// SPDX-License-Identifier: MIT /* * Copyright 2024, Intel Corporation. */ #include #include "intel_alpm.h" #include "intel_crtc.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_dp_aux.h" #include "intel_psr_regs.h" bool intel_alpm_aux_wake_supported(struct intel_dp *intel_dp) { return intel_dp->alpm_dpcd & DP_ALPM_CAP; } bool intel_alpm_aux_less_wake_supported(struct intel_dp *intel_dp) { return intel_dp->alpm_dpcd & DP_ALPM_AUX_LESS_CAP; } void intel_alpm_init_dpcd(struct intel_dp *intel_dp) { u8 dpcd; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, &dpcd) < 0) return; intel_dp->alpm_dpcd = dpcd; } /* * See Bspec: 71632 for the table * * Silence_period = tSilence,Min + ((tSilence,Max - tSilence,Min) / 2) * * Half cycle duration: * * Link rates 1.62 - 4.32 and tLFPS_Cycle = 70 ns * FLOOR( (Link Rate * tLFPS_Cycle) / (2 * 10) ) * * Link rates 5.4 - 8.1 * PORT_ALPM_LFPS_CTL[ LFPS Cycle Count ] = 10 * LFPS Period chosen is the mid-point of the min:max values from the table * FLOOR( LFPS Period in Symbol clocks / * (2 * PORT_ALPM_LFPS_CTL[ LFPS Cycle Count ]) ) */ static bool _lnl_get_silence_period_and_lfps_half_cycle(int link_rate, int *silence_period, int *lfps_half_cycle) { switch (link_rate) { case 162000: *silence_period = 20; *lfps_half_cycle = 5; break; case 216000: *silence_period = 27; *lfps_half_cycle = 7; break; case 243000: *silence_period = 31; *lfps_half_cycle = 8; break; case 270000: *silence_period = 34; *lfps_half_cycle = 9; break; case 324000: *silence_period = 41; *lfps_half_cycle = 11; break; case 432000: *silence_period = 56; *lfps_half_cycle = 15; break; case 540000: *silence_period = 69; *lfps_half_cycle = 12; break; case 648000: *silence_period = 84; *lfps_half_cycle = 15; break; case 675000: *silence_period = 87; *lfps_half_cycle = 15; break; case 810000: *silence_period = 104; *lfps_half_cycle = 19; break; default: *silence_period = *lfps_half_cycle = -1; return false; } return true; } /* * AUX-Less Wake Time = CEILING( ((PHY P2 to P0) + tLFPS_Period, Max+ * tSilence, Max+ tPHY Establishment + tCDS) / tline) * For the "PHY P2 to P0" latency see the PHY Power Control page * (PHY P2 to P0) : https://gfxspecs.intel.com/Predator/Home/Index/68965 * : 12 us * The tLFPS_Period, Max term is 800ns * The tSilence, Max term is 180ns * The tPHY Establishment (a.k.a. t1) term is 50us * The tCDS term is 1 or 2 times t2 * t2 = Number ML_PHY_LOCK * tML_PHY_LOCK * Number ML_PHY_LOCK = ( 7 + CEILING( 6.5us / tML_PHY_LOCK ) + 1) * Rounding up the 6.5us padding to the next ML_PHY_LOCK boundary and * adding the "+ 1" term ensures all ML_PHY_LOCK sequences that start * within the CDS period complete within the CDS period regardless of * entry into the period * tML_PHY_LOCK = TPS4 Length * ( 10 / (Link Rate in MHz) ) * TPS4 Length = 252 Symbols */ static int _lnl_compute_aux_less_wake_time(int port_clock) { int tphy2_p2_to_p0 = 12 * 1000; int tlfps_period_max = 800; int tsilence_max = 180; int t1 = 50 * 1000; int tps4 = 252; /* port_clock is link rate in 10kbit/s units */ int tml_phy_lock = 1000 * 1000 * tps4 / port_clock; int num_ml_phy_lock = 7 + DIV_ROUND_UP(6500, tml_phy_lock) + 1; int t2 = num_ml_phy_lock * tml_phy_lock; int tcds = 1 * t2; return DIV_ROUND_UP(tphy2_p2_to_p0 + tlfps_period_max + tsilence_max + t1 + tcds, 1000); } static int _lnl_compute_aux_less_alpm_params(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); int aux_less_wake_time, aux_less_wake_lines, silence_period, lfps_half_cycle; aux_less_wake_time = _lnl_compute_aux_less_wake_time(crtc_state->port_clock); aux_less_wake_lines = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, aux_less_wake_time); if (!_lnl_get_silence_period_and_lfps_half_cycle(crtc_state->port_clock, &silence_period, &lfps_half_cycle)) return false; if (aux_less_wake_lines > ALPM_CTL_AUX_LESS_WAKE_TIME_MASK || silence_period > PORT_ALPM_CTL_SILENCE_PERIOD_MASK || lfps_half_cycle > PORT_ALPM_LFPS_CTL_LAST_LFPS_HALF_CYCLE_DURATION_MASK) return false; if (display->params.psr_safest_params) aux_less_wake_lines = ALPM_CTL_AUX_LESS_WAKE_TIME_MASK; intel_dp->alpm_parameters.aux_less_wake_lines = aux_less_wake_lines; intel_dp->alpm_parameters.silence_period_sym_clocks = silence_period; intel_dp->alpm_parameters.lfps_half_cycle_num_of_syms = lfps_half_cycle; return true; } static bool _lnl_compute_alpm_params(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); int check_entry_lines; if (DISPLAY_VER(display) < 20) return true; /* ALPM Entry Check = 2 + CEILING( 5us /tline ) */ check_entry_lines = 2 + intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, 5); if (check_entry_lines > 15) return false; if (!_lnl_compute_aux_less_alpm_params(intel_dp, crtc_state)) return false; if (display->params.psr_safest_params) check_entry_lines = 15; intel_dp->alpm_parameters.check_entry_lines = check_entry_lines; return true; } /* * IO wake time for DISPLAY_VER < 12 is not directly mentioned in Bspec. There * are 50 us io wake time and 32 us fast wake time. Clearly preharge pulses are * not (improperly) included in 32 us fast wake time. 50 us - 32 us = 18 us. */ static int skl_io_buffer_wake_time(void) { return 18; } static int tgl_io_buffer_wake_time(void) { return 10; } static int io_buffer_wake_time(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); if (DISPLAY_VER(display) >= 12) return tgl_io_buffer_wake_time(); else return skl_io_buffer_wake_time(); } bool intel_alpm_compute_params(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); int io_wake_lines, io_wake_time, fast_wake_lines, fast_wake_time; int tfw_exit_latency = 20; /* eDP spec */ int phy_wake = 4; /* eDP spec */ int preamble = 8; /* eDP spec */ int precharge = intel_dp_aux_fw_sync_len(intel_dp) - preamble; u8 max_wake_lines; io_wake_time = max(precharge, io_buffer_wake_time(crtc_state)) + preamble + phy_wake + tfw_exit_latency; fast_wake_time = precharge + preamble + phy_wake + tfw_exit_latency; if (DISPLAY_VER(display) >= 20) max_wake_lines = 68; else if (DISPLAY_VER(display) >= 12) max_wake_lines = 12; else max_wake_lines = 8; io_wake_lines = intel_usecs_to_scanlines( &crtc_state->hw.adjusted_mode, io_wake_time); fast_wake_lines = intel_usecs_to_scanlines( &crtc_state->hw.adjusted_mode, fast_wake_time); if (io_wake_lines > max_wake_lines || fast_wake_lines > max_wake_lines) return false; if (!_lnl_compute_alpm_params(intel_dp, crtc_state)) return false; if (display->params.psr_safest_params) io_wake_lines = fast_wake_lines = max_wake_lines; /* According to Bspec lower limit should be set as 7 lines. */ intel_dp->alpm_parameters.io_wake_lines = max(io_wake_lines, 7); intel_dp->alpm_parameters.fast_wake_lines = max(fast_wake_lines, 7); return true; } void intel_alpm_lobf_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(intel_dp); struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; int waketime_in_lines, first_sdp_position; int context_latency, guardband; if (!intel_dp_is_edp(intel_dp)) return; if (DISPLAY_VER(display) < 20) return; if (!intel_dp->as_sdp_supported) return; if (crtc_state->has_psr) return; if (!(intel_alpm_aux_wake_supported(intel_dp) || intel_alpm_aux_less_wake_supported(intel_dp))) return; if (!intel_alpm_compute_params(intel_dp, crtc_state)) return; context_latency = adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay; guardband = adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - context_latency; first_sdp_position = adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vsync_start; if (intel_alpm_aux_less_wake_supported(intel_dp)) waketime_in_lines = intel_dp->alpm_parameters.io_wake_lines; else waketime_in_lines = intel_dp->alpm_parameters.aux_less_wake_lines; crtc_state->has_lobf = (context_latency + guardband) > (first_sdp_position + waketime_in_lines); } static void lnl_alpm_configure(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; enum port port = dp_to_dig_port(intel_dp)->base.port; u32 alpm_ctl; if (DISPLAY_VER(display) < 20 || (!intel_dp->psr.sel_update_enabled && !intel_dp_is_edp(intel_dp))) return; /* * Panel Replay on eDP is always using ALPM aux less. I.e. no need to * check panel support at this point. */ if ((intel_dp->psr.panel_replay_enabled && intel_dp_is_edp(intel_dp)) || (crtc_state->has_lobf && intel_alpm_aux_less_wake_supported(intel_dp))) { alpm_ctl = ALPM_CTL_ALPM_ENABLE | ALPM_CTL_ALPM_AUX_LESS_ENABLE | ALPM_CTL_AUX_LESS_SLEEP_HOLD_TIME_50_SYMBOLS | ALPM_CTL_AUX_LESS_WAKE_TIME(intel_dp->alpm_parameters.aux_less_wake_lines); intel_de_write(display, PORT_ALPM_CTL(port), PORT_ALPM_CTL_ALPM_AUX_LESS_ENABLE | PORT_ALPM_CTL_MAX_PHY_SWING_SETUP(15) | PORT_ALPM_CTL_MAX_PHY_SWING_HOLD(0) | PORT_ALPM_CTL_SILENCE_PERIOD( intel_dp->alpm_parameters.silence_period_sym_clocks)); intel_de_write(display, PORT_ALPM_LFPS_CTL(port), PORT_ALPM_LFPS_CTL_LFPS_CYCLE_COUNT(10) | PORT_ALPM_LFPS_CTL_LFPS_HALF_CYCLE_DURATION( intel_dp->alpm_parameters.lfps_half_cycle_num_of_syms) | PORT_ALPM_LFPS_CTL_FIRST_LFPS_HALF_CYCLE_DURATION( intel_dp->alpm_parameters.lfps_half_cycle_num_of_syms) | PORT_ALPM_LFPS_CTL_LAST_LFPS_HALF_CYCLE_DURATION( intel_dp->alpm_parameters.lfps_half_cycle_num_of_syms)); } else { alpm_ctl = ALPM_CTL_EXTENDED_FAST_WAKE_ENABLE | ALPM_CTL_EXTENDED_FAST_WAKE_TIME(intel_dp->alpm_parameters.fast_wake_lines); } if (crtc_state->has_lobf) alpm_ctl |= ALPM_CTL_LOBF_ENABLE; alpm_ctl |= ALPM_CTL_ALPM_ENTRY_CHECK(intel_dp->alpm_parameters.check_entry_lines); intel_de_write(display, ALPM_CTL(display, cpu_transcoder), alpm_ctl); } void intel_alpm_configure(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { lnl_alpm_configure(intel_dp, crtc_state); } static int i915_edp_lobf_info_show(struct seq_file *m, void *data) { struct intel_connector *connector = m->private; struct intel_display *display = to_intel_display(connector); struct drm_crtc *crtc; struct intel_crtc_state *crtc_state; enum transcoder cpu_transcoder; u32 alpm_ctl; int ret; ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex); if (ret) return ret; crtc = connector->base.state->crtc; if (connector->base.status != connector_status_connected || !crtc) { ret = -ENODEV; goto out; } crtc_state = to_intel_crtc_state(crtc->state); cpu_transcoder = crtc_state->cpu_transcoder; alpm_ctl = intel_de_read(display, ALPM_CTL(display, cpu_transcoder)); seq_printf(m, "LOBF status: %s\n", str_enabled_disabled(alpm_ctl & ALPM_CTL_LOBF_ENABLE)); seq_printf(m, "Aux-wake alpm status: %s\n", str_enabled_disabled(!(alpm_ctl & ALPM_CTL_ALPM_AUX_LESS_ENABLE))); seq_printf(m, "Aux-less alpm status: %s\n", str_enabled_disabled(alpm_ctl & ALPM_CTL_ALPM_AUX_LESS_ENABLE)); out: drm_modeset_unlock(&display->drm->mode_config.connection_mutex); return ret; } DEFINE_SHOW_ATTRIBUTE(i915_edp_lobf_info); void intel_alpm_lobf_debugfs_add(struct intel_connector *connector) { struct intel_display *display = to_intel_display(connector); struct dentry *root = connector->base.debugfs_entry; if (DISPLAY_VER(display) < 20 || connector->base.connector_type != DRM_MODE_CONNECTOR_eDP) return; debugfs_create_file("i915_edp_lobf_info", 0444, root, connector, &i915_edp_lobf_info_fops); }