed. */ intel_encoder_link_check_flush_work(encoder); } static void intel_dp_encoder_destroy(struct drm_encoder *encoder) { intel_dp_encoder_flush_work(encoder); drm_encoder_cleanup(encoder); kfree(enc_to_dig_port(to_intel_encoder(encoder))); } static void intel_dp_encoder_reset(struct drm_encoder *encoder) { struct intel_display *display = to_intel_display(encoder->dev); struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); intel_dp->DP = intel_de_read(display, intel_dp->output_reg); intel_dp->reset_link_params = true; intel_dp_invalidate_source_oui(intel_dp); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) vlv_pps_pipe_reset(intel_dp); intel_pps_encoder_reset(intel_dp); } static const struct drm_encoder_funcs intel_dp_enc_funcs = { .reset = intel_dp_encoder_reset, .destroy = intel_dp_encoder_destroy, }; bool g4x_dp_init(struct drm_i915_private *dev_priv, i915_reg_t output_reg, enum port port) { struct intel_display *display = &dev_priv->display; const struct intel_bios_encoder_data *devdata; struct intel_digital_port *dig_port; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; struct intel_connector *intel_connector; if (!assert_port_valid(dev_priv, port)) return false; devdata = intel_bios_encoder_data_lookup(display, port); /* FIXME bail? */ if (!devdata) drm_dbg_kms(display->drm, "No VBT child device for DP-%c\n", port_name(port)); dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL); if (!dig_port) return false; dig_port->aux_ch = AUX_CH_NONE; intel_connector = intel_connector_alloc(); if (!intel_connector) goto err_connector_alloc; intel_encoder = &dig_port->base; encoder = &intel_encoder->base; intel_encoder->devdata = devdata; mutex_init(&dig_port->hdcp_mutex); if (drm_encoder_init(display->drm, &intel_encoder->base, &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port))) goto err_encoder_init; intel_encoder_link_check_init(intel_encoder, intel_dp_link_check); intel_encoder->hotplug = intel_dp_hotplug; intel_encoder->compute_config = intel_dp_compute_config; intel_encoder->get_hw_state = intel_dp_get_hw_state; intel_encoder->get_config = intel_dp_get_config; intel_encoder->sync_state = intel_dp_sync_state; intel_encoder->initial_fastset_check = intel_dp_initial_fastset_check; intel_encoder->update_pipe = intel_backlight_update; intel_encoder->suspend = intel_dp_encoder_suspend; intel_encoder->suspend_complete = g4x_dp_suspend_complete; intel_encoder->shutdown = intel_dp_encoder_shutdown; if (IS_CHERRYVIEW(dev_priv)) { intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; intel_encoder->pre_enable = chv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; intel_encoder->disable = vlv_disable_dp; intel_encoder->post_disable = chv_post_disable_dp; intel_encoder->post_pll_disable = chv_dp_post_pll_disable; } else if (IS_VALLEYVIEW(dev_priv)) { intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; intel_encoder->pre_enable = vlv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; intel_encoder->disable = vlv_disable_dp; intel_encoder->post_disable = vlv_post_disable_dp; } else { intel_encoder->pre_enable = g4x_pre_enable_dp; intel_encoder->enable = g4x_enable_dp; intel_encoder->disable = g4x_disable_dp; intel_encoder->post_disable = g4x_post_disable_dp; } intel_encoder->audio_enable = g4x_dp_audio_enable; intel_encoder->audio_disable = g4x_dp_audio_disable; if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || (HAS_PCH_CPT(dev_priv) && port != PORT_A)) dig_port->dp.set_link_train = cpt_set_link_train; else dig_port->dp.set_link_train = g4x_set_link_train; if (IS_CHERRYVIEW(dev_priv)) intel_encoder->set_signal_levels = chv_set_signal_levels; else if (IS_VALLEYVIEW(dev_priv)) intel_encoder->set_signal_levels = vlv_set_signal_levels; else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) intel_encoder->set_signal_levels = ivb_cpu_edp_set_signal_levels; else if (IS_SANDYBRIDGE(dev_priv) && port == PORT_A) intel_encoder->set_signal_levels = snb_cpu_edp_set_signal_levels; else intel_encoder->set_signal_levels = g4x_set_signal_levels; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) || (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) { dig_port->dp.preemph_max = intel_dp_preemph_max_3; dig_port->dp.voltage_max = intel_dp_voltage_max_3; } else { dig_port->dp.preemph_max = intel_dp_preemph_max_2; dig_port->dp.voltage_max = intel_dp_voltage_max_2; } dig_port->dp.output_reg = output_reg; dig_port->max_lanes = 4; intel_encoder->type = INTEL_OUTPUT_DP; intel_encoder->power_domain = intel_display_power_ddi_lanes_domain(dev_priv, port); if (IS_CHERRYVIEW(dev_priv)) { if (port == PORT_D) intel_encoder->pipe_mask = BIT(PIPE_C); else intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); } else { intel_encoder->pipe_mask = ~0; } intel_encoder->cloneable = 0; intel_encoder->port = port; intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); dig_port->hpd_pulse = intel_dp_hpd_pulse; if (HAS_GMCH(display)) { dig_port->connected = g4x_digital_port_connected; } else { if (port == PORT_A) dig_port->connected = ilk_digital_port_connected; else dig_port->connected = ibx_digital_port_connected; } if (port != PORT_A) intel_infoframe_init(dig_port); dig_port->aux_ch = intel_dp_aux_ch(intel_encoder); if (dig_port->aux_ch == AUX_CH_NONE) goto err_init_connector; if (!intel_dp_init_connector(dig_port, intel_connector)) goto err_init_connector; return true; err_init_connector: drm_encoder_cleanup(encoder); err_encoder_init: kfree(intel_connector); err_connector_alloc: kfree(dig_port); return false; }