/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "i915_drv.h" #include "i915_reg.h" #include "intel_alpm.h" #include "intel_atomic.h" #include "intel_crtc.h" #include "intel_cursor_regs.h" #include "intel_ddi.h" #include "intel_de.h" #include "intel_display_irq.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_dp_aux.h" #include "intel_frontbuffer.h" #include "intel_hdmi.h" #include "intel_psr.h" #include "intel_psr_regs.h" #include "intel_snps_phy.h" #include "skl_universal_plane.h" /** * DOC: Panel Self Refresh (PSR/SRD) * * Since Haswell Display controller supports Panel Self-Refresh on display * panels witch have a remote frame buffer (RFB) implemented according to PSR * spec in eDP1.3. PSR feature allows the display to go to lower standby states * when system is idle but display is on as it eliminates display refresh * request to DDR memory completely as long as the frame buffer for that * display is unchanged. * * Panel Self Refresh must be supported by both Hardware (source) and * Panel (sink). * * PSR saves power by caching the framebuffer in the panel RFB, which allows us * to power down the link and memory controller. For DSI panels the same idea * is called "manual mode". * * The implementation uses the hardware-based PSR support which automatically * enters/exits self-refresh mode. The hardware takes care of sending the * required DP aux message and could even retrain the link (that part isn't * enabled yet though). The hardware also keeps track of any frontbuffer * changes to know when to exit self-refresh mode again. Unfortunately that * part doesn't work too well, hence why the i915 PSR support uses the * software frontbuffer tracking to make sure it doesn't miss a screen * update. For this integration intel_psr_invalidate() and intel_psr_flush() * get called by the frontbuffer tracking code. Note that because of locking * issues the self-refresh re-enable code is done from a work queue, which * must be correctly synchronized/cancelled when shutting down the pipe." * * DC3CO (DC3 clock off) * * On top of PSR2, GEN12 adds a intermediate power savings state that turns * clock off automatically during PSR2 idle state. * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep * entry/exit allows the HW to enter a low-power state even when page flipping * periodically (for instance a 30fps video playback scenario). * * Every time a flips occurs PSR2 will get out of deep sleep state(if it was), * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6 * frames, if no other flip occurs and the function above is executed, DC3CO is * disabled and PSR2 is configured to enter deep sleep, resetting again in case * of another flip. * Front buffer modifications do not trigger DC3CO activation on purpose as it * would bring a lot of complexity and most of the moderns systems will only * use page flips. */ /* * Description of PSR mask bits: * * EDP_PSR_DEBUG[16]/EDP_PSR_DEBUG_MASK_DISP_REG_WRITE (hsw-skl): * * When unmasked (nearly) all display register writes (eg. even * SWF) trigger a PSR exit. Some registers are excluded from this * and they have a more specific mask (described below). On icl+ * this bit no longer exists and is effectively always set. * * PIPE_MISC[21]/PIPE_MISC_PSR_MASK_PIPE_REG_WRITE (skl+): * * When unmasked (nearly) all pipe/plane register writes * trigger a PSR exit. Some plane registers are excluded from this * and they have a more specific mask (described below). * * CHICKEN_PIPESL_1[11]/SKL_PSR_MASK_PLANE_FLIP (skl+): * PIPE_MISC[23]/PIPE_MISC_PSR_MASK_PRIMARY_FLIP (bdw): * EDP_PSR_DEBUG[23]/EDP_PSR_DEBUG_MASK_PRIMARY_FLIP (hsw): * * When unmasked PRI_SURF/PLANE_SURF writes trigger a PSR exit. * SPR_SURF/CURBASE are not included in this and instead are * controlled by PIPE_MISC_PSR_MASK_PIPE_REG_WRITE (skl+) or * EDP_PSR_DEBUG_MASK_DISP_REG_WRITE (hsw/bdw). * * PIPE_MISC[22]/PIPE_MISC_PSR_MASK_SPRITE_ENABLE (bdw): * EDP_PSR_DEBUG[21]/EDP_PSR_DEBUG_MASK_SPRITE_ENABLE (hsw): * * When unmasked PSR is blocked as long as the sprite * plane is enabled. skl+ with their universal planes no * longer have a mask bit like this, and no plane being * enabledb blocks PSR. * * PIPE_MISC[21]/PIPE_MISC_PSR_MASK_CURSOR_MOVE (bdw): * EDP_PSR_DEBUG[20]/EDP_PSR_DEBUG_MASK_CURSOR_MOVE (hsw): * * When umasked CURPOS writes trigger a PSR exit. On skl+ * this doesn't exit but CURPOS is included in the * PIPE_MISC_PSR_MASK_PIPE_REG_WRITE mask. * * PIPE_MISC[20]/PIPE_MISC_PSR_MASK_VBLANK_VSYNC_INT (bdw+): * EDP_PSR_DEBUG[19]/EDP_PSR_DEBUG_MASK_VBLANK_VSYNC_INT (hsw): * * When unmasked PSR is blocked as long as vblank and/or vsync * interrupt is unmasked in IMR *and* enabled in IER. * * CHICKEN_TRANS[30]/SKL_UNMASK_VBL_TO_PIPE_IN_SRD (skl+): * CHICKEN_PAR1_1[15]/HSW_MASK_VBL_TO_PIPE_IN_SRD (hsw/bdw): * * Selectcs whether PSR exit generates an extra vblank before * the first frame is transmitted. Also note the opposite polarity * if the bit on hsw/bdw vs. skl+ (masked==generate the extra vblank, * unmasked==do not generate the extra vblank). * * With DC states enabled the extra vblank happens after link training, * with DC states disabled it happens immediately upuon PSR exit trigger. * No idea as of now why there is a difference. HSW/BDW (which don't * even have DMC) always generate it after link training. Go figure. * * Unfortunately CHICKEN_TRANS itself seems to be double buffered * and thus won't latch until the first vblank. So with DC states * enabled the register effctively uses the reset value during DC5 * exit+PSR exit sequence, and thus the bit does nothing until * latched by the vblank that it was trying to prevent from being * generated in the first place. So we should probably call this * one a chicken/egg bit instead on skl+. * * In standby mode (as opposed to link-off) this makes no difference * as the timing generator keeps running the whole time generating * normal periodic vblanks. * * WaPsrDPAMaskVBlankInSRD asks us to set the bit on hsw/bdw, * and doing so makes the behaviour match the skl+ reset value. * * CHICKEN_PIPESL_1[0]/BDW_UNMASK_VBL_TO_REGS_IN_SRD (bdw): * CHICKEN_PIPESL_1[15]/HSW_UNMASK_VBL_TO_REGS_IN_SRD (hsw): * * On BDW without this bit is no vblanks whatsoever are * generated after PSR exit. On HSW this has no apparant effect. * WaPsrDPRSUnmaskVBlankInSRD says to set this. * * The rest of the bits are more self-explanatory and/or * irrelevant for normal operation. * * Description of intel_crtc_state variables. has_psr, has_panel_replay and * has_sel_update: * * has_psr (alone): PSR1 * has_psr + has_sel_update: PSR2 * has_psr + has_panel_replay: Panel Replay * has_psr + has_panel_replay + has_sel_update: Panel Replay Selective Update * * Description of some intel_psr varibles. enabled, panel_replay_enabled, * sel_update_enabled * * enabled (alone): PSR1 * enabled + sel_update_enabled: PSR2 * enabled + panel_replay_enabled: Panel Replay * enabled + panel_replay_enabled + sel_update_enabled: Panel Replay SU */ #define CAN_PSR(intel_dp) ((intel_dp)->psr.sink_support && \ (intel_dp)->psr.source_support) bool intel_encoder_can_psr(struct intel_encoder *encoder) { if (intel_encoder_is_dp(encoder) || encoder->type == INTEL_OUTPUT_DP_MST) return CAN_PSR(enc_to_intel_dp(encoder)) || CAN_PANEL_REPLAY(enc_to_intel_dp(encoder)); else return false; } bool intel_psr_needs_aux_io_power(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { /* * For PSR/PR modes only eDP requires the AUX IO power to be enabled whenever * the output is enabled. For non-eDP outputs the main link is always * on, hence it doesn't require the HW initiated AUX wake-up signaling used * for eDP. * * TODO: * - Consider leaving AUX IO disabled for eDP / PR as well, in case * the ALPM with main-link off mode is not enabled. * - Leave AUX IO enabled for DP / PR, once support for ALPM with * main-link off mode is added for it and this mode gets enabled. */ return intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) && intel_encoder_can_psr(encoder); } static bool psr_global_enabled(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) { case I915_PSR_DEBUG_DEFAULT: if (display->params.enable_psr == -1) return intel_dp_is_edp(intel_dp) ? connector->panel.vbt.psr.enable : true; return display->params.enable_psr; case I915_PSR_DEBUG_DISABLE: return false; default: return true; } } static bool psr2_global_enabled(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) { case I915_PSR_DEBUG_DISABLE: case I915_PSR_DEBUG_FORCE_PSR1: return false; default: if (display->params.enable_psr == 1) return false; return true; } } static bool psr2_su_region_et_global_enabled(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); if (display->params.enable_psr != -1) return false; return true; } static bool panel_replay_global_enabled(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); if ((display->params.enable_psr != -1) || (intel_dp->psr.debug & I915_PSR_DEBUG_PANEL_REPLAY_DISABLE)) return false; return true; } static u32 psr_irq_psr_error_bit_get(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); return DISPLAY_VER(display) >= 12 ? TGL_PSR_ERROR : EDP_PSR_ERROR(intel_dp->psr.transcoder); } static u32 psr_irq_post_exit_bit_get(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); return DISPLAY_VER(display) >= 12 ? TGL_PSR_POST_EXIT : EDP_PSR_POST_EXIT(intel_dp->psr.transcoder); } static u32 psr_irq_pre_entry_bit_get(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); return DISPLAY_VER(display) >= 12 ? TGL_PSR_PRE_ENTRY : EDP_PSR_PRE_ENTRY(intel_dp->psr.transcoder); } static u32 psr_irq_mask_get(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); return DISPLAY_VER(display) >= 12 ? TGL_PSR_MASK : EDP_PSR_MASK(intel_dp->psr.transcoder); } static i915_reg_t psr_ctl_reg(struct intel_display *display, enum transcoder cpu_transcoder) { if (DISPLAY_VER(display) >= 8) return EDP_PSR_CTL(display, cpu_transcoder); else return HSW_SRD_CTL; } static i915_reg_t psr_debug_reg(struct intel_display *display, enum transcoder cpu_transcoder) { if (DISPLAY_VER(display) >= 8) return EDP_PSR_DEBUG(display, cpu_transcoder); else return HSW_SRD_DEBUG; } static i915_reg_t psr_perf_cnt_reg(struct intel_display *display, enum transcoder cpu_transcoder) { if (DISPLAY_VER(display) >= 8) return EDP_PSR_PERF_CNT(display, cpu_transcoder); else return HSW_SRD_PERF_CNT; } static i915_reg_t psr_status_reg(struct intel_display *display, enum transcoder cpu_transcoder) { if (DISPLAY_VER(display) >= 8) return EDP_PSR_STATUS(display, cpu_transcoder); else return HSW_SRD_STATUS; } static i915_reg_t psr_imr_reg(struct intel_display *display, enum transcoder cpu_transcoder) { if (DISPLAY_VER(display) >= 12) return TRANS_PSR_IMR(display, cpu_transcoder); else return EDP_PSR_IMR; } static i915_reg_t psr_iir_reg(struct intel_display *display, enum transcoder cpu_transcoder) { if (DISPLAY_VER(display) >= 12) return TRANS_PSR_IIR(display, cpu_transcoder); else return EDP_PSR_IIR; } static i915_reg_t psr_aux_ctl_reg(struct intel_display *display, enum transcoder cpu_transcoder) { if (DISPLAY_VER(display) >= 8) return EDP_PSR_AUX_CTL(display, cpu_transcoder); else return HSW_SRD_AUX_CTL; } static i915_reg_t psr_aux_data_reg(struct intel_display *display, enum transcoder cpu_transcoder, int i) { if (DISPLAY_VER(display) >= 8) return EDP_PSR_AUX_DATA(display, cpu_transcoder, i); else return HSW_SRD_AUX_DATA(i); } static void psr_irq_control(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; u32 mask; if (intel_dp->psr.panel_replay_enabled) return; mask = psr_irq_psr_error_bit_get(intel_dp); if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ) mask |= psr_irq_post_exit_bit_get(intel_dp) | psr_irq_pre_entry_bit_get(intel_dp); intel_de_rmw(display, psr_imr_reg(display, cpu_transcoder), psr_irq_mask_get(intel_dp), ~mask); } static void psr_event_print(struct intel_display *display, u32 val, bool sel_update_enabled) { drm_dbg_kms(display->drm, "PSR exit events: 0x%x\n", val); if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE) drm_dbg_kms(display->drm, "\tPSR2 watchdog timer expired\n"); if ((val & PSR_EVENT_PSR2_DISABLED) && sel_update_enabled) drm_dbg_kms(display->drm, "\tPSR2 disabled\n"); if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN) drm_dbg_kms(display->drm, "\tSU dirty FIFO underrun\n"); if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN) drm_dbg_kms(display->drm, "\tSU CRC FIFO underrun\n"); if (val & PSR_EVENT_GRAPHICS_RESET) drm_dbg_kms(display->drm, "\tGraphics reset\n"); if (val & PSR_EVENT_PCH_INTERRUPT) drm_dbg_kms(display->drm, "\tPCH interrupt\n"); if (val & PSR_EVENT_MEMORY_UP) drm_dbg_kms(display->drm, "\tMemory up\n"); if (val & PSR_EVENT_FRONT_BUFFER_MODIFY) drm_dbg_kms(display->drm, "\tFront buffer modification\n"); if (val & PSR_EVENT_WD_TIMER_EXPIRE) drm_dbg_kms(display->drm, "\tPSR watchdog timer expired\n"); if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE) drm_dbg_kms(display->drm, "\tPIPE registers updated\n"); if (val & PSR_EVENT_REGISTER_UPDATE) drm_dbg_kms(display->drm, "\tRegister updated\n"); if (val & PSR_EVENT_HDCP_ENABLE) drm_dbg_kms(display->drm, "\tHDCP enabled\n"); if (val & PSR_EVENT_KVMR_SESSION_ENABLE) drm_dbg_kms(display->drm, "\tKVMR session enabled\n"); if (val & PSR_EVENT_VBI_ENABLE) drm_dbg_kms(display->drm, "\tVBI enabled\n"); if (val & PSR_EVENT_LPSP_MODE_EXIT) drm_dbg_kms(display->drm, "\tLPSP mode exited\n"); if ((val & PSR_EVENT_PSR_DISABLE) && !sel_update_enabled) drm_dbg_kms(display->drm, "\tPSR disabled\n"); } void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; ktime_t time_ns = ktime_get(); if (psr_iir & psr_irq_pre_entry_bit_get(intel_dp)) { intel_dp->psr.last_entry_attempt = time_ns; drm_dbg_kms(display->drm, "[transcoder %s] PSR entry attempt in 2 vblanks\n", transcoder_name(cpu_transcoder)); } if (psr_iir & psr_irq_post_exit_bit_get(intel_dp)) { intel_dp->psr.last_exit = time_ns; drm_dbg_kms(display->drm, "[transcoder %s] PSR exit completed\n", transcoder_name(cpu_transcoder)); if (DISPLAY_VER(display) >= 9) { u32 val; val = intel_de_rmw(dev_priv, PSR_EVENT(dev_priv, cpu_transcoder), 0, 0); psr_event_print(display, val, intel_dp->psr.sel_update_enabled); } } if (psr_iir & psr_irq_psr_error_bit_get(intel_dp)) { drm_warn(display->drm, "[transcoder %s] PSR aux error\n", transcoder_name(cpu_transcoder)); intel_dp->psr.irq_aux_error = true; /* * If this interruption is not masked it will keep * interrupting so fast that it prevents the scheduled * work to run. * Also after a PSR error, we don't want to arm PSR * again so we don't care about unmask the interruption * or unset irq_aux_error. */ intel_de_rmw(display, psr_imr_reg(display, cpu_transcoder), 0, psr_irq_psr_error_bit_get(intel_dp)); queue_work(dev_priv->unordered_wq, &intel_dp->psr.work); } } static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); u8 val = 8; /* assume the worst if we can't read the value */ if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1) val &= DP_MAX_RESYNC_FRAME_COUNT_MASK; else drm_dbg_kms(display->drm, "Unable to get sink synchronization latency, assuming 8 frames\n"); return val; } static u8 intel_dp_get_su_capability(struct intel_dp *intel_dp) { u8 su_capability = 0; if (intel_dp->psr.sink_panel_replay_su_support) drm_dp_dpcd_readb(&intel_dp->aux, DP_PANEL_PANEL_REPLAY_CAPABILITY, &su_capability); else su_capability = intel_dp->psr_dpcd[1]; return su_capability; } static unsigned int intel_dp_get_su_x_granularity_offset(struct intel_dp *intel_dp) { return intel_dp->psr.sink_panel_replay_su_support ? DP_PANEL_PANEL_REPLAY_X_GRANULARITY : DP_PSR2_SU_X_GRANULARITY; } static unsigned int intel_dp_get_su_y_granularity_offset(struct intel_dp *intel_dp) { return intel_dp->psr.sink_panel_replay_su_support ? DP_PANEL_PANEL_REPLAY_Y_GRANULARITY : DP_PSR2_SU_Y_GRANULARITY; } /* * Note: Bits related to granularity are same in panel replay and psr * registers. Rely on PSR definitions on these "common" bits. */ static void intel_dp_get_su_granularity(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); ssize_t r; u16 w; u8 y; /* * TODO: Do we need to take into account panel supporting both PSR and * Panel replay? */ /* * If sink don't have specific granularity requirements set legacy * ones. */ if (!(intel_dp_get_su_capability(intel_dp) & DP_PSR2_SU_GRANULARITY_REQUIRED)) { /* As PSR2 HW sends full lines, we do not care about x granularity */ w = 4; y = 4; goto exit; } r = drm_dp_dpcd_read(&intel_dp->aux, intel_dp_get_su_x_granularity_offset(intel_dp), &w, 2); if (r != 2) drm_dbg_kms(display->drm, "Unable to read selective update x granularity\n"); /* * Spec says that if the value read is 0 the default granularity should * be used instead. */ if (r != 2 || w == 0) w = 4; r = drm_dp_dpcd_read(&intel_dp->aux, intel_dp_get_su_y_granularity_offset(intel_dp), &y, 1); if (r != 1) { drm_dbg_kms(display->drm, "Unable to read selective update y granularity\n"); y = 4; } if (y == 0) y = 1; exit: intel_dp->psr.su_w_granularity = w; intel_dp->psr.su_y_granularity = y; } static void _panel_replay_init_dpcd(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); if (intel_dp_is_edp(intel_dp)) { if (!intel_alpm_aux_less_wake_supported(intel_dp)) { drm_dbg_kms(display->drm, "Panel doesn't support AUX-less ALPM, eDP Panel Replay not possible\n"); return; } if (!(intel_dp->pr_dpcd & DP_PANEL_REPLAY_EARLY_TRANSPORT_SUPPORT)) { drm_dbg_kms(display->drm, "Panel doesn't support early transport, eDP Panel Replay not possible\n"); return; } } intel_dp->psr.sink_panel_replay_support = true; if (intel_dp->pr_dpcd & DP_PANEL_REPLAY_SU_SUPPORT) intel_dp->psr.sink_panel_replay_su_support = true; drm_dbg_kms(display->drm, "Panel replay %sis supported by panel\n", intel_dp->psr.sink_panel_replay_su_support ? "selective_update " : ""); } static void _psr_init_dpcd(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); drm_dbg_kms(display->drm, "eDP panel supports PSR version %x\n", intel_dp->psr_dpcd[0]); if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) { drm_dbg_kms(display->drm, "PSR support not currently available for this panel\n"); return; } if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) { drm_dbg_kms(display->drm, "Panel lacks power state control, PSR cannot be enabled\n"); return; } intel_dp->psr.sink_support = true; intel_dp->psr.sink_sync_latency = intel_dp_get_sink_sync_latency(intel_dp); if (DISPLAY_VER(display) >= 9 && intel_dp->psr_dpcd[0] >= DP_PSR2_WITH_Y_COORD_IS_SUPPORTED) { bool y_req = intel_dp->psr_dpcd[1] & DP_PSR2_SU_Y_COORDINATE_REQUIRED; /* * All panels that supports PSR version 03h (PSR2 + * Y-coordinate) can handle Y-coordinates in VSC but we are * only sure that it is going to be used when required by the * panel. This way panel is capable to do selective update * without a aux frame sync. * * To support PSR version 02h and PSR version 03h without * Y-coordinate requirement panels we would need to enable * GTC first. */ intel_dp->psr.sink_psr2_support = y_req && intel_alpm_aux_wake_supported(intel_dp); drm_dbg_kms(display->drm, "PSR2 %ssupported\n", intel_dp->psr.sink_psr2_support ? "" : "not "); } } void intel_psr_init_dpcd(struct intel_dp *intel_dp) { drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, sizeof(intel_dp->psr_dpcd)); drm_dp_dpcd_readb(&intel_dp->aux, DP_PANEL_REPLAY_CAP, &intel_dp->pr_dpcd); if (intel_dp->pr_dpcd & DP_PANEL_REPLAY_SUPPORT) _panel_replay_init_dpcd(intel_dp); if (intel_dp->psr_dpcd[0]) _psr_init_dpcd(intel_dp); if (intel_dp->psr.sink_psr2_support || intel_dp->psr.sink_panel_replay_su_support) intel_dp_get_su_granularity(intel_dp); } static void hsw_psr_setup_aux(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; u32 aux_clock_divider, aux_ctl; /* write DP_SET_POWER=D0 */ static const u8 aux_msg[] = { [0] = (DP_AUX_NATIVE_WRITE << 4) | ((DP_SET_POWER >> 16) & 0xf), [1] = (DP_SET_POWER >> 8) & 0xff, [2] = DP_SET_POWER & 0xff, [3] = 1 - 1, [4] = DP_SET_POWER_D0, }; int i; BUILD_BUG_ON(sizeof(aux_msg) > 20); for (i = 0; i < sizeof(aux_msg); i += 4) intel_de_write(dev_priv, psr_aux_data_reg(display, cpu_transcoder, i >> 2), intel_dp_aux_pack(&aux_msg[i], sizeof(aux_msg) - i)); aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); /* Start with bits set for DDI_AUX_CTL register */ aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg), aux_clock_divider); /* Select only valid bits for SRD_AUX_CTL */ aux_ctl &= EDP_PSR_AUX_CTL_TIME_OUT_MASK | EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK | EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK | EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK; intel_de_write(display, psr_aux_ctl_reg(display, cpu_transcoder), aux_ctl); } static bool psr2_su_region_et_valid(struct intel_dp *intel_dp, bool panel_replay) { struct intel_display *display = to_intel_display(intel_dp); if (DISPLAY_VER(display) < 20 || !intel_dp_is_edp(intel_dp) || intel_dp->psr.debug & I915_PSR_DEBUG_SU_REGION_ET_DISABLE) return false; return panel_replay ? intel_dp->pr_dpcd & DP_PANEL_REPLAY_EARLY_TRANSPORT_SUPPORT : intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_ET_SUPPORTED && psr2_su_region_et_global_enabled(intel_dp); } static void _panel_replay_enable_sink(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { u8 val = DP_PANEL_REPLAY_ENABLE | DP_PANEL_REPLAY_VSC_SDP_CRC_EN | DP_PANEL_REPLAY_UNRECOVERABLE_ERROR_EN | DP_PANEL_REPLAY_RFB_STORAGE_ERROR_EN | DP_PANEL_REPLAY_ACTIVE_FRAME_CRC_ERROR_EN; u8 panel_replay_config2 = DP_PANEL_REPLAY_CRC_VERIFICATION; if (crtc_state->has_sel_update) val |= DP_PANEL_REPLAY_SU_ENABLE; if (crtc_state->enable_psr2_su_region_et) val |= DP_PANEL_REPLAY_ENABLE_SU_REGION_ET; if (crtc_state->req_psr2_sdp_prior_scanline) panel_replay_config2 |= DP_PANEL_REPLAY_SU_REGION_SCANLINE_CAPTURE; drm_dp_dpcd_writeb(&intel_dp->aux, PANEL_REPLAY_CONFIG, val); drm_dp_dpcd_writeb(&intel_dp->aux, PANEL_REPLAY_CONFIG2, panel_replay_config2); } static void _psr_enable_sink(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); u8 val = 0; if (crtc_state->has_sel_update) { val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS; } else { if (intel_dp->psr.link_standby) val |= DP_PSR_MAIN_LINK_ACTIVE; if (DISPLAY_VER(display) >= 8) val |= DP_PSR_CRC_VERIFICATION; } if (crtc_state->req_psr2_sdp_prior_scanline) val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE; if (crtc_state->enable_psr2_su_region_et) val |= DP_PANEL_REPLAY_ENABLE_SU_REGION_ET; if (intel_dp->psr.entry_setup_frames > 0) val |= DP_PSR_FRAME_CAPTURE; drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, val); val |= DP_PSR_ENABLE; drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, val); } static void intel_psr_enable_sink_alpm(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { u8 val; /* * eDP Panel Replay uses always ALPM * PSR2 uses ALPM but PSR1 doesn't */ if (!intel_dp_is_edp(intel_dp) || (!crtc_state->has_panel_replay && !crtc_state->has_sel_update)) return; val = DP_ALPM_ENABLE | DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE; if (crtc_state->has_panel_replay) val |= DP_ALPM_MODE_AUX_LESS; drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, val); } void intel_psr_enable_sink(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { intel_psr_enable_sink_alpm(intel_dp, crtc_state); crtc_state->has_panel_replay ? _panel_replay_enable_sink(intel_dp, crtc_state) : _psr_enable_sink(intel_dp, crtc_state); if (intel_dp_is_edp(intel_dp)) drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; struct drm_i915_private *dev_priv = to_i915(display->drm); u32 val = 0; if (DISPLAY_VER(display) >= 11) val |= EDP_PSR_TP4_TIME_0us; if (display->params.psr_safest_params) { val |= EDP_PSR_TP1_TIME_2500us; val |= EDP_PSR_TP2_TP3_TIME_2500us; goto check_tp3_sel; } if (connector->panel.vbt.psr.tp1_wakeup_time_us == 0) val |= EDP_PSR_TP1_TIME_0us; else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 100) val |= EDP_PSR_TP1_TIME_100us; else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 500) val |= EDP_PSR_TP1_TIME_500us; else val |= EDP_PSR_TP1_TIME_2500us; if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0) val |= EDP_PSR_TP2_TP3_TIME_0us; else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 100) val |= EDP_PSR_TP2_TP3_TIME_100us; else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 500) val |= EDP_PSR_TP2_TP3_TIME_500us; else val |= EDP_PSR_TP2_TP3_TIME_2500us; /* * WA 0479: hsw,bdw * "Do not skip both TP1 and TP2/TP3" */ if (DISPLAY_VER(dev_priv) < 9 && connector->panel.vbt.psr.tp1_wakeup_time_us == 0 && connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0) val |= EDP_PSR_TP2_TP3_TIME_100us; check_tp3_sel: if (intel_dp_source_supports_tps3(dev_priv) && drm_dp_tps3_supported(intel_dp->dpcd)) val |= EDP_PSR_TP_TP1_TP3; else val |= EDP_PSR_TP_TP1_TP2; return val; } static u8 psr_compute_idle_frames(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; int idle_frames; /* Let's use 6 as the minimum to cover all known cases including the * off-by-one issue that HW has in some cases. */ idle_frames = max(6, connector->panel.vbt.psr.idle_frames); idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1); if (drm_WARN_ON(display->drm, idle_frames > 0xf)) idle_frames = 0xf; return idle_frames; } static void hsw_activate_psr1(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; u32 max_sleep_time = 0x1f; u32 val = EDP_PSR_ENABLE; val |= EDP_PSR_IDLE_FRAMES(psr_compute_idle_frames(intel_dp)); if (DISPLAY_VER(display) < 20) val |= EDP_PSR_MAX_SLEEP_TIME(max_sleep_time); if (IS_HASWELL(dev_priv)) val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; if (intel_dp->psr.link_standby) val |= EDP_PSR_LINK_STANDBY; val |= intel_psr1_get_tp_time(intel_dp); if (DISPLAY_VER(display) >= 8) val |= EDP_PSR_CRC_ENABLE; if (DISPLAY_VER(display) >= 20) val |= LNL_EDP_PSR_ENTRY_SETUP_FRAMES(intel_dp->psr.entry_setup_frames); intel_de_rmw(display, psr_ctl_reg(display, cpu_transcoder), ~EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK, val); } static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct intel_connector *connector = intel_dp->attached_connector; u32 val = 0; if (display->params.psr_safest_params) return EDP_PSR2_TP2_TIME_2500us; if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 && connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50) val |= EDP_PSR2_TP2_TIME_50us; else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100) val |= EDP_PSR2_TP2_TIME_100us; else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500) val |= EDP_PSR2_TP2_TIME_500us; else val |= EDP_PSR2_TP2_TIME_2500us; return val; } static int psr2_block_count_lines(struct intel_dp *intel_dp) { return intel_dp->alpm_parameters.io_wake_lines < 9 && intel_dp->alpm_parameters.fast_wake_lines < 9 ? 8 : 12; } static int psr2_block_count(struct intel_dp *intel_dp) { return psr2_block_count_lines(intel_dp) / 4; } static u8 frames_before_su_entry(struct intel_dp *intel_dp) { u8 frames_before_su_entry; frames_before_su_entry = max_t(u8, intel_dp->psr.sink_sync_latency + 1, 2); /* Entry setup frames must be at least 1 less than frames before SU entry */ if (intel_dp->psr.entry_setup_frames >= frames_before_su_entry) frames_before_su_entry = intel_dp->psr.entry_setup_frames + 1; return frames_before_su_entry; } static void dg2_activate_panel_replay(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct intel_psr *psr = &intel_dp->psr; enum transcoder cpu_transcoder = intel_dp->psr.transcoder; if (intel_dp_is_edp(intel_dp) && psr->sel_update_enabled) { u32 val = psr->su_region_et_enabled ? LNL_EDP_PSR2_SU_REGION_ET_ENABLE : 0; if (intel_dp->psr.req_psr2_sdp_prior_scanline) val |= EDP_PSR2_SU_SDP_SCANLINE; intel_de_write(display, EDP_PSR2_CTL(display, cpu_transcoder), val); } intel_de_rmw(display, PSR2_MAN_TRK_CTL(display, intel_dp->psr.transcoder), 0, ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME); intel_de_rmw(display, TRANS_DP2_CTL(intel_dp->psr.transcoder), 0, TRANS_DP2_PANEL_REPLAY_ENABLE); } static void hsw_activate_psr2(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; u32 val = EDP_PSR2_ENABLE; u32 psr_val = 0; val |= EDP_PSR2_IDLE_FRAMES(psr_compute_idle_frames(intel_dp)); if (DISPLAY_VER(display) < 14 && !IS_ALDERLAKE_P(dev_priv)) val |= EDP_SU_TRACK_ENABLE; if (DISPLAY_VER(display) >= 10 && DISPLAY_VER(display) < 13) val |= EDP_Y_COORDINATE_ENABLE; val |= EDP_PSR2_FRAME_BEFORE_SU(frames_before_su_entry(intel_dp)); val |= intel_psr2_get_tp_time(intel_dp); if (DISPLAY_VER(display) >= 12 && DISPLAY_VER(display) < 20) { if (psr2_block_count(intel_dp) > 2) val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_3; else val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2; } /* Wa_22012278275:adl-p */ if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(display, STEP_A0, STEP_E0)) { static const u8 map[] = { 2, /* 5 lines */ 1, /* 6 lines */ 0, /* 7 lines */ 3, /* 8 lines */ 6, /* 9 lines */ 5, /* 10 lines */ 4, /* 11 lines */ 7, /* 12 lines */ }; /* * Still using the default IO_BUFFER_WAKE and FAST_WAKE, see * comments bellow for more information */ int tmp; tmp = map[intel_dp->alpm_parameters.io_wake_lines - TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES]; val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(tmp + TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES); tmp = map[intel_dp->alpm_parameters.fast_wake_lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES]; val |= TGL_EDP_PSR2_FAST_WAKE(tmp + TGL_EDP_PSR2_FAST_WAKE_MIN_LINES); } else if (DISPLAY_VER(display) >= 20) { val |= LNL_EDP_PSR2_IO_BUFFER_WAKE(intel_dp->alpm_parameters.io_wake_lines); } else if (DISPLAY_VER(display) >= 12) { val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(intel_dp->alpm_parameters.io_wake_lines); val |= TGL_EDP_PSR2_FAST_WAKE(intel_dp->alpm_parameters.fast_wake_lines); } else if (DISPLAY_VER(display) >= 9) { val |= EDP_PSR2_IO_BUFFER_WAKE(intel_dp->alpm_parameters.io_wake_lines); val |= EDP_PSR2_FAST_WAKE(intel_dp->alpm_parameters.fast_wake_lines); } if (intel_dp->psr.req_psr2_sdp_prior_scanline) val |= EDP_PSR2_SU_SDP_SCANLINE; if (DISPLAY_VER(display) >= 20) psr_val |= LNL_EDP_PSR_ENTRY_SETUP_FRAMES(intel_dp->psr.entry_setup_frames); if (intel_dp->psr.psr2_sel_fetch_enabled) { u32 tmp; tmp = intel_de_read(display, PSR2_MAN_TRK_CTL(display, cpu_transcoder)); drm_WARN_ON(display->drm, !(tmp & PSR2_MAN_TRK_CTL_ENABLE)); } else if (HAS_PSR2_SEL_FETCH(display)) { intel_de_write(display, PSR2_MAN_TRK_CTL(display, cpu_transcoder), 0); } if (intel_dp->psr.su_region_et_enabled) val |= LNL_EDP_PSR2_SU_REGION_ET_ENABLE; /* * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is * recommending keep this bit unset while PSR2 is enabled. */ intel_de_write(display, psr_ctl_reg(display, cpu_transcoder), psr_val); intel_de_write(display, EDP_PSR2_CTL(display, cpu_transcoder), val); } static bool transcoder_has_psr2(struct intel_display *display, enum transcoder cpu_transcoder) { struct drm_i915_private *dev_priv = to_i915(display->drm); if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14) return cpu_transcoder == TRANSCODER_A || cpu_transcoder == TRANSCODER_B; else if (DISPLAY_VER(display) >= 12) return cpu_transcoder == TRANSCODER_A; else if (DISPLAY_VER(display) >= 9) return cpu_transcoder == TRANSCODER_EDP; else return false; } static u32 intel_get_frame_time_us(const struct intel_crtc_state *crtc_state) { if (!crtc_state->hw.active) return 0; return DIV_ROUND_UP(1000 * 1000, drm_mode_vrefresh(&crtc_state->hw.adjusted_mode)); } static void psr2_program_idle_frames(struct intel_dp *intel_dp, u32 idle_frames) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; intel_de_rmw(display, EDP_PSR2_CTL(display, cpu_transcoder), EDP_PSR2_IDLE_FRAMES_MASK, EDP_PSR2_IDLE_FRAMES(idle_frames)); } static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); psr2_program_idle_frames(intel_dp, 0); intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO); } static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp)); } static void tgl_dc3co_disable_work(struct work_struct *work) { struct intel_dp *intel_dp = container_of(work, typeof(*intel_dp), psr.dc3co_work.work); mutex_lock(&intel_dp->psr.lock); /* If delayed work is pending, it is not idle */ if (delayed_work_pending(&intel_dp->psr.dc3co_work)) goto unlock; tgl_psr2_disable_dc3co(intel_dp); unlock: mutex_unlock(&intel_dp->psr.lock); } static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp) { if (!intel_dp->psr.dc3co_exitline) return; cancel_delayed_work(&intel_dp->psr.dc3co_work); /* Before PSR2 exit disallow dc3co*/ tgl_psr2_disable_dc3co(intel_dp); } static bool dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; struct drm_i915_private *dev_priv = to_i915(display->drm); enum port port = dig_port->base.port; if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14) return pipe <= PIPE_B && port <= PORT_B; else return pipe == PIPE_A && port == PORT_A; } static void tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay; struct i915_power_domains *power_domains = &display->power.domains; u32 exit_scanlines; /* * FIXME: Due to the changed sequence of activating/deactivating DC3CO, * disable DC3CO until the changed dc3co activating/deactivating sequence * is applied. B.Specs:49196 */ return; /* * DMC's DC3CO exit mechanism has an issue with Selective Fecth * TODO: when the issue is addressed, this restriction should be removed. */ if (crtc_state->enable_psr2_sel_fetch) return; if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC3CO)) return; if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state)) return; /* Wa_16011303918:adl-p */ if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) return; /* * DC3CO Exit time 200us B.Spec 49196 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1 */ exit_scanlines = intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1; if (drm_WARN_ON(display->drm, exit_scanlines > crtc_vdisplay)) return; crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines; } static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); if (!display->params.enable_psr2_sel_fetch && intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) { drm_dbg_kms(display->drm, "PSR2 sel fetch not enabled, disabled by parameter\n"); return false; } if (crtc_state->uapi.async_flip) { drm_dbg_kms(display->drm, "PSR2 sel fetch not enabled, async flip enabled\n"); return false; } return crtc_state->enable_psr2_sel_fetch = true; } static bool psr2_granularity_check(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; u16 y_granularity = 0; /* PSR2 HW only send full lines so we only need to validate the width */ if (crtc_hdisplay % intel_dp->psr.su_w_granularity) return false; if (crtc_vdisplay % intel_dp->psr.su_y_granularity) return false; /* HW tracking is only aligned to 4 lines */ if (!crtc_state->enable_psr2_sel_fetch) return intel_dp->psr.su_y_granularity == 4; /* * adl_p and mtl platforms have 1 line granularity. * For other platforms with SW tracking we can adjust the y coordinates * to match sink requirement if multiple of 4. */ if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14) y_granularity = intel_dp->psr.su_y_granularity; else if (intel_dp->psr.su_y_granularity <= 2) y_granularity = 4; else if ((intel_dp->psr.su_y_granularity % 4) == 0) y_granularity = intel_dp->psr.su_y_granularity; if (y_granularity == 0 || crtc_vdisplay % y_granularity) return false; if (crtc_state->dsc.compression_enable && vdsc_cfg->slice_height % y_granularity) return false; crtc_state->su_y_granularity = y_granularity; return true; } static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode; u32 hblank_total, hblank_ns, req_ns; hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start; hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock); /* From spec: ((60 / number of lanes) + 11) * 1000 / symbol clock frequency MHz */ req_ns = ((60 / crtc_state->lane_count) + 11) * 1000 / (crtc_state->port_clock / 1000); if ((hblank_ns - req_ns) > 100) return true; /* Not supported <13 / Wa_22012279113:adl-p */ if (DISPLAY_VER(display) < 14 || intel_dp->edp_dpcd[0] < DP_EDP_14b) return false; crtc_state->req_psr2_sdp_prior_scanline = true; return true; } static int intel_psr_entry_setup_frames(struct intel_dp *intel_dp, const struct drm_display_mode *adjusted_mode) { struct intel_display *display = to_intel_display(intel_dp); int psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); int entry_setup_frames = 0; if (psr_setup_time < 0) { drm_dbg_kms(display->drm, "PSR condition failed: Invalid PSR setup time (0x%02x)\n", intel_dp->psr_dpcd[1]); return -ETIME; } if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { if (DISPLAY_VER(display) >= 20) { /* setup entry frames can be up to 3 frames */ entry_setup_frames = 1; drm_dbg_kms(display->drm, "PSR setup entry frames %d\n", entry_setup_frames); } else { drm_dbg_kms(display->drm, "PSR condition failed: PSR setup time (%d us) too long\n", psr_setup_time); return -ETIME; } } return entry_setup_frames; } static bool wake_lines_fit_into_vblank(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, bool aux_less) { struct intel_display *display = to_intel_display(intel_dp); int vblank = crtc_state->hw.adjusted_mode.crtc_vblank_end - crtc_state->hw.adjusted_mode.crtc_vblank_start; int wake_lines; if (aux_less) wake_lines = intel_dp->alpm_parameters.aux_less_wake_lines; else wake_lines = DISPLAY_VER(display) < 20 ? psr2_block_count_lines(intel_dp) : intel_dp->alpm_parameters.io_wake_lines; if (crtc_state->req_psr2_sdp_prior_scanline) vblank -= 1; /* Vblank >= PSR2_CTL Block Count Number maximum line count */ if (vblank < wake_lines) return false; return true; } static bool alpm_config_valid(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, bool aux_less) { struct intel_display *display = to_intel_display(intel_dp); if (!intel_alpm_compute_params(intel_dp, crtc_state)) { drm_dbg_kms(display->drm, "PSR2/Panel Replay not enabled, Unable to use long enough wake times\n"); return false; } if (!wake_lines_fit_into_vblank(intel_dp, crtc_state, aux_less)) { drm_dbg_kms(display->drm, "PSR2/Panel Replay not enabled, too short vblank time\n"); return false; } return true; } static bool intel_psr2_config_valid(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; int psr_max_h = 0, psr_max_v = 0, max_bpp = 0; if (!intel_dp->psr.sink_psr2_support) return false; /* JSL and EHL only supports eDP 1.3 */ if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) { drm_dbg_kms(display->drm, "PSR2 not supported by phy\n"); return false; } /* Wa_16011181250 */ if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv) || IS_DG2(dev_priv)) { drm_dbg_kms(display->drm, "PSR2 is defeatured for this platform\n"); return false; } if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) { drm_dbg_kms(display->drm, "PSR2 not completely functional in this stepping\n"); return false; } if (!transcoder_has_psr2(display, crtc_state->cpu_transcoder)) { drm_dbg_kms(display->drm, "PSR2 not supported in transcoder %s\n", transcoder_name(crtc_state->cpu_transcoder)); return false; } /* * DSC and PSR2 cannot be enabled simultaneously. If a requested * resolution requires DSC to be enabled, priority is given to DSC * over PSR2. */ if (crtc_state->dsc.compression_enable && (DISPLAY_VER(display) < 14 && !IS_ALDERLAKE_P(dev_priv))) { drm_dbg_kms(display->drm, "PSR2 cannot be enabled since DSC is enabled\n"); return false; } if (DISPLAY_VER(display) >= 20) { psr_max_h = crtc_hdisplay; psr_max_v = crtc_vdisplay; max_bpp = crtc_state->pipe_bpp; } else if (IS_DISPLAY_VER(display, 12, 14)) { psr_max_h = 5120; psr_max_v = 3200; max_bpp = 30; } else if (IS_DISPLAY_VER(display, 10, 11)) { psr_max_h = 4096; psr_max_v = 2304; max_bpp = 24; } else if (DISPLAY_VER(display) == 9) { psr_max_h = 3640; psr_max_v = 2304; max_bpp = 24; } if (crtc_state->pipe_bpp > max_bpp) { drm_dbg_kms(display->drm, "PSR2 not enabled, pipe bpp %d > max supported %d\n", crtc_state->pipe_bpp, max_bpp); return false; } /* Wa_16011303918:adl-p */ if (crtc_state->vrr.enable && IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) { drm_dbg_kms(display->drm, "PSR2 not enabled, not compatible with HW stepping + VRR\n"); return false; } if (!alpm_config_valid(intel_dp, crtc_state, false)) return false; if (!crtc_state->enable_psr2_sel_fetch && (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) { drm_dbg_kms(display->drm, "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n", crtc_hdisplay, crtc_vdisplay, psr_max_h, psr_max_v); return false; } tgl_dc3co_exitline_compute_config(intel_dp, crtc_state); return true; } static bool intel_sel_update_config_valid(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); if (HAS_PSR2_SEL_FETCH(display) && !intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) && !HAS_PSR_HW_TRACKING(display)) { drm_dbg_kms(display->drm, "Selective update not enabled, selective fetch not valid and no HW tracking available\n"); goto unsupported; } if (!psr2_global_enabled(intel_dp)) { drm_dbg_kms(display->drm, "Selective update disabled by flag\n"); goto unsupported; } if (!crtc_state->has_panel_replay && !intel_psr2_config_valid(intel_dp, crtc_state)) goto unsupported; if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) { drm_dbg_kms(display->drm, "Selective update not enabled, SDP indication do not fit in hblank\n"); goto unsupported; } if (crtc_state->has_panel_replay && (DISPLAY_VER(display) < 14 || !intel_dp->psr.sink_panel_replay_su_support)) goto unsupported; if (crtc_state->crc_enabled) { drm_dbg_kms(display->drm, "Selective update not enabled because it would inhibit pipe CRC calculation\n"); goto unsupported; } if (!psr2_granularity_check(intel_dp, crtc_state)) { drm_dbg_kms(display->drm, "Selective update not enabled, SU granularity not compatible\n"); goto unsupported; } crtc_state->enable_psr2_su_region_et = psr2_su_region_et_valid(intel_dp, crtc_state->has_panel_replay); return true; unsupported: crtc_state->enable_psr2_sel_fetch = false; return false; } static bool _psr_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; int entry_setup_frames; /* * Current PSR panels don't work reliably with VRR enabled * So if VRR is enabled, do not enable PSR. */ if (crtc_state->vrr.enable) return false; if (!CAN_PSR(intel_dp)) return false; entry_setup_frames = intel_psr_entry_setup_frames(intel_dp, adjusted_mode); if (entry_setup_frames >= 0) { intel_dp->psr.entry_setup_frames = entry_setup_frames; } else { drm_dbg_kms(display->drm, "PSR condition failed: PSR setup timing not met\n"); return false; } return true; } static bool _panel_replay_compute_config(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(intel_dp); struct intel_connector *connector = to_intel_connector(conn_state->connector); struct intel_hdcp *hdcp = &connector->hdcp; if (!CAN_PANEL_REPLAY(intel_dp)) return false; if (!panel_replay_global_enabled(intel_dp)) { drm_dbg_kms(display->drm, "Panel Replay disabled by flag\n"); return false; } if (!intel_dp_is_edp(intel_dp)) return true; /* Remaining checks are for eDP only */ if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A && to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_B) return false; /* 128b/132b Panel Replay is not supported on eDP */ if (intel_dp_is_uhbr(crtc_state)) { drm_dbg_kms(display->drm, "Panel Replay is not supported with 128b/132b\n"); return false; } /* HW will not allow Panel Replay on eDP when HDCP enabled */ if (conn_state->content_protection == DRM_MODE_CONTENT_PROTECTION_DESIRED || (conn_state->content_protection == DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)) { drm_dbg_kms(display->drm, "Panel Replay is not supported with HDCP\n"); return false; } if (!alpm_config_valid(intel_dp, crtc_state, true)) return false; if (crtc_state->crc_enabled) { drm_dbg_kms(display->drm, "Panel Replay not enabled because it would inhibit pipe CRC calculation\n"); return false; } return true; } void intel_psr_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct intel_display *display = to_intel_display(intel_dp); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; if (!psr_global_enabled(intel_dp)) { drm_dbg_kms(display->drm, "PSR disabled by flag\n"); return; } if (intel_dp->psr.sink_not_reliable) { drm_dbg_kms(display->drm, "PSR sink implementation is not reliable\n"); return; } if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { drm_dbg_kms(display->drm, "PSR condition failed: Interlaced mode enabled\n"); return; } /* * FIXME figure out what is wrong with PSR+joiner and * fix it. Presumably something related to the fact that * PSR is a transcoder level feature. */ if (crtc_state->joiner_pipes) { drm_dbg_kms(display->drm, "PSR disabled due to joiner\n"); return; } crtc_state->has_panel_replay = _panel_replay_compute_config(intel_dp, crtc_state, conn_state); crtc_state->has_psr = crtc_state->has_panel_replay ? true : _psr_compute_config(intel_dp, crtc_state); if (!crtc_state->has_psr) return; crtc_state->has_sel_update = intel_sel_update_config_valid(intel_dp, crtc_state); } void intel_psr_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct intel_display *display = to_intel_display(encoder); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; struct intel_dp *intel_dp; u32 val; if (!dig_port) return; intel_dp = &dig_port->dp; if (!(CAN_PSR(intel_dp) || CAN_PANEL_REPLAY(intel_dp))) return; mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) goto unlock; if (intel_dp->psr.panel_replay_enabled) { pipe_config->has_psr = pipe_config->has_panel_replay = true; } else { /* * Not possible to read EDP_PSR/PSR2_CTL registers as it is * enabled/disabled because of frontbuffer tracking and others. */ pipe_config->has_psr = true; } pipe_config->has_sel_update = intel_dp->psr.sel_update_enabled; pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); if (!intel_dp->psr.sel_update_enabled) goto unlock; if (HAS_PSR2_SEL_FETCH(display)) { val = intel_de_read(display, PSR2_MAN_TRK_CTL(display, cpu_transcoder)); if (val & PSR2_MAN_TRK_CTL_ENABLE) pipe_config->enable_psr2_sel_fetch = true; } pipe_config->enable_psr2_su_region_et = intel_dp->psr.su_region_et_enabled; if (DISPLAY_VER(display) >= 12) { val = intel_de_read(display, TRANS_EXITLINE(display, cpu_transcoder)); pipe_config->dc3co_exitline = REG_FIELD_GET(EXITLINE_MASK, val); } unlock: mutex_unlock(&intel_dp->psr.lock); } static void intel_psr_activate(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; drm_WARN_ON(display->drm, transcoder_has_psr2(display, cpu_transcoder) && intel_de_read(display, EDP_PSR2_CTL(display, cpu_transcoder)) & EDP_PSR2_ENABLE); drm_WARN_ON(display->drm, intel_de_read(display, psr_ctl_reg(display, cpu_transcoder)) & EDP_PSR_ENABLE); drm_WARN_ON(display->drm, intel_dp->psr.active); lockdep_assert_held(&intel_dp->psr.lock); /* psr1, psr2 and panel-replay are mutually exclusive.*/ if (intel_dp->psr.panel_replay_enabled) dg2_activate_panel_replay(intel_dp); else if (intel_dp->psr.sel_update_enabled) hsw_activate_psr2(intel_dp); else hsw_activate_psr1(intel_dp); intel_dp->psr.active = true; } static u32 wa_16013835468_bit_get(struct intel_dp *intel_dp) { switch (intel_dp->psr.pipe) { case PIPE_A: return LATENCY_REPORTING_REMOVED_PIPE_A; case PIPE_B: return LATENCY_REPORTING_REMOVED_PIPE_B; case PIPE_C: return LATENCY_REPORTING_REMOVED_PIPE_C; case PIPE_D: return LATENCY_REPORTING_REMOVED_PIPE_D; default: MISSING_CASE(intel_dp->psr.pipe); return 0; } } /* * Wa_16013835468 * Wa_14015648006 */ static void wm_optimization_wa(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); bool set_wa_bit = false; /* Wa_14015648006 */ if (IS_DISPLAY_VER(display, 11, 14)) set_wa_bit |= crtc_state->wm_level_disabled; /* Wa_16013835468 */ if (DISPLAY_VER(display) == 12) set_wa_bit |= crtc_state->hw.adjusted_mode.crtc_vblank_start != crtc_state->hw.adjusted_mode.crtc_vdisplay; if (set_wa_bit) intel_de_rmw(display, GEN8_CHICKEN_DCPR_1, 0, wa_16013835468_bit_get(intel_dp)); else intel_de_rmw(display, GEN8_CHICKEN_DCPR_1, wa_16013835468_bit_get(intel_dp), 0); } static void intel_psr_enable_source(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; u32 mask = 0; /* * Only HSW and BDW have PSR AUX registers that need to be setup. * SKL+ use hardcoded values PSR AUX transactions */ if (DISPLAY_VER(display) < 9) hsw_psr_setup_aux(intel_dp); /* * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also * mask LPSP to avoid dependency on other drivers that might block * runtime_pm besides preventing other hw tracking issues now we * can rely on frontbuffer tracking. * * From bspec prior LunarLake: * Only PSR_MASK[Mask FBC modify] and PSR_MASK[Mask Hotplug] are used in * panel replay mode. * * From bspec beyod LunarLake: * Panel Replay on DP: No bits are applicable * Panel Replay on eDP: All bits are applicable */ if (DISPLAY_VER(display) < 20 || intel_dp_is_edp(intel_dp)) mask = EDP_PSR_DEBUG_MASK_HPD; if (intel_dp_is_edp(intel_dp)) { mask |= EDP_PSR_DEBUG_MASK_MEMUP; /* * For some unknown reason on HSW non-ULT (or at least on * Dell Latitude E6540) external displays start to flicker * when PSR is enabled on the eDP. SR/PC6 residency is much * higher than should be possible with an external display. * As a workaround leave LPSP unmasked to prevent PSR entry * when external displays are active. */ if (DISPLAY_VER(display) >= 8 || IS_HASWELL_ULT(dev_priv)) mask |= EDP_PSR_DEBUG_MASK_LPSP; if (DISPLAY_VER(display) < 20) mask |= EDP_PSR_DEBUG_MASK_MAX_SLEEP; /* * No separate pipe reg write mask on hsw/bdw, so have to unmask all * registers in order to keep the CURSURFLIVE tricks working :( */ if (IS_DISPLAY_VER(display, 9, 10)) mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE; /* allow PSR with sprite enabled */ if (IS_HASWELL(dev_priv)) mask |= EDP_PSR_DEBUG_MASK_SPRITE_ENABLE; } intel_de_write(display, psr_debug_reg(display, cpu_transcoder), mask); psr_irq_control(intel_dp); /* * TODO: if future platforms supports DC3CO in more than one * transcoder, EXITLINE will need to be unset when disabling PSR */ if (intel_dp->psr.dc3co_exitline) intel_de_rmw(display, TRANS_EXITLINE(display, cpu_transcoder), EXITLINE_MASK, intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT | EXITLINE_ENABLE); if (HAS_PSR_HW_TRACKING(display) && HAS_PSR2_SEL_FETCH(display)) intel_de_rmw(display, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING, intel_dp->psr.psr2_sel_fetch_enabled ? IGNORE_PSR2_HW_TRACKING : 0); if (intel_dp_is_edp(intel_dp)) intel_alpm_configure(intel_dp, crtc_state); /* * Wa_16013835468 * Wa_14015648006 */ wm_optimization_wa(intel_dp, crtc_state); if (intel_dp->psr.sel_update_enabled) { if (DISPLAY_VER(display) == 9) intel_de_rmw(display, CHICKEN_TRANS(cpu_transcoder), 0, PSR2_VSC_ENABLE_PROG_HEADER | PSR2_ADD_VERTICAL_LINE_COUNT); /* * Wa_16014451276:adlp,mtl[a0,b0] * All supported adlp panels have 1-based X granularity, this may * cause issues if non-supported panels are used. */ if (!intel_dp->psr.panel_replay_enabled && (IS_DISPLAY_VERx100_STEP(display, 1400, STEP_A0, STEP_B0) || IS_ALDERLAKE_P(dev_priv))) intel_de_rmw(display, hsw_chicken_trans_reg(dev_priv, cpu_transcoder), 0, ADLP_1_BASED_X_GRANULARITY); /* Wa_16012604467:adlp,mtl[a0,b0] */ if (!intel_dp->psr.panel_replay_enabled && IS_DISPLAY_VERx100_STEP(display, 1400, STEP_A0, STEP_B0)) intel_de_rmw(display, MTL_CLKGATE_DIS_TRANS(display, cpu_transcoder), 0, MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS); else if (IS_ALDERLAKE_P(dev_priv)) intel_de_rmw(display, CLKGATE_DIS_MISC, 0, CLKGATE_DIS_MISC_DMASC_GATING_DIS); } } static bool psr_interrupt_error_check(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; u32 val; if (intel_dp->psr.panel_replay_enabled) goto no_err; /* * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR * will still keep the error set even after the reset done in the * irq_preinstall and irq_uninstall hooks. * And enabling in this situation cause the screen to freeze in the * first time that PSR HW tries to activate so lets keep PSR disabled * to avoid any rendering problems. */ val = intel_de_read(display, psr_iir_reg(display, cpu_transcoder)); val &= psr_irq_psr_error_bit_get(intel_dp); if (val) { intel_dp->psr.sink_not_reliable = true; drm_dbg_kms(display->drm, "PSR interruption error set, not enabling PSR\n"); return false; } no_err: return true; } static void intel_psr_enable_locked(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); u32 val; drm_WARN_ON(display->drm, intel_dp->psr.enabled); intel_dp->psr.sel_update_enabled = crtc_state->has_sel_update; intel_dp->psr.panel_replay_enabled = crtc_state->has_panel_replay; intel_dp->psr.busy_frontbuffer_bits = 0; intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; intel_dp->psr.transcoder = crtc_state->cpu_transcoder; /* DC5/DC6 requires at least 6 idle frames */ val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6); intel_dp->psr.dc3co_exit_delay = val; intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline; intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch; intel_dp->psr.su_region_et_enabled = crtc_state->enable_psr2_su_region_et; intel_dp->psr.psr2_sel_fetch_cff_enabled = false; intel_dp->psr.req_psr2_sdp_prior_scanline = crtc_state->req_psr2_sdp_prior_scanline; if (!psr_interrupt_error_check(intel_dp)) return; if (intel_dp->psr.panel_replay_enabled) { drm_dbg_kms(display->drm, "Enabling Panel Replay\n"); } else { drm_dbg_kms(display->drm, "Enabling PSR%s\n", intel_dp->psr.sel_update_enabled ? "2" : "1"); /* * Panel replay has to be enabled before link training: doing it * only for PSR here. */ intel_psr_enable_sink(intel_dp, crtc_state); } if (intel_dp_is_edp(intel_dp)) intel_snps_phy_update_psr_power_state(&dig_port->base, true); intel_psr_enable_source(intel_dp, crtc_state); intel_dp->psr.enabled = true; intel_dp->psr.paused = false; /* * Link_ok is sticky and set here on PSR enable. We can assume link * training is complete as we never continue to PSR enable with * untrained link. Link_ok is kept as set until first short pulse * interrupt. This is targeted to workaround panels stating bad link * after PSR is enabled. */ intel_dp->psr.link_ok = true; intel_psr_activate(intel_dp); } static void intel_psr_exit(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; u32 val; if (!intel_dp->psr.active) { if (transcoder_has_psr2(display, cpu_transcoder)) { val = intel_de_read(display, EDP_PSR2_CTL(display, cpu_transcoder)); drm_WARN_ON(display->drm, val & EDP_PSR2_ENABLE); } val = intel_de_read(display, psr_ctl_reg(display, cpu_transcoder)); drm_WARN_ON(display->drm, val & EDP_PSR_ENABLE); return; } if (intel_dp->psr.panel_replay_enabled) { intel_de_rmw(display, TRANS_DP2_CTL(intel_dp->psr.transcoder), TRANS_DP2_PANEL_REPLAY_ENABLE, 0); } else if (intel_dp->psr.sel_update_enabled) { tgl_disallow_dc3co_on_psr2_exit(intel_dp); val = intel_de_rmw(display, EDP_PSR2_CTL(display, cpu_transcoder), EDP_PSR2_ENABLE, 0); drm_WARN_ON(display->drm, !(val & EDP_PSR2_ENABLE)); } else { val = intel_de_rmw(display, psr_ctl_reg(display, cpu_transcoder), EDP_PSR_ENABLE, 0); drm_WARN_ON(display->drm, !(val & EDP_PSR_ENABLE)); } intel_dp->psr.active = false; } static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; i915_reg_t psr_status; u32 psr_status_mask; if (intel_dp_is_edp(intel_dp) && (intel_dp->psr.sel_update_enabled || intel_dp->psr.panel_replay_enabled)) { psr_status = EDP_PSR2_STATUS(display, cpu_transcoder); psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; } else { psr_status = psr_status_reg(display, cpu_transcoder); psr_status_mask = EDP_PSR_STATUS_STATE_MASK; } /* Wait till PSR is idle */ if (intel_de_wait_for_clear(display, psr_status, psr_status_mask, 2000)) drm_err(display->drm, "Timed out waiting PSR idle state\n"); } static void intel_psr_disable_locked(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; lockdep_assert_held(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) return; if (intel_dp->psr.panel_replay_enabled) drm_dbg_kms(display->drm, "Disabling Panel Replay\n"); else drm_dbg_kms(display->drm, "Disabling PSR%s\n", intel_dp->psr.sel_update_enabled ? "2" : "1"); intel_psr_exit(intel_dp); intel_psr_wait_exit_locked(intel_dp); /* * Wa_16013835468 * Wa_14015648006 */ if (DISPLAY_VER(display) >= 11) intel_de_rmw(display, GEN8_CHICKEN_DCPR_1, wa_16013835468_bit_get(intel_dp), 0); if (intel_dp->psr.sel_update_enabled) { /* Wa_16012604467:adlp,mtl[a0,b0] */ if (!intel_dp->psr.panel_replay_enabled && IS_DISPLAY_VERx100_STEP(display, 1400, STEP_A0, STEP_B0)) intel_de_rmw(display, MTL_CLKGATE_DIS_TRANS(display, cpu_transcoder), MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS, 0); else if (IS_ALDERLAKE_P(dev_priv)) intel_de_rmw(display, CLKGATE_DIS_MISC, CLKGATE_DIS_MISC_DMASC_GATING_DIS, 0); } if (intel_dp_is_edp(intel_dp)) intel_snps_phy_update_psr_power_state(&dp_to_dig_port(intel_dp)->base, false); /* Panel Replay on eDP is always using ALPM aux less. */ if (intel_dp->psr.panel_replay_enabled && intel_dp_is_edp(intel_dp)) { intel_de_rmw(display, ALPM_CTL(display, cpu_transcoder), ALPM_CTL_ALPM_ENABLE | ALPM_CTL_ALPM_AUX_LESS_ENABLE, 0); intel_de_rmw(display, PORT_ALPM_CTL(cpu_transcoder), PORT_ALPM_CTL_ALPM_AUX_LESS_ENABLE, 0); } /* Disable PSR on Sink */ if (!intel_dp->psr.panel_replay_enabled) { drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); if (intel_dp->psr.sel_update_enabled) drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0); } intel_dp->psr.enabled = false; intel_dp->psr.panel_replay_enabled = false; intel_dp->psr.sel_update_enabled = false; intel_dp->psr.psr2_sel_fetch_enabled = false; intel_dp->psr.su_region_et_enabled = false; intel_dp->psr.psr2_sel_fetch_cff_enabled = false; } /** * intel_psr_disable - Disable PSR * @intel_dp: Intel DP * @old_crtc_state: old CRTC state * * This function needs to be called before disabling pipe. */ void intel_psr_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct intel_display *display = to_intel_display(intel_dp); if (!old_crtc_state->has_psr) return; if (drm_WARN_ON(display->drm, !CAN_PSR(intel_dp))) return; mutex_lock(&intel_dp->psr.lock); intel_psr_disable_locked(intel_dp); intel_dp->psr.link_ok = false; mutex_unlock(&intel_dp->psr.lock); cancel_work_sync(&intel_dp->psr.work); cancel_delayed_work_sync(&intel_dp->psr.dc3co_work); } /** * intel_psr_pause - Pause PSR * @intel_dp: Intel DP * * This function need to be called after enabling psr. */ void intel_psr_pause(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct intel_psr *psr = &intel_dp->psr; if (!CAN_PSR(intel_dp) && !CAN_PANEL_REPLAY(intel_dp)) return; mutex_lock(&psr->lock); if (!psr->enabled) { mutex_unlock(&psr->lock); return; } /* If we ever hit this, we will need to add refcount to pause/resume */ drm_WARN_ON(display->drm, psr->paused); intel_psr_exit(intel_dp); intel_psr_wait_exit_locked(intel_dp); psr->paused = true; mutex_unlock(&psr->lock); cancel_work_sync(&psr->work); cancel_delayed_work_sync(&psr->dc3co_work); } /** * intel_psr_resume - Resume PSR * @intel_dp: Intel DP * * This function need to be called after pausing psr. */ void intel_psr_resume(struct intel_dp *intel_dp) { struct intel_psr *psr = &intel_dp->psr; if (!CAN_PSR(intel_dp) && !CAN_PANEL_REPLAY(intel_dp)) return; mutex_lock(&psr->lock); if (!psr->paused) goto unlock; psr->paused = false; intel_psr_activate(intel_dp); unlock: mutex_unlock(&psr->lock); } /** * intel_psr_needs_block_dc_vblank - Check if block dc entry is needed * @crtc_state: CRTC status * * We need to block DC6 entry in case of Panel Replay as enabling VBI doesn't * prevent it in case of Panel Replay. Panel Replay switches main link off on * DC entry. This means vblank interrupts are not fired and is a problem if * user-space is polling for vblank events. */ bool intel_psr_needs_block_dc_vblank(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_encoder *encoder; for_each_encoder_on_crtc(crtc->base.dev, &crtc->base, encoder) { struct intel_dp *intel_dp; if (!intel_encoder_is_dp(encoder)) continue; intel_dp = enc_to_intel_dp(encoder); if (intel_dp_is_edp(intel_dp) && CAN_PANEL_REPLAY(intel_dp)) return true; } return false; } static u32 man_trk_ctl_enable_bit_get(struct intel_display *display) { struct drm_i915_private *dev_priv = to_i915(display->drm); return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14 ? 0 : PSR2_MAN_TRK_CTL_ENABLE; } static u32 man_trk_ctl_single_full_frame_bit_get(struct intel_display *display) { struct drm_i915_private *dev_priv = to_i915(display->drm); return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14 ? ADLP_PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME : PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME; } static u32 man_trk_ctl_partial_frame_bit_get(struct intel_display *display) { struct drm_i915_private *dev_priv = to_i915(display->drm); return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14 ? ADLP_PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE : PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE; } static u32 man_trk_ctl_continuos_full_frame(struct intel_display *display) { struct drm_i915_private *dev_priv = to_i915(display->drm); return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14 ? ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME : PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME; } static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; if (intel_dp->psr.psr2_sel_fetch_enabled) intel_de_write(display, PSR2_MAN_TRK_CTL(display, cpu_transcoder), man_trk_ctl_enable_bit_get(display) | man_trk_ctl_partial_frame_bit_get(display) | man_trk_ctl_single_full_frame_bit_get(display) | man_trk_ctl_continuos_full_frame(display)); /* * Display WA #0884: skl+ * This documented WA for bxt can be safely applied * broadly so we can force HW tracking to exit PSR * instead of disabling and re-enabling. * Workaround tells us to write 0 to CUR_SURFLIVE_A, * but it makes more sense write to the current active * pipe. * * This workaround do not exist for platforms with display 10 or newer * but testing proved that it works for up display 13, for newer * than that testing will be needed. */ intel_de_write(display, CURSURFLIVE(display, intel_dp->psr.pipe), 0); } void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; struct intel_encoder *encoder; if (!crtc_state->enable_psr2_sel_fetch) return; for_each_intel_encoder_mask_with_psr(display->drm, encoder, crtc_state->uapi.encoder_mask) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); lockdep_assert_held(&intel_dp->psr.lock); if (intel_dp->psr.psr2_sel_fetch_cff_enabled) return; break; } intel_de_write(display, PSR2_MAN_TRK_CTL(display, cpu_transcoder), crtc_state->psr2_man_track_ctl); if (!crtc_state->enable_psr2_su_region_et) return; intel_de_write(display, PIPE_SRCSZ_ERLY_TPT(crtc->pipe), crtc_state->pipe_srcsz_early_tpt); } static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state, bool full_update) { struct intel_display *display = to_intel_display(crtc_state); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 val = man_trk_ctl_enable_bit_get(display); /* SF partial frame enable has to be set even on full update */ val |= man_trk_ctl_partial_frame_bit_get(display); if (full_update) { val |= man_trk_ctl_single_full_frame_bit_get(display); val |= man_trk_ctl_continuos_full_frame(display); goto exit; } if (crtc_state->psr2_su_area.y1 == -1) goto exit; if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14) { val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(crtc_state->psr2_su_area.y1); val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(crtc_state->psr2_su_area.y2 - 1); } else { drm_WARN_ON(crtc_state->uapi.crtc->dev, crtc_state->psr2_su_area.y1 % 4 || crtc_state->psr2_su_area.y2 % 4); val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR( crtc_state->psr2_su_area.y1 / 4 + 1); val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR( crtc_state->psr2_su_area.y2 / 4 + 1); } exit: crtc_state->psr2_man_track_ctl = val; } static u32 psr2_pipe_srcsz_early_tpt_calc(struct intel_crtc_state *crtc_state, bool full_update) { int width, height; if (!crtc_state->enable_psr2_su_region_et || full_update) return 0; width = drm_rect_width(&crtc_state->psr2_su_area); height = drm_rect_height(&crtc_state->psr2_su_area); return PIPESRC_WIDTH(width - 1) | PIPESRC_HEIGHT(height - 1); } static void clip_area_update(struct drm_rect *overlap_damage_area, struct drm_rect *damage_area, struct drm_rect *pipe_src) { if (!drm_rect_intersect(damage_area, pipe_src)) return; if (overlap_damage_area->y1 == -1) { overlap_damage_area->y1 = damage_area->y1; overlap_damage_area->y2 = damage_area->y2; return; } if (damage_area->y1 < overlap_damage_area->y1) overlap_damage_area->y1 = damage_area->y1; if (damage_area->y2 > overlap_damage_area->y2) overlap_damage_area->y2 = damage_area->y2; } static void intel_psr2_sel_fetch_pipe_alignment(struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; u16 y_alignment; /* ADLP aligns the SU region to vdsc slice height in case dsc is enabled */ if (crtc_state->dsc.compression_enable && (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(display) >= 14)) y_alignment = vdsc_cfg->slice_height; else y_alignment = crtc_state->su_y_granularity; crtc_state->psr2_su_area.y1 -= crtc_state->psr2_su_area.y1 % y_alignment; if (crtc_state->psr2_su_area.y2 % y_alignment) crtc_state->psr2_su_area.y2 = ((crtc_state->psr2_su_area.y2 / y_alignment) + 1) * y_alignment; } /* * When early transport is in use we need to extend SU area to cover * cursor fully when cursor is in SU area. */ static void intel_psr2_sel_fetch_et_alignment(struct intel_atomic_state *state, struct intel_crtc *crtc, bool *cursor_in_su_area) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_plane_state *new_plane_state; struct intel_plane *plane; int i; if (!crtc_state->enable_psr2_su_region_et) return; for_each_new_intel_plane_in_state(state, plane, new_plane_state, i) { struct drm_rect inter; if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc) continue; if (plane->id != PLANE_CURSOR) continue; if (!new_plane_state->uapi.visible) continue; inter = crtc_state->psr2_su_area; if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst)) continue; clip_area_update(&crtc_state->psr2_su_area, &new_plane_state->uapi.dst, &crtc_state->pipe_src); *cursor_in_su_area = true; } } /* * TODO: Not clear how to handle planes with negative position, * also planes are not updated if they have a negative X * position so for now doing a full update in this cases * * Plane scaling and rotation is not supported by selective fetch and both * properties can change without a modeset, so need to be check at every * atomic commit. */ static bool psr2_sel_fetch_plane_state_supported(const struct intel_plane_state *plane_state) { if (plane_state->uapi.dst.y1 < 0 || plane_state->uapi.dst.x1 < 0 || plane_state->scaler_id >= 0 || plane_state->uapi.rotation != DRM_MODE_ROTATE_0) return false; return true; } /* * Check for pipe properties that is not supported by selective fetch. * * TODO: pipe scaling causes a modeset but skl_update_scaler_crtc() is executed * after intel_psr_compute_config(), so for now keeping PSR2 selective fetch * enabled and going to the full update path. */ static bool psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state *crtc_state) { if (crtc_state->scaler_state.scaler_id >= 0) return false; return true; } /* Wa 14019834836 */ static void intel_psr_apply_pr_link_on_su_wa(struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); struct intel_encoder *encoder; int hactive_limit; if (crtc_state->psr2_su_area.y1 != 0 || crtc_state->psr2_su_area.y2 != 0) return; if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) hactive_limit = intel_dp_is_uhbr(crtc_state) ? 1230 : 546; else hactive_limit = intel_dp_is_uhbr(crtc_state) ? 615 : 273; if (crtc_state->hw.adjusted_mode.hdisplay < hactive_limit) return; for_each_intel_encoder_mask_with_psr(display->drm, encoder, crtc_state->uapi.encoder_mask) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (!intel_dp_is_edp(intel_dp) && intel_dp->psr.panel_replay_enabled && intel_dp->psr.sel_update_enabled) { crtc_state->psr2_su_area.y2++; return; } } } static void intel_psr_apply_su_area_workarounds(struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); /* Wa_14014971492 */ if (!crtc_state->has_panel_replay && ((IS_DISPLAY_VERx100_STEP(display, 1400, STEP_A0, STEP_B0) || IS_ALDERLAKE_P(i915) || IS_TIGERLAKE(i915))) && crtc_state->splitter.enable) crtc_state->psr2_su_area.y1 = 0; /* Wa 14019834836 */ if (DISPLAY_VER(display) == 30) intel_psr_apply_pr_link_on_su_wa(crtc_state); } int intel_psr2_sel_fetch_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_display *display = to_intel_display(state); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_plane_state *new_plane_state, *old_plane_state; struct intel_plane *plane; bool full_update = false, cursor_in_su_area = false; int i, ret; if (!crtc_state->enable_psr2_sel_fetch) return 0; if (!psr2_sel_fetch_pipe_state_supported(crtc_state)) { full_update = true; goto skip_sel_fetch_set_loop; } crtc_state->psr2_su_area.x1 = 0; crtc_state->psr2_su_area.y1 = -1; crtc_state->psr2_su_area.x2 = drm_rect_width(&crtc_state->pipe_src); crtc_state->psr2_su_area.y2 = -1; /* * Calculate minimal selective fetch area of each plane and calculate * the pipe damaged area. * In the next loop the plane selective fetch area will actually be set * using whole pipe damaged area. */ for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { struct drm_rect src, damaged_area = { .x1 = 0, .y1 = -1, .x2 = INT_MAX }; if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc) continue; if (!new_plane_state->uapi.visible && !old_plane_state->uapi.visible) continue; if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) { full_update = true; break; } /* * If visibility or plane moved, mark the whole plane area as * damaged as it needs to be complete redraw in the new and old * position. */ if (new_plane_state->uapi.visible != old_plane_state->uapi.visible || !drm_rect_equals(&new_plane_state->uapi.dst, &old_plane_state->uapi.dst)) { if (old_plane_state->uapi.visible) { damaged_area.y1 = old_plane_state->uapi.dst.y1; damaged_area.y2 = old_plane_state->uapi.dst.y2; clip_area_update(&crtc_state->psr2_su_area, &damaged_area, &crtc_state->pipe_src); } if (new_plane_state->uapi.visible) { damaged_area.y1 = new_plane_state->uapi.dst.y1; damaged_area.y2 = new_plane_state->uapi.dst.y2; clip_area_update(&crtc_state->psr2_su_area, &damaged_area, &crtc_state->pipe_src); } continue; } else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha) { /* If alpha changed mark the whole plane area as damaged */ damaged_area.y1 = new_plane_state->uapi.dst.y1; damaged_area.y2 = new_plane_state->uapi.dst.y2; clip_area_update(&crtc_state->psr2_su_area, &damaged_area, &crtc_state->pipe_src); continue; } src = drm_plane_state_src(&new_plane_state->uapi); drm_rect_fp_to_int(&src, &src); if (!drm_atomic_helper_damage_merged(&old_plane_state->uapi, &new_plane_state->uapi, &damaged_area)) continue; damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1; damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1; damaged_area.x1 += new_plane_state->uapi.dst.x1 - src.x1; damaged_area.x2 += new_plane_state->uapi.dst.x1 - src.x1; clip_area_update(&crtc_state->psr2_su_area, &damaged_area, &crtc_state->pipe_src); } /* * TODO: For now we are just using full update in case * selective fetch area calculation fails. To optimize this we * should identify cases where this happens and fix the area * calculation for those. */ if (crtc_state->psr2_su_area.y1 == -1) { drm_info_once(display->drm, "Selective fetch area calculation failed in pipe %c\n", pipe_name(crtc->pipe)); full_update = true; } if (full_update) goto skip_sel_fetch_set_loop; intel_psr_apply_su_area_workarounds(crtc_state); ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) return ret; /* * Adjust su area to cover cursor fully as necessary (early * transport). This needs to be done after * drm_atomic_add_affected_planes to ensure visible cursor is added into * affected planes even when cursor is not updated by itself. */ intel_psr2_sel_fetch_et_alignment(state, crtc, &cursor_in_su_area); intel_psr2_sel_fetch_pipe_alignment(crtc_state); /* * Now that we have the pipe damaged area check if it intersect with * every plane, if it does set the plane selective fetch area. */ for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { struct drm_rect *sel_fetch_area, inter; struct intel_plane *linked = new_plane_state->planar_linked_plane; if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc || !new_plane_state->uapi.visible) continue; inter = crtc_state->psr2_su_area; sel_fetch_area = &new_plane_state->psr2_sel_fetch_area; if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst)) { sel_fetch_area->y1 = -1; sel_fetch_area->y2 = -1; /* * if plane sel fetch was previously enabled -> * disable it */ if (drm_rect_height(&old_plane_state->psr2_sel_fetch_area) > 0) crtc_state->update_planes |= BIT(plane->id); continue; } if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) { full_update = true; break; } sel_fetch_area = &new_plane_state->psr2_sel_fetch_area; sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1; sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1; crtc_state->update_planes |= BIT(plane->id); /* * Sel_fetch_area is calculated for UV plane. Use * same area for Y plane as well. */ if (linked) { struct intel_plane_state *linked_new_plane_state; struct drm_rect *linked_sel_fetch_area; linked_new_plane_state = intel_atomic_get_plane_state(state, linked); if (IS_ERR(linked_new_plane_state)) return PTR_ERR(linked_new_plane_state); linked_sel_fetch_area = &linked_new_plane_state->psr2_sel_fetch_area; linked_sel_fetch_area->y1 = sel_fetch_area->y1; linked_sel_fetch_area->y2 = sel_fetch_area->y2; crtc_state->update_planes |= BIT(linked->id); } } skip_sel_fetch_set_loop: psr2_man_trk_ctl_calc(crtc_state, full_update); crtc_state->pipe_srcsz_early_tpt = psr2_pipe_srcsz_early_tpt_calc(crtc_state, full_update); return 0; } void intel_psr_pre_plane_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_display *display = to_intel_display(state); struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_encoder *encoder; if (!HAS_PSR(display)) return; for_each_intel_encoder_mask_with_psr(state->base.dev, encoder, old_crtc_state->uapi.encoder_mask) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_psr *psr = &intel_dp->psr; bool needs_to_disable = false; mutex_lock(&psr->lock); /* * Reasons to disable: * - PSR disabled in new state * - All planes will go inactive * - Changing between PSR versions * - Region Early Transport changing * - Display WA #1136: skl, bxt */ needs_to_disable |= intel_crtc_needs_modeset(new_crtc_state); needs_to_disable |= !new_crtc_state->has_psr; needs_to_disable |= !new_crtc_state->active_planes; needs_to_disable |= new_crtc_state->has_sel_update != psr->sel_update_enabled; needs_to_disable |= new_crtc_state->enable_psr2_su_region_et != psr->su_region_et_enabled; needs_to_disable |= DISPLAY_VER(i915) < 11 && new_crtc_state->wm_level_disabled; if (psr->enabled && needs_to_disable) intel_psr_disable_locked(intel_dp); else if (psr->enabled && new_crtc_state->wm_level_disabled) /* Wa_14015648006 */ wm_optimization_wa(intel_dp, new_crtc_state); mutex_unlock(&psr->lock); } } void intel_psr_post_plane_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_display *display = to_intel_display(state); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_encoder *encoder; if (!crtc_state->has_psr) return; for_each_intel_encoder_mask_with_psr(state->base.dev, encoder, crtc_state->uapi.encoder_mask) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_psr *psr = &intel_dp->psr; bool keep_disabled = false; mutex_lock(&psr->lock); drm_WARN_ON(display->drm, psr->enabled && !crtc_state->active_planes); keep_disabled |= psr->sink_not_reliable; keep_disabled |= !crtc_state->active_planes; /* Display WA #1136: skl, bxt */ keep_disabled |= DISPLAY_VER(display) < 11 && crtc_state->wm_level_disabled; if (!psr->enabled && !keep_disabled) intel_psr_enable_locked(intel_dp, crtc_state); else if (psr->enabled && !crtc_state->wm_level_disabled) /* Wa_14015648006 */ wm_optimization_wa(intel_dp, crtc_state); /* Force a PSR exit when enabling CRC to avoid CRC timeouts */ if (crtc_state->crc_enabled && psr->enabled) psr_force_hw_tracking_exit(intel_dp); /* * Clear possible busy bits in case we have * invalidate -> flip -> flush sequence. */ intel_dp->psr.busy_frontbuffer_bits = 0; mutex_unlock(&psr->lock); } } static int _psr2_ready_for_pipe_update_locked(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; /* * Any state lower than EDP_PSR2_STATUS_STATE_DEEP_SLEEP is enough. * As all higher states has bit 4 of PSR2 state set we can just wait for * EDP_PSR2_STATUS_STATE_DEEP_SLEEP to be cleared. */ return intel_de_wait_for_clear(display, EDP_PSR2_STATUS(display, cpu_transcoder), EDP_PSR2_STATUS_STATE_DEEP_SLEEP, 50); } static int _psr1_ready_for_pipe_update_locked(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; /* * From bspec: Panel Self Refresh (BDW+) * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of * exit training time + 1.5 ms of aux channel handshake. 50 ms is * defensive enough to cover everything. */ return intel_de_wait_for_clear(display, psr_status_reg(display, cpu_transcoder), EDP_PSR_STATUS_STATE_MASK, 50); } /** * intel_psr_wait_for_idle_locked - wait for PSR be ready for a pipe update * @new_crtc_state: new CRTC state * * This function is expected to be called from pipe_update_start() where it is * not expected to race with PSR enable or disable. */ void intel_psr_wait_for_idle_locked(const struct intel_crtc_state *new_crtc_state) { struct intel_display *display = to_intel_display(new_crtc_state); struct intel_encoder *encoder; if (!new_crtc_state->has_psr) return; for_each_intel_encoder_mask_with_psr(display->drm, encoder, new_crtc_state->uapi.encoder_mask) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); int ret; lockdep_assert_held(&intel_dp->psr.lock); if (!intel_dp->psr.enabled || intel_dp->psr.panel_replay_enabled) continue; if (intel_dp->psr.sel_update_enabled) ret = _psr2_ready_for_pipe_update_locked(intel_dp); else ret = _psr1_ready_for_pipe_update_locked(intel_dp); if (ret) drm_err(display->drm, "PSR wait timed out, atomic update may fail\n"); } } static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; i915_reg_t reg; u32 mask; int err; if (!intel_dp->psr.enabled) return false; if (intel_dp_is_edp(intel_dp) && (intel_dp->psr.sel_update_enabled || intel_dp->psr.panel_replay_enabled)) { reg = EDP_PSR2_STATUS(display, cpu_transcoder); mask = EDP_PSR2_STATUS_STATE_MASK; } else { reg = psr_status_reg(display, cpu_transcoder); mask = EDP_PSR_STATUS_STATE_MASK; } mutex_unlock(&intel_dp->psr.lock); err = intel_de_wait_for_clear(display, reg, mask, 50); if (err) drm_err(display->drm, "Timed out waiting for PSR Idle for re-enable\n"); /* After the unlocked wait, verify that PSR is still wanted! */ mutex_lock(&intel_dp->psr.lock); return err == 0 && intel_dp->psr.enabled; } static int intel_psr_fastset_force(struct intel_display *display) { struct drm_connector_list_iter conn_iter; struct drm_modeset_acquire_ctx ctx; struct drm_atomic_state *state; struct drm_connector *conn; int err = 0; state = drm_atomic_state_alloc(display->drm); if (!state) return -ENOMEM; drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE); state->acquire_ctx = &ctx; to_intel_atomic_state(state)->internal = true; retry: drm_connector_list_iter_begin(display->drm, &conn_iter); drm_for_each_connector_iter(conn, &conn_iter) { struct drm_connector_state *conn_state; struct drm_crtc_state *crtc_state; if (conn->connector_type != DRM_MODE_CONNECTOR_eDP) continue; conn_state = drm_atomic_get_connector_state(state, conn); if (IS_ERR(conn_state)) { err = PTR_ERR(conn_state); break; } if (!conn_state->crtc) continue; crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc); if (IS_ERR(crtc_state)) { err = PTR_ERR(crtc_state); break; } /* Mark mode as changed to trigger a pipe->update() */ crtc_state->mode_changed = true; } drm_connector_list_iter_end(&conn_iter); if (err == 0) err = drm_atomic_commit(state); if (err == -EDEADLK) { drm_atomic_state_clear(state); err = drm_modeset_backoff(&ctx); if (!err) goto retry; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); drm_atomic_state_put(state); return err; } int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val) { struct intel_display *display = to_intel_display(intel_dp); const u32 mode = val & I915_PSR_DEBUG_MODE_MASK; const u32 disable_bits = val & (I915_PSR_DEBUG_SU_REGION_ET_DISABLE | I915_PSR_DEBUG_PANEL_REPLAY_DISABLE); u32 old_mode, old_disable_bits; int ret; if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_SU_REGION_ET_DISABLE | I915_PSR_DEBUG_PANEL_REPLAY_DISABLE | I915_PSR_DEBUG_MODE_MASK) || mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) { drm_dbg_kms(display->drm, "Invalid debug mask %llx\n", val); return -EINVAL; } ret = mutex_lock_interruptible(&intel_dp->psr.lock); if (ret) return ret; old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK; old_disable_bits = intel_dp->psr.debug & (I915_PSR_DEBUG_SU_REGION_ET_DISABLE | I915_PSR_DEBUG_PANEL_REPLAY_DISABLE); intel_dp->psr.debug = val; /* * Do it right away if it's already enabled, otherwise it will be done * when enabling the source. */ if (intel_dp->psr.enabled) psr_irq_control(intel_dp); mutex_unlock(&intel_dp->psr.lock); if (old_mode != mode || old_disable_bits != disable_bits) ret = intel_psr_fastset_force(display); return ret; } static void intel_psr_handle_irq(struct intel_dp *intel_dp) { struct intel_psr *psr = &intel_dp->psr; intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; /* let's make sure that sink is awaken */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } static void intel_psr_work(struct work_struct *work) { struct intel_dp *intel_dp = container_of(work, typeof(*intel_dp), psr.work); mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) goto unlock; if (READ_ONCE(intel_dp->psr.irq_aux_error)) intel_psr_handle_irq(intel_dp); /* * We have to make sure PSR is ready for re-enable * otherwise it keeps disabled until next full enable/disable cycle. * PSR might take some time to get fully disabled * and be ready for re-enable. */ if (!__psr_wait_for_idle_locked(intel_dp)) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. Since psr_flush first clears this and then reschedules we * won't ever miss a flush when bailing out here. */ if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active) goto unlock; intel_psr_activate(intel_dp); unlock: mutex_unlock(&intel_dp->psr.lock); } static void _psr_invalidate_handle(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; if (intel_dp->psr.psr2_sel_fetch_enabled) { u32 val; if (intel_dp->psr.psr2_sel_fetch_cff_enabled) { /* Send one update otherwise lag is observed in screen */ intel_de_write(display, CURSURFLIVE(display, intel_dp->psr.pipe), 0); return; } val = man_trk_ctl_enable_bit_get(display) | man_trk_ctl_partial_frame_bit_get(display) | man_trk_ctl_continuos_full_frame(display); intel_de_write(display, PSR2_MAN_TRK_CTL(display, cpu_transcoder), val); intel_de_write(display, CURSURFLIVE(display, intel_dp->psr.pipe), 0); intel_dp->psr.psr2_sel_fetch_cff_enabled = true; } else { intel_psr_exit(intel_dp); } } /** * intel_psr_invalidate - Invalidate PSR * @display: display device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the invalidate * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be * disabled if the frontbuffer mask contains a buffer relevant to PSR. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." */ void intel_psr_invalidate(struct intel_display *display, unsigned frontbuffer_bits, enum fb_op_origin origin) { struct intel_encoder *encoder; if (origin == ORIGIN_FLIP) return; for_each_intel_encoder_with_psr(display->drm, encoder) { unsigned int pipe_frontbuffer_bits = frontbuffer_bits; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) { mutex_unlock(&intel_dp->psr.lock); continue; } pipe_frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe); intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits; if (pipe_frontbuffer_bits) _psr_invalidate_handle(intel_dp); mutex_unlock(&intel_dp->psr.lock); } } /* * When we will be completely rely on PSR2 S/W tracking in future, * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP * event also therefore tgl_dc3co_flush_locked() require to be changed * accordingly in future. */ static void tgl_dc3co_flush_locked(struct intel_dp *intel_dp, unsigned int frontbuffer_bits, enum fb_op_origin origin) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *i915 = to_i915(display->drm); if (!intel_dp->psr.dc3co_exitline || !intel_dp->psr.sel_update_enabled || !intel_dp->psr.active) return; /* * At every frontbuffer flush flip event modified delay of delayed work, * when delayed work schedules that means display has been idle. */ if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe))) return; tgl_psr2_enable_dc3co(intel_dp); mod_delayed_work(i915->unordered_wq, &intel_dp->psr.dc3co_work, intel_dp->psr.dc3co_exit_delay); } static void _psr_flush_handle(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; if (intel_dp->psr.psr2_sel_fetch_enabled) { if (intel_dp->psr.psr2_sel_fetch_cff_enabled) { /* can we turn CFF off? */ if (intel_dp->psr.busy_frontbuffer_bits == 0) { u32 val = man_trk_ctl_enable_bit_get(display) | man_trk_ctl_partial_frame_bit_get(display) | man_trk_ctl_single_full_frame_bit_get(display) | man_trk_ctl_continuos_full_frame(display); /* * Set psr2_sel_fetch_cff_enabled as false to allow selective * updates. Still keep cff bit enabled as we don't have proper * SU configuration in case update is sent for any reason after * sff bit gets cleared by the HW on next vblank. */ intel_de_write(display, PSR2_MAN_TRK_CTL(display, cpu_transcoder), val); intel_de_write(display, CURSURFLIVE(display, intel_dp->psr.pipe), 0); intel_dp->psr.psr2_sel_fetch_cff_enabled = false; } } else { /* * continuous full frame is disabled, only a single full * frame is required */ psr_force_hw_tracking_exit(intel_dp); } } else { psr_force_hw_tracking_exit(intel_dp); if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits) queue_work(dev_priv->unordered_wq, &intel_dp->psr.work); } } /** * intel_psr_flush - Flush PSR * @display: display device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the flush * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering has completed and flushed out to memory. PSR * can be enabled again if no other frontbuffer relevant to PSR is dirty. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. */ void intel_psr_flush(struct intel_display *display, unsigned frontbuffer_bits, enum fb_op_origin origin) { struct intel_encoder *encoder; for_each_intel_encoder_with_psr(display->drm, encoder) { unsigned int pipe_frontbuffer_bits = frontbuffer_bits; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); mutex_lock(&intel_dp->psr.lock); if (!intel_dp->psr.enabled) { mutex_unlock(&intel_dp->psr.lock); continue; } pipe_frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe); intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits; /* * If the PSR is paused by an explicit intel_psr_paused() call, * we have to ensure that the PSR is not activated until * intel_psr_resume() is called. */ if (intel_dp->psr.paused) goto unlock; if (origin == ORIGIN_FLIP || (origin == ORIGIN_CURSOR_UPDATE && !intel_dp->psr.psr2_sel_fetch_enabled)) { tgl_dc3co_flush_locked(intel_dp, frontbuffer_bits, origin); goto unlock; } if (pipe_frontbuffer_bits == 0) goto unlock; /* By definition flush = invalidate + flush */ _psr_flush_handle(intel_dp); unlock: mutex_unlock(&intel_dp->psr.lock); } } /** * intel_psr_init - Init basic PSR work and mutex. * @intel_dp: Intel DP * * This function is called after the initializing connector. * (the initializing of connector treats the handling of connector capabilities) * And it initializes basic PSR stuff for each DP Encoder. */ void intel_psr_init(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); struct intel_connector *connector = intel_dp->attached_connector; struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); if (!(HAS_PSR(display) || HAS_DP20(dev_priv))) return; /* * HSW spec explicitly says PSR is tied to port A. * BDW+ platforms have a instance of PSR registers per transcoder but * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder * than eDP one. * For now it only supports one instance of PSR for BDW, GEN9 and GEN11. * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11. * But GEN12 supports a instance of PSR registers per transcoder. */ if (DISPLAY_VER(display) < 12 && dig_port->base.port != PORT_A) { drm_dbg_kms(display->drm, "PSR condition failed: Port not supported\n"); return; } if ((HAS_DP20(dev_priv) && !intel_dp_is_edp(intel_dp)) || DISPLAY_VER(display) >= 20) intel_dp->psr.source_panel_replay_support = true; if (HAS_PSR(display) && intel_dp_is_edp(intel_dp)) intel_dp->psr.source_support = true; /* Set link_standby x link_off defaults */ if (DISPLAY_VER(display) < 12) /* For new platforms up to TGL let's respect VBT back again */ intel_dp->psr.link_standby = connector->panel.vbt.psr.full_link; INIT_WORK(&intel_dp->psr.work, intel_psr_work); INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work); mutex_init(&intel_dp->psr.lock); } static int psr_get_status_and_error_status(struct intel_dp *intel_dp, u8 *status, u8 *error_status) { struct drm_dp_aux *aux = &intel_dp->aux; int ret; unsigned int offset; offset = intel_dp->psr.panel_replay_enabled ? DP_SINK_DEVICE_PR_AND_FRAME_LOCK_STATUS : DP_PSR_STATUS; ret = drm_dp_dpcd_readb(aux, offset, status); if (ret != 1) return ret; offset = intel_dp->psr.panel_replay_enabled ? DP_PANEL_REPLAY_ERROR_STATUS : DP_PSR_ERROR_STATUS; ret = drm_dp_dpcd_readb(aux, offset, error_status); if (ret != 1) return ret; *status = *status & DP_PSR_SINK_STATE_MASK; return 0; } static void psr_alpm_check(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_dp_aux *aux = &intel_dp->aux; struct intel_psr *psr = &intel_dp->psr; u8 val; int r; if (!psr->sel_update_enabled) return; r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val); if (r != 1) { drm_err(display->drm, "Error reading ALPM status\n"); return; } if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; drm_dbg_kms(display->drm, "ALPM lock timeout error, disabling PSR\n"); /* Clearing error */ drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val); } } static void psr_capability_changed_check(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct intel_psr *psr = &intel_dp->psr; u8 val; int r; r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val); if (r != 1) { drm_err(display->drm, "Error reading DP_PSR_ESI\n"); return; } if (val & DP_PSR_CAPS_CHANGE) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; drm_dbg_kms(display->drm, "Sink PSR capability changed, disabling PSR\n"); /* Clearing it */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val); } } /* * On common bits: * DP_PSR_RFB_STORAGE_ERROR == DP_PANEL_REPLAY_RFB_STORAGE_ERROR * DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR == DP_PANEL_REPLAY_VSC_SDP_UNCORRECTABLE_ERROR * DP_PSR_LINK_CRC_ERROR == DP_PANEL_REPLAY_LINK_CRC_ERROR * this function is relying on PSR definitions */ void intel_psr_short_pulse(struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct intel_psr *psr = &intel_dp->psr; u8 status, error_status; const u8 errors = DP_PSR_RFB_STORAGE_ERROR | DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR | DP_PSR_LINK_CRC_ERROR; if (!CAN_PSR(intel_dp) && !CAN_PANEL_REPLAY(intel_dp)) return; mutex_lock(&psr->lock); psr->link_ok = false; if (!psr->enabled) goto exit; if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) { drm_err(display->drm, "Error reading PSR status or error status\n"); goto exit; } if ((!psr->panel_replay_enabled && status == DP_PSR_SINK_INTERNAL_ERROR) || (error_status & errors)) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; } if (!psr->panel_replay_enabled && status == DP_PSR_SINK_INTERNAL_ERROR && !error_status) drm_dbg_kms(display->drm, "PSR sink internal error, disabling PSR\n"); if (error_status & DP_PSR_RFB_STORAGE_ERROR) drm_dbg_kms(display->drm, "PSR RFB storage error, disabling PSR\n"); if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR) drm_dbg_kms(display->drm, "PSR VSC SDP uncorrectable error, disabling PSR\n"); if (error_status & DP_PSR_LINK_CRC_ERROR) drm_dbg_kms(display->drm, "PSR Link CRC error, disabling PSR\n"); if (error_status & ~errors) drm_err(display->drm, "PSR_ERROR_STATUS unhandled errors %x\n", error_status & ~errors); /* clear status register */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status); if (!psr->panel_replay_enabled) { psr_alpm_check(intel_dp); psr_capability_changed_check(intel_dp); } exit: mutex_unlock(&psr->lock); } bool intel_psr_enabled(struct intel_dp *intel_dp) { bool ret; if (!CAN_PSR(intel_dp)) return false; mutex_lock(&intel_dp->psr.lock); ret = intel_dp->psr.enabled; mutex_unlock(&intel_dp->psr.lock); return ret; } /** * intel_psr_link_ok - return psr->link_ok * @intel_dp: struct intel_dp * * We are seeing unexpected link re-trainings with some panels. This is caused * by panel stating bad link status after PSR is enabled. Code checking link * status can call this to ensure it can ignore bad link status stated by the * panel I.e. if panel is stating bad link and intel_psr_link_ok is stating link * is ok caller should rely on latter. * * Return value of link_ok */ bool intel_psr_link_ok(struct intel_dp *intel_dp) { bool ret; if ((!CAN_PSR(intel_dp) && !CAN_PANEL_REPLAY(intel_dp)) || !intel_dp_is_edp(intel_dp)) return false; mutex_lock(&intel_dp->psr.lock); ret = intel_dp->psr.link_ok; mutex_unlock(&intel_dp->psr.lock); return ret; } /** * intel_psr_lock - grab PSR lock * @crtc_state: the crtc state * * This is initially meant to be used by around CRTC update, when * vblank sensitive registers are updated and we need grab the lock * before it to avoid vblank evasion. */ void intel_psr_lock(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); struct intel_encoder *encoder; if (!crtc_state->has_psr) return; for_each_intel_encoder_mask_with_psr(display->drm, encoder, crtc_state->uapi.encoder_mask) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); mutex_lock(&intel_dp->psr.lock); break; } } /** * intel_psr_unlock - release PSR lock * @crtc_state: the crtc state * * Release the PSR lock that was held during pipe update. */ void intel_psr_unlock(const struct intel_crtc_state *crtc_state) { struct intel_display *display = to_intel_display(crtc_state); struct intel_encoder *encoder; if (!crtc_state->has_psr) return; for_each_intel_encoder_mask_with_psr(display->drm, encoder, crtc_state->uapi.encoder_mask) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); mutex_unlock(&intel_dp->psr.lock); break; } } static void psr_source_status(struct intel_dp *intel_dp, struct seq_file *m) { struct intel_display *display = to_intel_display(intel_dp); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; const char *status = "unknown"; u32 val, status_val; if (intel_dp_is_edp(intel_dp) && (intel_dp->psr.sel_update_enabled || intel_dp->psr.panel_replay_enabled)) { static const char * const live_status[] = { "IDLE", "CAPTURE", "CAPTURE_FS", "SLEEP", "BUFON_FW", "ML_UP", "SU_STANDBY", "FAST_SLEEP", "DEEP_SLEEP", "BUF_ON", "TG_ON" }; val = intel_de_read(display, EDP_PSR2_STATUS(display, cpu_transcoder)); status_val = REG_FIELD_GET(EDP_PSR2_STATUS_STATE_MASK, val); if (status_val < ARRAY_SIZE(live_status)) status = live_status[status_val]; } else { static const char * const live_status[] = { "IDLE", "SRDONACK", "SRDENT", "BUFOFF", "BUFON", "AUXACK", "SRDOFFACK", "SRDENT_ON", }; val = intel_de_read(display, psr_status_reg(display, cpu_transcoder)); status_val = REG_FIELD_GET(EDP_PSR_STATUS_STATE_MASK, val); if (status_val < ARRAY_SIZE(live_status)) status = live_status[status_val]; } seq_printf(m, "Source PSR/PanelReplay status: %s [0x%08x]\n", status, val); } static void intel_psr_sink_capability(struct intel_dp *intel_dp, struct seq_file *m) { struct intel_psr *psr = &intel_dp->psr; seq_printf(m, "Sink support: PSR = %s", str_yes_no(psr->sink_support)); if (psr->sink_support) seq_printf(m, " [0x%02x]", intel_dp->psr_dpcd[0]); if (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_ET_SUPPORTED) seq_printf(m, " (Early Transport)"); seq_printf(m, ", Panel Replay = %s", str_yes_no(psr->sink_panel_replay_support)); seq_printf(m, ", Panel Replay Selective Update = %s", str_yes_no(psr->sink_panel_replay_su_support)); if (intel_dp->pr_dpcd & DP_PANEL_REPLAY_EARLY_TRANSPORT_SUPPORT) seq_printf(m, " (Early Transport)"); seq_printf(m, "\n"); } static void intel_psr_print_mode(struct intel_dp *intel_dp, struct seq_file *m) { struct intel_psr *psr = &intel_dp->psr; const char *status, *mode, *region_et; if (psr->enabled) status = " enabled"; else status = "disabled"; if (psr->panel_replay_enabled && psr->sel_update_enabled) mode = "Panel Replay Selective Update"; else if (psr->panel_replay_enabled) mode = "Panel Replay"; else if (psr->sel_update_enabled) mode = "PSR2"; else if (psr->enabled) mode = "PSR1"; else mode = ""; if (psr->su_region_et_enabled) region_et = " (Early Transport)"; else region_et = ""; seq_printf(m, "PSR mode: %s%s%s\n", mode, status, region_et); } static int intel_psr_status(struct seq_file *m, struct intel_dp *intel_dp) { struct intel_display *display = to_intel_display(intel_dp); struct drm_i915_private *dev_priv = to_i915(display->drm); enum transcoder cpu_transcoder = intel_dp->psr.transcoder; struct intel_psr *psr = &intel_dp->psr; intel_wakeref_t wakeref; bool enabled; u32 val, psr2_ctl; intel_psr_sink_capability(intel_dp, m); if (!(psr->sink_support || psr->sink_panel_replay_support)) return 0; wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); mutex_lock(&psr->lock); intel_psr_print_mode(intel_dp, m); if (!psr->enabled) { seq_printf(m, "PSR sink not reliable: %s\n", str_yes_no(psr->sink_not_reliable)); goto unlock; } if (psr->panel_replay_enabled) { val = intel_de_read(display, TRANS_DP2_CTL(cpu_transcoder)); if (intel_dp_is_edp(intel_dp)) psr2_ctl = intel_de_read(display, EDP_PSR2_CTL(display, cpu_transcoder)); enabled = val & TRANS_DP2_PANEL_REPLAY_ENABLE; } else if (psr->sel_update_enabled) { val = intel_de_read(display, EDP_PSR2_CTL(display, cpu_transcoder)); enabled = val & EDP_PSR2_ENABLE; } else { val = intel_de_read(display, psr_ctl_reg(display, cpu_transcoder)); enabled = val & EDP_PSR_ENABLE; } seq_printf(m, "Source PSR/PanelReplay ctl: %s [0x%08x]\n", str_enabled_disabled(enabled), val); if (psr->panel_replay_enabled && intel_dp_is_edp(intel_dp)) seq_printf(m, "PSR2_CTL: 0x%08x\n", psr2_ctl); psr_source_status(intel_dp, m); seq_printf(m, "Busy frontbuffer bits: 0x%08x\n", psr->busy_frontbuffer_bits); /* * SKL+ Perf counter is reset to 0 everytime DC state is entered */ val = intel_de_read(display, psr_perf_cnt_reg(display, cpu_transcoder)); seq_printf(m, "Performance counter: %u\n", REG_FIELD_GET(EDP_PSR_PERF_CNT_MASK, val)); if (psr->debug & I915_PSR_DEBUG_IRQ) { seq_printf(m, "Last attempted entry at: %lld\n", psr->last_entry_attempt); seq_printf(m, "Last exit at: %lld\n", psr->last_exit); } if (psr->sel_update_enabled) { u32 su_frames_val[3]; int frame; /* * Reading all 3 registers before hand to minimize crossing a * frame boundary between register reads */ for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame += 3) { val = intel_de_read(display, PSR2_SU_STATUS(display, cpu_transcoder, frame)); su_frames_val[frame / 3] = val; } seq_puts(m, "Frame:\tPSR2 SU blocks:\n"); for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame++) { u32 su_blocks; su_blocks = su_frames_val[frame / 3] & PSR2_SU_STATUS_MASK(frame); su_blocks = su_blocks >> PSR2_SU_STATUS_SHIFT(frame); seq_printf(m, "%d\t%d\n", frame, su_blocks); } seq_printf(m, "PSR2 selective fetch: %s\n", str_enabled_disabled(psr->psr2_sel_fetch_enabled)); } unlock: mutex_unlock(&psr->lock); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); return 0; } static int i915_edp_psr_status_show(struct seq_file *m, void *data) { struct intel_display *display = m->private; struct intel_dp *intel_dp = NULL; struct intel_encoder *encoder; if (!HAS_PSR(display)) return -ENODEV; /* Find the first EDP which supports PSR */ for_each_intel_encoder_with_psr(display->drm, encoder) { intel_dp = enc_to_intel_dp(encoder); break; } if (!intel_dp) return -ENODEV; return intel_psr_status(m, intel_dp); } DEFINE_SHOW_ATTRIBUTE(i915_edp_psr_status); static int i915_edp_psr_debug_set(void *data, u64 val) { struct intel_display *display = data; struct drm_i915_private *dev_priv = to_i915(display->drm); struct intel_encoder *encoder; intel_wakeref_t wakeref; int ret = -ENODEV; if (!HAS_PSR(display)) return ret; for_each_intel_encoder_with_psr(display->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); drm_dbg_kms(display->drm, "Setting PSR debug to %llx\n", val); wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); // TODO: split to each transcoder's PSR debug state ret = intel_psr_debug_set(intel_dp, val); intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); } return ret; } static int i915_edp_psr_debug_get(void *data, u64 *val) { struct intel_display *display = data; struct intel_encoder *encoder; if (!HAS_PSR(display)) return -ENODEV; for_each_intel_encoder_with_psr(display->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); // TODO: split to each transcoder's PSR debug state *val = READ_ONCE(intel_dp->psr.debug); return 0; } return -ENODEV; } DEFINE_SIMPLE_ATTRIBUTE(i915_edp_psr_debug_fops, i915_edp_psr_debug_get, i915_edp_psr_debug_set, "%llu\n"); void intel_psr_debugfs_register(struct intel_display *display) { struct drm_minor *minor = display->drm->primary; debugfs_create_file("i915_edp_psr_debug", 0644, minor->debugfs_root, display, &i915_edp_psr_debug_fops); debugfs_create_file("i915_edp_psr_status", 0444, minor->debugfs_root, display, &i915_edp_psr_status_fops); } static const char *psr_mode_str(struct intel_dp *intel_dp) { if (intel_dp->psr.panel_replay_enabled) return "PANEL-REPLAY"; else if (intel_dp->psr.enabled) return "PSR"; return "unknown"; } static int i915_psr_sink_status_show(struct seq_file *m, void *data) { struct intel_connector *connector = m->private; struct intel_dp *intel_dp = intel_attached_dp(connector); static const char * const sink_status[] = { "inactive", "transition to active, capture and display", "active, display from RFB", "active, capture and display on sink device timings", "transition to inactive, capture and display, timing re-sync", "reserved", "reserved", "sink internal error", }; const char *str; int ret; u8 status, error_status; if (!(CAN_PSR(intel_dp) || CAN_PANEL_REPLAY(intel_dp))) { seq_puts(m, "PSR/Panel-Replay Unsupported\n"); return -ENODEV; } if (connector->base.status != connector_status_connected) return -ENODEV; ret = psr_get_status_and_error_status(intel_dp, &status, &error_status); if (ret) return ret; status &= DP_PSR_SINK_STATE_MASK; if (status < ARRAY_SIZE(sink_status)) str = sink_status[status]; else str = "unknown"; seq_printf(m, "Sink %s status: 0x%x [%s]\n", psr_mode_str(intel_dp), status, str); seq_printf(m, "Sink %s error status: 0x%x", psr_mode_str(intel_dp), error_status); if (error_status & (DP_PSR_RFB_STORAGE_ERROR | DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR | DP_PSR_LINK_CRC_ERROR)) seq_puts(m, ":\n"); else seq_puts(m, "\n"); if (error_status & DP_PSR_RFB_STORAGE_ERROR) seq_printf(m, "\t%s RFB storage error\n", psr_mode_str(intel_dp)); if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR) seq_printf(m, "\t%s VSC SDP uncorrectable error\n", psr_mode_str(intel_dp)); if (error_status & DP_PSR_LINK_CRC_ERROR) seq_printf(m, "\t%s Link CRC error\n", psr_mode_str(intel_dp)); return ret; } DEFINE_SHOW_ATTRIBUTE(i915_psr_sink_status); static int i915_psr_status_show(struct seq_file *m, void *data) { struct intel_connector *connector = m->private; struct intel_dp *intel_dp = intel_attached_dp(connector); return intel_psr_status(m, intel_dp); } DEFINE_SHOW_ATTRIBUTE(i915_psr_status); void intel_psr_connector_debugfs_add(struct intel_connector *connector) { struct intel_display *display = to_intel_display(connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); struct dentry *root = connector->base.debugfs_entry; if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP && connector->base.connector_type != DRM_MODE_CONNECTOR_DisplayPort) return; debugfs_create_file("i915_psr_sink_status", 0444, root, connector, &i915_psr_sink_status_fops); if (HAS_PSR(display) || HAS_DP20(i915)) debugfs_create_file("i915_psr_status", 0444, root, connector, &i915_psr_status_fops); }