/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include #include #include #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_connector.h" #include "intel_crt.h" #include "intel_crtc.h" #include "intel_ddi.h" #include "intel_ddi_buf_trans.h" #include "intel_de.h" #include "intel_display_driver.h" #include "intel_display_types.h" #include "intel_fdi.h" #include "intel_fdi_regs.h" #include "intel_fifo_underrun.h" #include "intel_gmbus.h" #include "intel_hotplug.h" #include "intel_hotplug_irq.h" #include "intel_load_detect.h" #include "intel_pch_display.h" #include "intel_pch_refclk.h" /* Here's the desired hotplug mode */ #define ADPA_HOTPLUG_BITS (ADPA_CRT_HOTPLUG_PERIOD_128 | \ ADPA_CRT_HOTPLUG_WARMUP_10MS | \ ADPA_CRT_HOTPLUG_SAMPLE_4S | \ ADPA_CRT_HOTPLUG_VOLTAGE_50 | \ ADPA_CRT_HOTPLUG_VOLREF_325MV | \ ADPA_CRT_HOTPLUG_ENABLE) struct intel_crt { struct intel_encoder base; /* DPMS state is stored in the connector, which we need in the * encoder's enable/disable callbacks */ struct intel_connector *connector; bool force_hotplug_required; i915_reg_t adpa_reg; }; static struct intel_crt *intel_encoder_to_crt(struct intel_encoder *encoder) { return container_of(encoder, struct intel_crt, base); } static struct intel_crt *intel_attached_crt(struct intel_connector *connector) { return intel_encoder_to_crt(intel_attached_encoder(connector)); } bool intel_crt_port_enabled(struct intel_display *display, i915_reg_t adpa_reg, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(display->drm); u32 val; val = intel_de_read(display, adpa_reg); /* asserts want to know the pipe even if the port is disabled */ if (HAS_PCH_CPT(dev_priv)) *pipe = (val & ADPA_PIPE_SEL_MASK_CPT) >> ADPA_PIPE_SEL_SHIFT_CPT; else *pipe = (val & ADPA_PIPE_SEL_MASK) >> ADPA_PIPE_SEL_SHIFT; return val & ADPA_DAC_ENABLE; } static bool intel_crt_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct intel_display *display = to_intel_display(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crt *crt = intel_encoder_to_crt(encoder); intel_wakeref_t wakeref; bool ret; wakeref = intel_display_power_get_if_enabled(dev_priv, encoder->power_domain); if (!wakeref) return false; ret = intel_crt_port_enabled(display, crt->adpa_reg, pipe); intel_display_power_put(dev_priv, encoder->power_domain, wakeref); return ret; } static unsigned int intel_crt_get_flags(struct intel_encoder *encoder) { struct intel_display *display = to_intel_display(encoder); struct intel_crt *crt = intel_encoder_to_crt(encoder); u32 tmp, flags = 0; tmp = intel_de_read(display, crt->adpa_reg); if (tmp & ADPA_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & ADPA_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; return flags; } static void intel_crt_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { pipe_config->output_types |= BIT(INTEL_OUTPUT_ANALOG); pipe_config->hw.adjusted_mode.flags |= intel_crt_get_flags(encoder); pipe_config->hw.adjusted_mode.crtc_clock = pipe_config->port_clock; } static void hsw_crt_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { lpt_pch_get_config(pipe_config); hsw_ddi_get_config(encoder, pipe_config); pipe_config->hw.adjusted_mode.flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC); pipe_config->hw.adjusted_mode.flags |= intel_crt_get_flags(encoder); } /* Note: The caller is required to filter out dpms modes not supported by the * platform. */ static void intel_crt_set_dpms(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, int mode) { struct intel_display *display = to_intel_display(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crt *crt = intel_encoder_to_crt(encoder); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; u32 adpa; if (DISPLAY_VER(display) >= 5) adpa = ADPA_HOTPLUG_BITS; else adpa = 0; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) adpa |= ADPA_HSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) adpa |= ADPA_VSYNC_ACTIVE_HIGH; /* For CPT allow 3 pipe config, for others just use A or B */ if (HAS_PCH_LPT(dev_priv)) ; /* Those bits don't exist here */ else if (HAS_PCH_CPT(dev_priv)) adpa |= ADPA_PIPE_SEL_CPT(crtc->pipe); else adpa |= ADPA_PIPE_SEL(crtc->pipe); if (!HAS_PCH_SPLIT(dev_priv)) intel_de_write(display, BCLRPAT(display, crtc->pipe), 0); switch (mode) { case DRM_MODE_DPMS_ON: adpa |= ADPA_DAC_ENABLE; break; case DRM_MODE_DPMS_STANDBY: adpa |= ADPA_DAC_ENABLE | ADPA_HSYNC_CNTL_DISABLE; break; case DRM_MODE_DPMS_SUSPEND: adpa |= ADPA_DAC_ENABLE | ADPA_VSYNC_CNTL_DISABLE; break; case DRM_MODE_DPMS_OFF: adpa |= ADPA_HSYNC_CNTL_DISABLE | ADPA_VSYNC_CNTL_DISABLE; break; } intel_de_write(display, crt->adpa_reg, adpa); } static void intel_disable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_crt_set_dpms(encoder, old_crtc_state, DRM_MODE_DPMS_OFF); } static void pch_disable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { } static void pch_post_disable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_crt(state, encoder, old_crtc_state, old_conn_state); } static void hsw_disable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_display *display = to_intel_display(state); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); drm_WARN_ON(display->drm, !old_crtc_state->has_pch_encoder); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); } static void hsw_post_disable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_display *display = to_intel_display(state); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); intel_crtc_vblank_off(old_crtc_state); intel_disable_transcoder(old_crtc_state); intel_ddi_disable_transcoder_func(old_crtc_state); ilk_pfit_disable(old_crtc_state); intel_ddi_disable_transcoder_clock(old_crtc_state); pch_post_disable_crt(state, encoder, old_crtc_state, old_conn_state); lpt_pch_disable(state, crtc); hsw_fdi_disable(encoder); drm_WARN_ON(display->drm, !old_crtc_state->has_pch_encoder); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); } static void hsw_pre_pll_enable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(state); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); drm_WARN_ON(display->drm, !crtc_state->has_pch_encoder); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); } static void hsw_pre_enable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(state); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; drm_WARN_ON(display->drm, !crtc_state->has_pch_encoder); intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); hsw_fdi_link_train(encoder, crtc_state); intel_ddi_enable_transcoder_clock(encoder, crtc_state); } static void hsw_enable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(state); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum pipe pipe = crtc->pipe; drm_WARN_ON(display->drm, !crtc_state->has_pch_encoder); intel_ddi_enable_transcoder_func(encoder, crtc_state); intel_enable_transcoder(crtc_state); lpt_pch_enable(state, crtc); intel_crtc_vblank_on(crtc_state); intel_crt_set_dpms(encoder, crtc_state, DRM_MODE_DPMS_ON); intel_crtc_wait_for_next_vblank(crtc); intel_crtc_wait_for_next_vblank(crtc); intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); } static void intel_enable_crt(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { intel_crt_set_dpms(encoder, crtc_state, DRM_MODE_DPMS_ON); } static enum drm_mode_status intel_crt_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_display *display = to_intel_display(connector->dev); struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = to_i915(dev); int max_dotclk = display->cdclk.max_dotclk_freq; enum drm_mode_status status; int max_clock; status = intel_cpu_transcoder_mode_valid(dev_priv, mode); if (status != MODE_OK) return status; if (mode->clock < 25000) return MODE_CLOCK_LOW; if (HAS_PCH_LPT(dev_priv)) max_clock = 180000; else if (IS_VALLEYVIEW(dev_priv)) /* * 270 MHz due to current DPLL limits, * DAC limit supposedly 355 MHz. */ max_clock = 270000; else if (IS_DISPLAY_VER(display, 3, 4)) max_clock = 400000; else max_clock = 350000; if (mode->clock > max_clock) return MODE_CLOCK_HIGH; if (mode->clock > max_dotclk) return MODE_CLOCK_HIGH; /* The FDI receiver on LPT only supports 8bpc and only has 2 lanes. */ if (HAS_PCH_LPT(dev_priv) && ilk_get_lanes_required(mode->clock, 270000, 24) > 2) return MODE_CLOCK_HIGH; /* HSW/BDW FDI limited to 4k */ if (mode->hdisplay > 4096) return MODE_H_ILLEGAL; return MODE_OK; } static int intel_crt_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; pipe_config->sink_format = INTEL_OUTPUT_FORMAT_RGB; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; return 0; } static int pch_crt_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; pipe_config->has_pch_encoder = true; if (!intel_fdi_compute_pipe_bpp(pipe_config)) return -EINVAL; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; return 0; } static int hsw_crt_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; /* HSW/BDW FDI limited to 4k */ if (adjusted_mode->crtc_hdisplay > 4096 || adjusted_mode->crtc_hblank_start > 4096) return -EINVAL; pipe_config->has_pch_encoder = true; if (!intel_fdi_compute_pipe_bpp(pipe_config)) return -EINVAL; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; /* LPT FDI RX only supports 8bpc. */ if (HAS_PCH_LPT(dev_priv)) { /* TODO: Check crtc_state->max_link_bpp_x16 instead of bw_constrained */ if (pipe_config->bw_constrained && pipe_config->pipe_bpp < 24) { drm_dbg_kms(display->drm, "LPT only supports 24bpp\n"); return -EINVAL; } pipe_config->pipe_bpp = 24; } /* FDI must always be 2.7 GHz */ pipe_config->port_clock = 135000 * 2; pipe_config->enhanced_framing = true; adjusted_mode->crtc_clock = lpt_iclkip(pipe_config); return 0; } static bool ilk_crt_detect_hotplug(struct drm_connector *connector) { struct intel_display *display = to_intel_display(connector->dev); struct drm_device *dev = connector->dev; struct intel_crt *crt = intel_attached_crt(to_intel_connector(connector)); struct drm_i915_private *dev_priv = to_i915(dev); u32 adpa; bool ret; /* The first time through, trigger an explicit detection cycle */ if (crt->force_hotplug_required) { bool turn_off_dac = HAS_PCH_SPLIT(dev_priv); u32 save_adpa; crt->force_hotplug_required = false; save_adpa = adpa = intel_de_read(display, crt->adpa_reg); drm_dbg_kms(display->drm, "trigger hotplug detect cycle: adpa=0x%x\n", adpa); adpa |= ADPA_CRT_HOTPLUG_FORCE_TRIGGER; if (turn_off_dac) adpa &= ~ADPA_DAC_ENABLE; intel_de_write(display, crt->adpa_reg, adpa); if (intel_de_wait_for_clear(display, crt->adpa_reg, ADPA_CRT_HOTPLUG_FORCE_TRIGGER, 1000)) drm_dbg_kms(display->drm, "timed out waiting for FORCE_TRIGGER"); if (turn_off_dac) { intel_de_write(display, crt->adpa_reg, save_adpa); intel_de_posting_read(display, crt->adpa_reg); } } /* Check the status to see if both blue and green are on now */ adpa = intel_de_read(display, crt->adpa_reg); if ((adpa & ADPA_CRT_HOTPLUG_MONITOR_MASK) != 0) ret = true; else ret = false; drm_dbg_kms(display->drm, "ironlake hotplug adpa=0x%x, result %d\n", adpa, ret); return ret; } static bool valleyview_crt_detect_hotplug(struct drm_connector *connector) { struct intel_display *display = to_intel_display(connector->dev); struct drm_device *dev = connector->dev; struct intel_crt *crt = intel_attached_crt(to_intel_connector(connector)); struct drm_i915_private *dev_priv = to_i915(dev); bool reenable_hpd; u32 adpa; bool ret; u32 save_adpa; /* * Doing a force trigger causes a hpd interrupt to get sent, which can * get us stuck in a loop if we're polling: * - We enable power wells and reset the ADPA * - output_poll_exec does force probe on VGA, triggering a hpd * - HPD handler waits for poll to unlock dev->mode_config.mutex * - output_poll_exec shuts off the ADPA, unlocks * dev->mode_config.mutex * - HPD handler runs, resets ADPA and brings us back to the start * * Just disable HPD interrupts here to prevent this */ reenable_hpd = intel_hpd_disable(dev_priv, crt->base.hpd_pin); save_adpa = adpa = intel_de_read(display, crt->adpa_reg); drm_dbg_kms(display->drm, "trigger hotplug detect cycle: adpa=0x%x\n", adpa); adpa |= ADPA_CRT_HOTPLUG_FORCE_TRIGGER; intel_de_write(display, crt->adpa_reg, adpa); if (intel_de_wait_for_clear(display, crt->adpa_reg, ADPA_CRT_HOTPLUG_FORCE_TRIGGER, 1000)) { drm_dbg_kms(display->drm, "timed out waiting for FORCE_TRIGGER"); intel_de_write(display, crt->adpa_reg, save_adpa); } /* Check the status to see if both blue and green are on now */ adpa = intel_de_read(display, crt->adpa_reg); if ((adpa & ADPA_CRT_HOTPLUG_MONITOR_MASK) != 0) ret = true; else ret = false; drm_dbg_kms(display->drm, "valleyview hotplug adpa=0x%x, result %d\n", adpa, ret); if (reenable_hpd) intel_hpd_enable(dev_priv, crt->base.hpd_pin); return ret; } static bool intel_crt_detect_hotplug(struct drm_connector *connector) { struct intel_display *display = to_intel_display(connector->dev); struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 stat; bool ret = false; int i, tries = 0; if (HAS_PCH_SPLIT(dev_priv)) return ilk_crt_detect_hotplug(connector); if (IS_VALLEYVIEW(dev_priv)) return valleyview_crt_detect_hotplug(connector); /* * On 4 series desktop, CRT detect sequence need to be done twice * to get a reliable result. */ if (IS_G45(dev_priv)) tries = 2; else tries = 1; for (i = 0; i < tries ; i++) { /* turn on the FORCE_DETECT */ i915_hotplug_interrupt_update(dev_priv, CRT_HOTPLUG_FORCE_DETECT, CRT_HOTPLUG_FORCE_DETECT); /* wait for FORCE_DETECT to go off */ if (intel_de_wait_for_clear(display, PORT_HOTPLUG_EN(display), CRT_HOTPLUG_FORCE_DETECT, 1000)) drm_dbg_kms(display->drm, "timed out waiting for FORCE_DETECT to go off"); } stat = intel_de_read(display, PORT_HOTPLUG_STAT(display)); if ((stat & CRT_HOTPLUG_MONITOR_MASK) != CRT_HOTPLUG_MONITOR_NONE) ret = true; /* clear the interrupt we just generated, if any */ intel_de_write(display, PORT_HOTPLUG_STAT(display), CRT_HOTPLUG_INT_STATUS); i915_hotplug_interrupt_update(dev_priv, CRT_HOTPLUG_FORCE_DETECT, 0); return ret; } static const struct drm_edid *intel_crt_get_edid(struct drm_connector *connector, struct i2c_adapter *ddc) { const struct drm_edid *drm_edid; drm_edid = drm_edid_read_ddc(connector, ddc); if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) { drm_dbg_kms(connector->dev, "CRT GMBUS EDID read failed, retry using GPIO bit-banging\n"); intel_gmbus_force_bit(ddc, true); drm_edid = drm_edid_read_ddc(connector, ddc); intel_gmbus_force_bit(ddc, false); } return drm_edid; } /* local version of intel_ddc_get_modes() to use intel_crt_get_edid() */ static int intel_crt_ddc_get_modes(struct drm_connector *connector, struct i2c_adapter *ddc) { const struct drm_edid *drm_edid; int ret; drm_edid = intel_crt_get_edid(connector, ddc); if (!drm_edid) return 0; ret = intel_connector_update_modes(connector, drm_edid); drm_edid_free(drm_edid); return ret; } static bool intel_crt_detect_ddc(struct drm_connector *connector) { struct intel_display *display = to_intel_display(connector->dev); const struct drm_edid *drm_edid; bool ret = false; drm_edid = intel_crt_get_edid(connector, connector->ddc); if (drm_edid) { /* * This may be a DVI-I connector with a shared DDC * link between analog and digital outputs, so we * have to check the EDID input spec of the attached device. */ if (drm_edid_is_digital(drm_edid)) { drm_dbg_kms(display->drm, "CRT not detected via DDC:0x50 [EDID reports a digital panel]\n"); } else { drm_dbg_kms(display->drm, "CRT detected via DDC:0x50 [EDID]\n"); ret = true; } } else { drm_dbg_kms(display->drm, "CRT not detected via DDC:0x50 [no valid EDID found]\n"); } drm_edid_free(drm_edid); return ret; } static enum drm_connector_status intel_crt_load_detect(struct intel_crt *crt, enum pipe pipe) { struct intel_display *display = to_intel_display(&crt->base); enum transcoder cpu_transcoder = (enum transcoder)pipe; u32 save_bclrpat; u32 save_vtotal; u32 vtotal, vactive; u32 vsample; u32 vblank, vblank_start, vblank_end; u32 dsl; u8 st00; enum drm_connector_status status; drm_dbg_kms(display->drm, "starting load-detect on CRT\n"); save_bclrpat = intel_de_read(display, BCLRPAT(display, cpu_transcoder)); save_vtotal = intel_de_read(display, TRANS_VTOTAL(display, cpu_transcoder)); vblank = intel_de_read(display, TRANS_VBLANK(display, cpu_transcoder)); vtotal = REG_FIELD_GET(VTOTAL_MASK, save_vtotal) + 1; vactive = REG_FIELD_GET(VACTIVE_MASK, save_vtotal) + 1; vblank_start = REG_FIELD_GET(VBLANK_START_MASK, vblank) + 1; vblank_end = REG_FIELD_GET(VBLANK_END_MASK, vblank) + 1; /* Set the border color to purple. */ intel_de_write(display, BCLRPAT(display, cpu_transcoder), 0x500050); if (DISPLAY_VER(display) != 2) { u32 transconf = intel_de_read(display, TRANSCONF(display, cpu_transcoder)); intel_de_write(display, TRANSCONF(display, cpu_transcoder), transconf | TRANSCONF_FORCE_BORDER); intel_de_posting_read(display, TRANSCONF(display, cpu_transcoder)); /* Wait for next Vblank to substitue * border color for Color info */ intel_crtc_wait_for_next_vblank(intel_crtc_for_pipe(display, pipe)); st00 = intel_de_read8(display, _VGA_MSR_WRITE); status = ((st00 & (1 << 4)) != 0) ? connector_status_connected : connector_status_disconnected; intel_de_write(display, TRANSCONF(display, cpu_transcoder), transconf); } else { bool restore_vblank = false; int count, detect; /* * If there isn't any border, add some. * Yes, this will flicker */ if (vblank_start <= vactive && vblank_end >= vtotal) { u32 vsync = intel_de_read(display, TRANS_VSYNC(display, cpu_transcoder)); u32 vsync_start = REG_FIELD_GET(VSYNC_START_MASK, vsync) + 1; vblank_start = vsync_start; intel_de_write(display, TRANS_VBLANK(display, cpu_transcoder), VBLANK_START(vblank_start - 1) | VBLANK_END(vblank_end - 1)); restore_vblank = true; } /* sample in the vertical border, selecting the larger one */ if (vblank_start - vactive >= vtotal - vblank_end) vsample = (vblank_start + vactive) >> 1; else vsample = (vtotal + vblank_end) >> 1; /* * Wait for the border to be displayed */ while (intel_de_read(display, PIPEDSL(display, pipe)) >= vactive) ; while ((dsl = intel_de_read(display, PIPEDSL(display, pipe))) <= vsample) ; /* * Watch ST00 for an entire scanline */ detect = 0; count = 0; do { count++; /* Read the ST00 VGA status register */ st00 = intel_de_read8(display, _VGA_MSR_WRITE); if (st00 & (1 << 4)) detect++; } while ((intel_de_read(display, PIPEDSL(display, pipe)) == dsl)); /* restore vblank if necessary */ if (restore_vblank) intel_de_write(display, TRANS_VBLANK(display, cpu_transcoder), vblank); /* * If more than 3/4 of the scanline detected a monitor, * then it is assumed to be present. This works even on i830, * where there isn't any way to force the border color across * the screen */ status = detect * 4 > count * 3 ? connector_status_connected : connector_status_disconnected; } /* Restore previous settings */ intel_de_write(display, BCLRPAT(display, cpu_transcoder), save_bclrpat); return status; } static int intel_spurious_crt_detect_dmi_callback(const struct dmi_system_id *id) { DRM_DEBUG_DRIVER("Skipping CRT detection for %s\n", id->ident); return 1; } static const struct dmi_system_id intel_spurious_crt_detect[] = { { .callback = intel_spurious_crt_detect_dmi_callback, .ident = "ACER ZGB", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ACER"), DMI_MATCH(DMI_PRODUCT_NAME, "ZGB"), }, }, { .callback = intel_spurious_crt_detect_dmi_callback, .ident = "Intel DZ77BH-55K", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "Intel Corporation"), DMI_MATCH(DMI_BOARD_NAME, "DZ77BH-55K"), }, }, { } }; static int intel_crt_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct intel_display *display = to_intel_display(connector->dev); struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_crt *crt = intel_attached_crt(to_intel_connector(connector)); struct intel_encoder *intel_encoder = &crt->base; struct drm_atomic_state *state; intel_wakeref_t wakeref; int status; drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] force=%d\n", connector->base.id, connector->name, force); if (!intel_display_device_enabled(dev_priv)) return connector_status_disconnected; if (!intel_display_driver_check_access(dev_priv)) return connector->status; if (display->params.load_detect_test) { wakeref = intel_display_power_get(dev_priv, intel_encoder->power_domain); goto load_detect; } /* Skip machines without VGA that falsely report hotplug events */ if (dmi_check_system(intel_spurious_crt_detect)) return connector_status_disconnected; wakeref = intel_display_power_get(dev_priv, intel_encoder->power_domain); if (I915_HAS_HOTPLUG(display)) { /* We can not rely on the HPD pin always being correctly wired * up, for example many KVM do not pass it through, and so * only trust an assertion that the monitor is connected. */ if (intel_crt_detect_hotplug(connector)) { drm_dbg_kms(display->drm, "CRT detected via hotplug\n"); status = connector_status_connected; goto out; } else drm_dbg_kms(display->drm, "CRT not detected via hotplug\n"); } if (intel_crt_detect_ddc(connector)) { status = connector_status_connected; goto out; } /* Load detection is broken on HPD capable machines. Whoever wants a * broken monitor (without edid) to work behind a broken kvm (that fails * to have the right resistors for HP detection) needs to fix this up. * For now just bail out. */ if (I915_HAS_HOTPLUG(display)) { status = connector_status_disconnected; goto out; } load_detect: if (!force) { status = connector->status; goto out; } /* for pre-945g platforms use load detect */ state = intel_load_detect_get_pipe(connector, ctx); if (IS_ERR(state)) { status = PTR_ERR(state); } else if (!state) { status = connector_status_unknown; } else { if (intel_crt_detect_ddc(connector)) status = connector_status_connected; else if (DISPLAY_VER(display) < 4) status = intel_crt_load_detect(crt, to_intel_crtc(connector->state->crtc)->pipe); else if (display->params.load_detect_test) status = connector_status_disconnected; else status = connector_status_unknown; intel_load_detect_release_pipe(connector, state, ctx); } out: intel_display_power_put(dev_priv, intel_encoder->power_domain, wakeref); return status; } static int intel_crt_get_modes(struct drm_connector *connector) { struct intel_display *display = to_intel_display(connector->dev); struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crt *crt = intel_attached_crt(to_intel_connector(connector)); struct intel_encoder *intel_encoder = &crt->base; intel_wakeref_t wakeref; struct i2c_adapter *ddc; int ret; if (!intel_display_driver_check_access(dev_priv)) return drm_edid_connector_add_modes(connector); wakeref = intel_display_power_get(dev_priv, intel_encoder->power_domain); ret = intel_crt_ddc_get_modes(connector, connector->ddc); if (ret || !IS_G4X(dev_priv)) goto out; /* Try to probe digital port for output in DVI-I -> VGA mode. */ ddc = intel_gmbus_get_adapter(display, GMBUS_PIN_DPB); ret = intel_crt_ddc_get_modes(connector, ddc); out: intel_display_power_put(dev_priv, intel_encoder->power_domain, wakeref); return ret; } void intel_crt_reset(struct drm_encoder *encoder) { struct intel_display *display = to_intel_display(encoder->dev); struct intel_crt *crt = intel_encoder_to_crt(to_intel_encoder(encoder)); if (DISPLAY_VER(display) >= 5) { u32 adpa; adpa = intel_de_read(display, crt->adpa_reg); adpa &= ~ADPA_CRT_HOTPLUG_MASK; adpa |= ADPA_HOTPLUG_BITS; intel_de_write(display, crt->adpa_reg, adpa); intel_de_posting_read(display, crt->adpa_reg); drm_dbg_kms(display->drm, "crt adpa set to 0x%x\n", adpa); crt->force_hotplug_required = true; } } /* * Routines for controlling stuff on the analog port */ static const struct drm_connector_funcs intel_crt_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .late_register = intel_connector_register, .early_unregister = intel_connector_unregister, .destroy = intel_connector_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, }; static const struct drm_connector_helper_funcs intel_crt_connector_helper_funcs = { .detect_ctx = intel_crt_detect, .mode_valid = intel_crt_mode_valid, .get_modes = intel_crt_get_modes, }; static const struct drm_encoder_funcs intel_crt_enc_funcs = { .reset = intel_crt_reset, .destroy = intel_encoder_destroy, }; void intel_crt_init(struct intel_display *display) { struct drm_i915_private *dev_priv = to_i915(display->drm); struct drm_connector *connector; struct intel_crt *crt; struct intel_connector *intel_connector; i915_reg_t adpa_reg; u8 ddc_pin; u32 adpa; if (HAS_PCH_SPLIT(dev_priv)) adpa_reg = PCH_ADPA; else if (IS_VALLEYVIEW(dev_priv)) adpa_reg = VLV_ADPA; else adpa_reg = ADPA; adpa = intel_de_read(display, adpa_reg); if ((adpa & ADPA_DAC_ENABLE) == 0) { /* * On some machines (some IVB at least) CRT can be * fused off, but there's no known fuse bit to * indicate that. On these machine the ADPA register * works normally, except the DAC enable bit won't * take. So the only way to tell is attempt to enable * it and see what happens. */ intel_de_write(display, adpa_reg, adpa | ADPA_DAC_ENABLE | ADPA_HSYNC_CNTL_DISABLE | ADPA_VSYNC_CNTL_DISABLE); if ((intel_de_read(display, adpa_reg) & ADPA_DAC_ENABLE) == 0) return; intel_de_write(display, adpa_reg, adpa); } crt = kzalloc(sizeof(struct intel_crt), GFP_KERNEL); if (!crt) return; intel_connector = intel_connector_alloc(); if (!intel_connector) { kfree(crt); return; } ddc_pin = display->vbt.crt_ddc_pin; connector = &intel_connector->base; crt->connector = intel_connector; drm_connector_init_with_ddc(display->drm, connector, &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA, intel_gmbus_get_adapter(display, ddc_pin)); drm_encoder_init(display->drm, &crt->base.base, &intel_crt_enc_funcs, DRM_MODE_ENCODER_DAC, "CRT"); intel_connector_attach_encoder(intel_connector, &crt->base); crt->base.type = INTEL_OUTPUT_ANALOG; crt->base.cloneable = BIT(INTEL_OUTPUT_DVO) | BIT(INTEL_OUTPUT_HDMI); if (IS_I830(dev_priv)) crt->base.pipe_mask = BIT(PIPE_A); else crt->base.pipe_mask = ~0; if (DISPLAY_VER(display) != 2) connector->interlace_allowed = true; crt->adpa_reg = adpa_reg; crt->base.power_domain = POWER_DOMAIN_PORT_CRT; if (I915_HAS_HOTPLUG(display) && !dmi_check_system(intel_spurious_crt_detect)) { crt->base.hpd_pin = HPD_CRT; crt->base.hotplug = intel_encoder_hotplug; intel_connector->polled = DRM_CONNECTOR_POLL_HPD; } else { intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; } intel_connector->base.polled = intel_connector->polled; if (HAS_DDI(display)) { assert_port_valid(dev_priv, PORT_E); crt->base.port = PORT_E; crt->base.get_config = hsw_crt_get_config; crt->base.get_hw_state = intel_ddi_get_hw_state; crt->base.compute_config = hsw_crt_compute_config; crt->base.pre_pll_enable = hsw_pre_pll_enable_crt; crt->base.pre_enable = hsw_pre_enable_crt; crt->base.enable = hsw_enable_crt; crt->base.disable = hsw_disable_crt; crt->base.post_disable = hsw_post_disable_crt; crt->base.enable_clock = hsw_ddi_enable_clock; crt->base.disable_clock = hsw_ddi_disable_clock; crt->base.is_clock_enabled = hsw_ddi_is_clock_enabled; intel_ddi_buf_trans_init(&crt->base); } else { if (HAS_PCH_SPLIT(dev_priv)) { crt->base.compute_config = pch_crt_compute_config; crt->base.disable = pch_disable_crt; crt->base.post_disable = pch_post_disable_crt; } else { crt->base.compute_config = intel_crt_compute_config; crt->base.disable = intel_disable_crt; } crt->base.port = PORT_NONE; crt->base.get_config = intel_crt_get_config; crt->base.get_hw_state = intel_crt_get_hw_state; crt->base.enable = intel_enable_crt; } intel_connector->get_hw_state = intel_connector_get_hw_state; drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs); /* * TODO: find a proper way to discover whether we need to set the the * polarity and link reversal bits or not, instead of relying on the * BIOS. */ if (HAS_PCH_LPT(dev_priv)) { u32 fdi_config = FDI_RX_POLARITY_REVERSED_LPT | FDI_RX_LINK_REVERSAL_OVERRIDE; display->fdi.rx_config = intel_de_read(display, FDI_RX_CTL(PIPE_A)) & fdi_config; } intel_crt_reset(&crt->base.base); }