// SPDX-License-Identifier: GPL-2.0-only OR MIT /* Copyright (c) 2023 Imagination Technologies Ltd. */ #include #include #include "pvr_cccb.h" #include "pvr_context.h" #include "pvr_device.h" #include "pvr_drv.h" #include "pvr_job.h" #include "pvr_queue.h" #include "pvr_vm.h" #include "pvr_rogue_fwif_client.h" #define MAX_DEADLINE_MS 30000 #define CTX_COMPUTE_CCCB_SIZE_LOG2 15 #define CTX_FRAG_CCCB_SIZE_LOG2 15 #define CTX_GEOM_CCCB_SIZE_LOG2 15 #define CTX_TRANSFER_CCCB_SIZE_LOG2 15 static int get_xfer_ctx_state_size(struct pvr_device *pvr_dev) { u32 num_isp_store_registers; if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) { num_isp_store_registers = 1; } else { int err; err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers); if (WARN_ON(err)) return err; } return sizeof(struct rogue_fwif_frag_ctx_state) + (num_isp_store_registers * sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0])); } static int get_frag_ctx_state_size(struct pvr_device *pvr_dev) { u32 num_isp_store_registers; int err; if (PVR_HAS_FEATURE(pvr_dev, xe_memory_hierarchy)) { err = PVR_FEATURE_VALUE(pvr_dev, num_raster_pipes, &num_isp_store_registers); if (WARN_ON(err)) return err; if (PVR_HAS_FEATURE(pvr_dev, gpu_multicore_support)) { u32 xpu_max_slaves; err = PVR_FEATURE_VALUE(pvr_dev, xpu_max_slaves, &xpu_max_slaves); if (WARN_ON(err)) return err; num_isp_store_registers *= (1 + xpu_max_slaves); } } else { err = PVR_FEATURE_VALUE(pvr_dev, num_isp_ipp_pipes, &num_isp_store_registers); if (WARN_ON(err)) return err; } return sizeof(struct rogue_fwif_frag_ctx_state) + (num_isp_store_registers * sizeof(((struct rogue_fwif_frag_ctx_state *)0)->frag_reg_isp_store[0])); } static int get_ctx_state_size(struct pvr_device *pvr_dev, enum drm_pvr_job_type type) { switch (type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return sizeof(struct rogue_fwif_geom_ctx_state); case DRM_PVR_JOB_TYPE_FRAGMENT: return get_frag_ctx_state_size(pvr_dev); case DRM_PVR_JOB_TYPE_COMPUTE: return sizeof(struct rogue_fwif_compute_ctx_state); case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return get_xfer_ctx_state_size(pvr_dev); } WARN(1, "Invalid queue type"); return -EINVAL; } static u32 get_ctx_offset(enum drm_pvr_job_type type) { switch (type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return offsetof(struct rogue_fwif_fwrendercontext, geom_context); case DRM_PVR_JOB_TYPE_FRAGMENT: return offsetof(struct rogue_fwif_fwrendercontext, frag_context); case DRM_PVR_JOB_TYPE_COMPUTE: return offsetof(struct rogue_fwif_fwcomputecontext, cdm_context); case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return offsetof(struct rogue_fwif_fwtransfercontext, tq_context); } return 0; } static const char * pvr_queue_fence_get_driver_name(struct dma_fence *f) { return PVR_DRIVER_NAME; } static void pvr_queue_fence_release(struct dma_fence *f) { struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); pvr_context_put(fence->queue->ctx); dma_fence_free(f); } static const char * pvr_queue_job_fence_get_timeline_name(struct dma_fence *f) { struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); switch (fence->queue->type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return "geometry"; case DRM_PVR_JOB_TYPE_FRAGMENT: return "fragment"; case DRM_PVR_JOB_TYPE_COMPUTE: return "compute"; case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return "transfer"; } WARN(1, "Invalid queue type"); return "invalid"; } static const char * pvr_queue_cccb_fence_get_timeline_name(struct dma_fence *f) { struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); switch (fence->queue->type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return "geometry-cccb"; case DRM_PVR_JOB_TYPE_FRAGMENT: return "fragment-cccb"; case DRM_PVR_JOB_TYPE_COMPUTE: return "compute-cccb"; case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return "transfer-cccb"; } WARN(1, "Invalid queue type"); return "invalid"; } static const struct dma_fence_ops pvr_queue_job_fence_ops = { .get_driver_name = pvr_queue_fence_get_driver_name, .get_timeline_name = pvr_queue_job_fence_get_timeline_name, .release = pvr_queue_fence_release, }; /** * to_pvr_queue_job_fence() - Return a pvr_queue_fence object if the fence is * backed by a UFO. * @f: The dma_fence to turn into a pvr_queue_fence. * * Return: * * A non-NULL pvr_queue_fence object if the dma_fence is backed by a UFO, or * * NULL otherwise. */ static struct pvr_queue_fence * to_pvr_queue_job_fence(struct dma_fence *f) { struct drm_sched_fence *sched_fence = to_drm_sched_fence(f); if (sched_fence) f = sched_fence->parent; if (f && f->ops == &pvr_queue_job_fence_ops) return container_of(f, struct pvr_queue_fence, base); return NULL; } static const struct dma_fence_ops pvr_queue_cccb_fence_ops = { .get_driver_name = pvr_queue_fence_get_driver_name, .get_timeline_name = pvr_queue_cccb_fence_get_timeline_name, .release = pvr_queue_fence_release, }; /** * pvr_queue_fence_put() - Put wrapper for pvr_queue_fence objects. * @f: The dma_fence object to put. * * If the pvr_queue_fence has been initialized, we call dma_fence_put(), * otherwise we free the object with dma_fence_free(). This allows us * to do the right thing before and after pvr_queue_fence_init() had been * called. */ static void pvr_queue_fence_put(struct dma_fence *f) { if (!f) return; if (WARN_ON(f->ops && f->ops != &pvr_queue_cccb_fence_ops && f->ops != &pvr_queue_job_fence_ops)) return; /* If the fence hasn't been initialized yet, free the object directly. */ if (f->ops) dma_fence_put(f); else dma_fence_free(f); } /** * pvr_queue_fence_alloc() - Allocate a pvr_queue_fence fence object * * Call this function to allocate job CCCB and done fences. This only * allocates the objects. Initialization happens when the underlying * dma_fence object is to be returned to drm_sched (in prepare_job() or * run_job()). * * Return: * * A valid pointer if the allocation succeeds, or * * NULL if the allocation fails. */ static struct dma_fence * pvr_queue_fence_alloc(void) { struct pvr_queue_fence *fence; fence = kzalloc(sizeof(*fence), GFP_KERNEL); if (!fence) return NULL; return &fence->base; } /** * pvr_queue_fence_init() - Initializes a pvr_queue_fence object. * @f: The fence to initialize * @queue: The queue this fence belongs to. * @fence_ops: The fence operations. * @fence_ctx: The fence context. * * Wrapper around dma_fence_init() that takes care of initializing the * pvr_queue_fence::queue field too. */ static void pvr_queue_fence_init(struct dma_fence *f, struct pvr_queue *queue, const struct dma_fence_ops *fence_ops, struct pvr_queue_fence_ctx *fence_ctx) { struct pvr_queue_fence *fence = container_of(f, struct pvr_queue_fence, base); pvr_context_get(queue->ctx); fence->queue = queue; dma_fence_init(&fence->base, fence_ops, &fence_ctx->lock, fence_ctx->id, atomic_inc_return(&fence_ctx->seqno)); } /** * pvr_queue_cccb_fence_init() - Initializes a CCCB fence object. * @fence: The fence to initialize. * @queue: The queue this fence belongs to. * * Initializes a fence that can be used to wait for CCCB space. * * Should be called in the ::prepare_job() path, so the fence returned to * drm_sched is valid. */ static void pvr_queue_cccb_fence_init(struct dma_fence *fence, struct pvr_queue *queue) { pvr_queue_fence_init(fence, queue, &pvr_queue_cccb_fence_ops, &queue->cccb_fence_ctx.base); } /** * pvr_queue_job_fence_init() - Initializes a job done fence object. * @fence: The fence to initialize. * @queue: The queue this fence belongs to. * * Initializes a fence that will be signaled when the GPU is done executing * a job. * * Should be called *before* the ::run_job() path, so the fence is initialised * before being placed in the pending_list. */ static void pvr_queue_job_fence_init(struct dma_fence *fence, struct pvr_queue *queue) { pvr_queue_fence_init(fence, queue, &pvr_queue_job_fence_ops, &queue->job_fence_ctx); } /** * pvr_queue_fence_ctx_init() - Queue fence context initialization. * @fence_ctx: The context to initialize */ static void pvr_queue_fence_ctx_init(struct pvr_queue_fence_ctx *fence_ctx) { spin_lock_init(&fence_ctx->lock); fence_ctx->id = dma_fence_context_alloc(1); atomic_set(&fence_ctx->seqno, 0); } static u32 ufo_cmds_size(u32 elem_count) { /* We can pass at most ROGUE_FWIF_CCB_CMD_MAX_UFOS per UFO-related command. */ u32 full_cmd_count = elem_count / ROGUE_FWIF_CCB_CMD_MAX_UFOS; u32 remaining_elems = elem_count % ROGUE_FWIF_CCB_CMD_MAX_UFOS; u32 size = full_cmd_count * pvr_cccb_get_size_of_cmd_with_hdr(ROGUE_FWIF_CCB_CMD_MAX_UFOS * sizeof(struct rogue_fwif_ufo)); if (remaining_elems) { size += pvr_cccb_get_size_of_cmd_with_hdr(remaining_elems * sizeof(struct rogue_fwif_ufo)); } return size; } static u32 job_cmds_size(struct pvr_job *job, u32 ufo_wait_count) { /* One UFO cmd for the fence signaling, one UFO cmd per native fence native, * and a command for the job itself. */ return ufo_cmds_size(1) + ufo_cmds_size(ufo_wait_count) + pvr_cccb_get_size_of_cmd_with_hdr(job->cmd_len); } /** * job_count_remaining_native_deps() - Count the number of non-signaled native dependencies. * @job: Job to operate on. * * Returns: Number of non-signaled native deps remaining. */ static unsigned long job_count_remaining_native_deps(struct pvr_job *job) { unsigned long remaining_count = 0; struct dma_fence *fence = NULL; unsigned long index; xa_for_each(&job->base.dependencies, index, fence) { struct pvr_queue_fence *jfence; jfence = to_pvr_queue_job_fence(fence); if (!jfence) continue; if (!dma_fence_is_signaled(&jfence->base)) remaining_count++; } return remaining_count; } /** * pvr_queue_get_job_cccb_fence() - Get the CCCB fence attached to a job. * @queue: The queue this job will be submitted to. * @job: The job to get the CCCB fence on. * * The CCCB fence is a synchronization primitive allowing us to delay job * submission until there's enough space in the CCCB to submit the job. * * Return: * * NULL if there's enough space in the CCCB to submit this job, or * * A valid dma_fence object otherwise. */ static struct dma_fence * pvr_queue_get_job_cccb_fence(struct pvr_queue *queue, struct pvr_job *job) { struct pvr_queue_fence *cccb_fence; unsigned int native_deps_remaining; /* If the fence is NULL, that means we already checked that we had * enough space in the cccb for our job. */ if (!job->cccb_fence) return NULL; mutex_lock(&queue->cccb_fence_ctx.job_lock); /* Count remaining native dependencies and check if the job fits in the CCCB. */ native_deps_remaining = job_count_remaining_native_deps(job); if (pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) { pvr_queue_fence_put(job->cccb_fence); job->cccb_fence = NULL; goto out_unlock; } /* There should be no job attached to the CCCB fence context: * drm_sched_entity guarantees that jobs are submitted one at a time. */ if (WARN_ON(queue->cccb_fence_ctx.job)) pvr_job_put(queue->cccb_fence_ctx.job); queue->cccb_fence_ctx.job = pvr_job_get(job); /* Initialize the fence before returning it. */ cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base); if (!WARN_ON(cccb_fence->queue)) pvr_queue_cccb_fence_init(job->cccb_fence, queue); out_unlock: mutex_unlock(&queue->cccb_fence_ctx.job_lock); return dma_fence_get(job->cccb_fence); } /** * pvr_queue_get_job_kccb_fence() - Get the KCCB fence attached to a job. * @queue: The queue this job will be submitted to. * @job: The job to get the KCCB fence on. * * The KCCB fence is a synchronization primitive allowing us to delay job * submission until there's enough space in the KCCB to submit the job. * * Return: * * NULL if there's enough space in the KCCB to submit this job, or * * A valid dma_fence object otherwise. */ static struct dma_fence * pvr_queue_get_job_kccb_fence(struct pvr_queue *queue, struct pvr_job *job) { struct pvr_device *pvr_dev = queue->ctx->pvr_dev; struct dma_fence *kccb_fence = NULL; /* If the fence is NULL, that means we already checked that we had * enough space in the KCCB for our job. */ if (!job->kccb_fence) return NULL; if (!WARN_ON(job->kccb_fence->ops)) { kccb_fence = pvr_kccb_reserve_slot(pvr_dev, job->kccb_fence); job->kccb_fence = NULL; } return kccb_fence; } static struct dma_fence * pvr_queue_get_paired_frag_job_dep(struct pvr_queue *queue, struct pvr_job *job) { struct pvr_job *frag_job = job->type == DRM_PVR_JOB_TYPE_GEOMETRY ? job->paired_job : NULL; struct dma_fence *f; unsigned long index; if (!frag_job) return NULL; xa_for_each(&frag_job->base.dependencies, index, f) { /* Skip already signaled fences. */ if (dma_fence_is_signaled(f)) continue; /* Skip our own fence. */ if (f == &job->base.s_fence->scheduled) continue; return dma_fence_get(f); } return frag_job->base.sched->ops->prepare_job(&frag_job->base, &queue->entity); } /** * pvr_queue_prepare_job() - Return the next internal dependencies expressed as a dma_fence. * @sched_job: The job to query the next internal dependency on * @s_entity: The entity this job is queue on. * * After iterating over drm_sched_job::dependencies, drm_sched let the driver return * its own internal dependencies. We use this function to return our internal dependencies. */ static struct dma_fence * pvr_queue_prepare_job(struct drm_sched_job *sched_job, struct drm_sched_entity *s_entity) { struct pvr_job *job = container_of(sched_job, struct pvr_job, base); struct pvr_queue *queue = container_of(s_entity, struct pvr_queue, entity); struct dma_fence *internal_dep = NULL; /* * Initialize the done_fence, so we can signal it. This must be done * here because otherwise by the time of run_job() the job will end up * in the pending list without a valid fence. */ if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) { /* * This will be called on a paired fragment job after being * submitted to firmware. We can tell if this is the case and * bail early from whether run_job() has been called on the * geometry job, which would issue a pm ref. */ if (job->paired_job->has_pm_ref) return NULL; /* * In this case we need to use the job's own ctx to initialise * the done_fence. The other steps are done in the ctx of the * paired geometry job. */ pvr_queue_job_fence_init(job->done_fence, job->ctx->queues.fragment); } else { pvr_queue_job_fence_init(job->done_fence, queue); } /* CCCB fence is used to make sure we have enough space in the CCCB to * submit our commands. */ internal_dep = pvr_queue_get_job_cccb_fence(queue, job); /* KCCB fence is used to make sure we have a KCCB slot to queue our * CMD_KICK. */ if (!internal_dep) internal_dep = pvr_queue_get_job_kccb_fence(queue, job); /* Any extra internal dependency should be added here, using the following * pattern: * * if (!internal_dep) * internal_dep = pvr_queue_get_job_xxxx_fence(queue, job); */ /* The paired job fence should come last, when everything else is ready. */ if (!internal_dep) internal_dep = pvr_queue_get_paired_frag_job_dep(queue, job); return internal_dep; } /** * pvr_queue_update_active_state_locked() - Update the queue active state. * @queue: Queue to update the state on. * * Locked version of pvr_queue_update_active_state(). Must be called with * pvr_device::queue::lock held. */ static void pvr_queue_update_active_state_locked(struct pvr_queue *queue) { struct pvr_device *pvr_dev = queue->ctx->pvr_dev; lockdep_assert_held(&pvr_dev->queues.lock); /* The queue is temporary out of any list when it's being reset, * we don't want a call to pvr_queue_update_active_state_locked() * to re-insert it behind our back. */ if (list_empty(&queue->node)) return; if (!atomic_read(&queue->in_flight_job_count)) list_move_tail(&queue->node, &pvr_dev->queues.idle); else list_move_tail(&queue->node, &pvr_dev->queues.active); } /** * pvr_queue_update_active_state() - Update the queue active state. * @queue: Queue to update the state on. * * Active state is based on the in_flight_job_count value. * * Updating the active state implies moving the queue in or out of the * active queue list, which also defines whether the queue is checked * or not when a FW event is received. * * This function should be called any time a job is submitted or it done * fence is signaled. */ static void pvr_queue_update_active_state(struct pvr_queue *queue) { struct pvr_device *pvr_dev = queue->ctx->pvr_dev; mutex_lock(&pvr_dev->queues.lock); pvr_queue_update_active_state_locked(queue); mutex_unlock(&pvr_dev->queues.lock); } static void pvr_queue_submit_job_to_cccb(struct pvr_job *job) { struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler); struct rogue_fwif_ufo ufos[ROGUE_FWIF_CCB_CMD_MAX_UFOS]; struct pvr_cccb *cccb = &queue->cccb; struct pvr_queue_fence *jfence; struct dma_fence *fence; unsigned long index; u32 ufo_count = 0; /* We need to add the queue to the active list before updating the CCCB, * otherwise we might miss the FW event informing us that something * happened on this queue. */ atomic_inc(&queue->in_flight_job_count); pvr_queue_update_active_state(queue); xa_for_each(&job->base.dependencies, index, fence) { jfence = to_pvr_queue_job_fence(fence); if (!jfence) continue; /* Skip the partial render fence, we will place it at the end. */ if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job && &job->paired_job->base.s_fence->scheduled == fence) continue; if (dma_fence_is_signaled(&jfence->base)) continue; pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj, &ufos[ufo_count].addr); ufos[ufo_count++].value = jfence->base.seqno; if (ufo_count == ARRAY_SIZE(ufos)) { pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR, sizeof(ufos), ufos, 0, 0); ufo_count = 0; } } /* Partial render fence goes last. */ if (job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->paired_job) { jfence = to_pvr_queue_job_fence(job->paired_job->done_fence); if (!WARN_ON(!jfence)) { pvr_fw_object_get_fw_addr(jfence->queue->timeline_ufo.fw_obj, &ufos[ufo_count].addr); ufos[ufo_count++].value = job->paired_job->done_fence->seqno; } } if (ufo_count) { pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_FENCE_PR, sizeof(ufos[0]) * ufo_count, ufos, 0, 0); } if (job->type == DRM_PVR_JOB_TYPE_GEOMETRY && job->paired_job) { struct rogue_fwif_cmd_geom *cmd = job->cmd; /* Reference value for the partial render test is the current queue fence * seqno minus one. */ pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, &cmd->partial_render_geom_frag_fence.addr); cmd->partial_render_geom_frag_fence.value = job->done_fence->seqno - 1; } /* Submit job to FW */ pvr_cccb_write_command_with_header(cccb, job->fw_ccb_cmd_type, job->cmd_len, job->cmd, job->id, job->id); /* Signal the job fence. */ pvr_fw_object_get_fw_addr(queue->timeline_ufo.fw_obj, &ufos[0].addr); ufos[0].value = job->done_fence->seqno; pvr_cccb_write_command_with_header(cccb, ROGUE_FWIF_CCB_CMD_TYPE_UPDATE, sizeof(ufos[0]), ufos, 0, 0); } /** * pvr_queue_run_job() - Submit a job to the FW. * @sched_job: The job to submit. * * This function is called when all non-native dependencies have been met and * when the commands resulting from this job are guaranteed to fit in the CCCB. */ static struct dma_fence *pvr_queue_run_job(struct drm_sched_job *sched_job) { struct pvr_job *job = container_of(sched_job, struct pvr_job, base); struct pvr_device *pvr_dev = job->pvr_dev; int err; /* The fragment job is issued along the geometry job when we use combined * geom+frag kicks. When we get there, we should simply return the * done_fence that's been initialized earlier. */ if (job->paired_job && job->type == DRM_PVR_JOB_TYPE_FRAGMENT && job->done_fence->ops) { return dma_fence_get(job->done_fence); } /* The only kind of jobs that can be paired are geometry and fragment, and * we bail out early if we see a fragment job that's paired with a geomtry * job. * Paired jobs must also target the same context and point to the same * HWRT. */ if (WARN_ON(job->paired_job && (job->type != DRM_PVR_JOB_TYPE_GEOMETRY || job->paired_job->type != DRM_PVR_JOB_TYPE_FRAGMENT || job->hwrt != job->paired_job->hwrt || job->ctx != job->paired_job->ctx))) return ERR_PTR(-EINVAL); err = pvr_job_get_pm_ref(job); if (WARN_ON(err)) return ERR_PTR(err); if (job->paired_job) { err = pvr_job_get_pm_ref(job->paired_job); if (WARN_ON(err)) return ERR_PTR(err); } /* Submit our job to the CCCB */ pvr_queue_submit_job_to_cccb(job); if (job->paired_job) { struct pvr_job *geom_job = job; struct pvr_job *frag_job = job->paired_job; struct pvr_queue *geom_queue = job->ctx->queues.geometry; struct pvr_queue *frag_queue = job->ctx->queues.fragment; /* Submit the fragment job along the geometry job and send a combined kick. */ pvr_queue_submit_job_to_cccb(frag_job); pvr_cccb_send_kccb_combined_kick(pvr_dev, &geom_queue->cccb, &frag_queue->cccb, pvr_context_get_fw_addr(geom_job->ctx) + geom_queue->ctx_offset, pvr_context_get_fw_addr(frag_job->ctx) + frag_queue->ctx_offset, job->hwrt, frag_job->fw_ccb_cmd_type == ROGUE_FWIF_CCB_CMD_TYPE_FRAG_PR); } else { struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler); pvr_cccb_send_kccb_kick(pvr_dev, &queue->cccb, pvr_context_get_fw_addr(job->ctx) + queue->ctx_offset, job->hwrt); } return dma_fence_get(job->done_fence); } static void pvr_queue_stop(struct pvr_queue *queue, struct pvr_job *bad_job) { drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); } static void pvr_queue_start(struct pvr_queue *queue) { struct pvr_job *job; /* Make sure we CPU-signal the UFO object, so other queues don't get * blocked waiting on it. */ *queue->timeline_ufo.value = atomic_read(&queue->job_fence_ctx.seqno); list_for_each_entry(job, &queue->scheduler.pending_list, base.list) { if (dma_fence_is_signaled(job->done_fence)) { /* Jobs might have completed after drm_sched_stop() was called. * In that case, re-assign the parent field to the done_fence. */ WARN_ON(job->base.s_fence->parent); job->base.s_fence->parent = dma_fence_get(job->done_fence); } else { /* If we had unfinished jobs, flag the entity as guilty so no * new job can be submitted. */ atomic_set(&queue->ctx->faulty, 1); } } drm_sched_start(&queue->scheduler, 0); } /** * pvr_queue_timedout_job() - Handle a job timeout event. * @s_job: The job this timeout occurred on. * * FIXME: We don't do anything here to unblock the situation, we just stop+start * the scheduler, and re-assign parent fences in the middle. * * Return: * * DRM_GPU_SCHED_STAT_NOMINAL. */ static enum drm_gpu_sched_stat pvr_queue_timedout_job(struct drm_sched_job *s_job) { struct drm_gpu_scheduler *sched = s_job->sched; struct pvr_queue *queue = container_of(sched, struct pvr_queue, scheduler); struct pvr_device *pvr_dev = queue->ctx->pvr_dev; struct pvr_job *job; u32 job_count = 0; dev_err(sched->dev, "Job timeout\n"); /* Before we stop the scheduler, make sure the queue is out of any list, so * any call to pvr_queue_update_active_state_locked() that might happen * until the scheduler is really stopped doesn't end up re-inserting the * queue in the active list. This would cause * pvr_queue_signal_done_fences() and drm_sched_stop() to race with each * other when accessing the pending_list, since drm_sched_stop() doesn't * grab the job_list_lock when modifying the list (it's assuming the * only other accessor is the scheduler, and it's safe to not grab the * lock since it's stopped). */ mutex_lock(&pvr_dev->queues.lock); list_del_init(&queue->node); mutex_unlock(&pvr_dev->queues.lock); drm_sched_stop(sched, s_job); /* Re-assign job parent fences. */ list_for_each_entry(job, &sched->pending_list, base.list) { job->base.s_fence->parent = dma_fence_get(job->done_fence); job_count++; } WARN_ON(atomic_read(&queue->in_flight_job_count) != job_count); /* Re-insert the queue in the proper list, and kick a queue processing * operation if there were jobs pending. */ mutex_lock(&pvr_dev->queues.lock); if (!job_count) { list_move_tail(&queue->node, &pvr_dev->queues.idle); } else { atomic_set(&queue->in_flight_job_count, job_count); list_move_tail(&queue->node, &pvr_dev->queues.active); pvr_queue_process(queue); } mutex_unlock(&pvr_dev->queues.lock); drm_sched_start(sched, 0); return DRM_GPU_SCHED_STAT_NOMINAL; } /** * pvr_queue_free_job() - Release the reference the scheduler had on a job object. * @sched_job: Job object to free. */ static void pvr_queue_free_job(struct drm_sched_job *sched_job) { struct pvr_job *job = container_of(sched_job, struct pvr_job, base); drm_sched_job_cleanup(sched_job); job->paired_job = NULL; pvr_job_put(job); } static const struct drm_sched_backend_ops pvr_queue_sched_ops = { .prepare_job = pvr_queue_prepare_job, .run_job = pvr_queue_run_job, .timedout_job = pvr_queue_timedout_job, .free_job = pvr_queue_free_job, }; /** * pvr_queue_fence_is_ufo_backed() - Check if a dma_fence is backed by a UFO object * @f: Fence to test. * * A UFO-backed fence is a fence that can be signaled or waited upon FW-side. * pvr_job::done_fence objects are backed by the timeline UFO attached to the queue * they are pushed to, but those fences are not directly exposed to the outside * world, so we also need to check if the fence we're being passed is a * drm_sched_fence that was coming from our driver. */ bool pvr_queue_fence_is_ufo_backed(struct dma_fence *f) { struct drm_sched_fence *sched_fence = f ? to_drm_sched_fence(f) : NULL; if (sched_fence && sched_fence->sched->ops == &pvr_queue_sched_ops) return true; if (f && f->ops == &pvr_queue_job_fence_ops) return true; return false; } /** * pvr_queue_signal_done_fences() - Signal done fences. * @queue: Queue to check. * * Signal done fences of jobs whose seqno is less than the current value of * the UFO object attached to the queue. */ static void pvr_queue_signal_done_fences(struct pvr_queue *queue) { struct pvr_job *job, *tmp_job; u32 cur_seqno; spin_lock(&queue->scheduler.job_list_lock); cur_seqno = *queue->timeline_ufo.value; list_for_each_entry_safe(job, tmp_job, &queue->scheduler.pending_list, base.list) { if ((int)(cur_seqno - lower_32_bits(job->done_fence->seqno)) < 0) break; if (!dma_fence_is_signaled(job->done_fence)) { dma_fence_signal(job->done_fence); pvr_job_release_pm_ref(job); atomic_dec(&queue->in_flight_job_count); } } spin_unlock(&queue->scheduler.job_list_lock); } /** * pvr_queue_check_job_waiting_for_cccb_space() - Check if the job waiting for CCCB space * can be unblocked * pushed to the CCCB * @queue: Queue to check * * If we have a job waiting for CCCB, and this job now fits in the CCCB, we signal * its CCCB fence, which should kick drm_sched. */ static void pvr_queue_check_job_waiting_for_cccb_space(struct pvr_queue *queue) { struct pvr_queue_fence *cccb_fence; u32 native_deps_remaining; struct pvr_job *job; mutex_lock(&queue->cccb_fence_ctx.job_lock); job = queue->cccb_fence_ctx.job; if (!job) goto out_unlock; /* If we have a job attached to the CCCB fence context, its CCCB fence * shouldn't be NULL. */ if (WARN_ON(!job->cccb_fence)) { job = NULL; goto out_unlock; } /* If we get there, CCCB fence has to be initialized. */ cccb_fence = container_of(job->cccb_fence, struct pvr_queue_fence, base); if (WARN_ON(!cccb_fence->queue)) { job = NULL; goto out_unlock; } /* Evict signaled dependencies before checking for CCCB space. * If the job fits, signal the CCCB fence, this should unblock * the drm_sched_entity. */ native_deps_remaining = job_count_remaining_native_deps(job); if (!pvr_cccb_cmdseq_fits(&queue->cccb, job_cmds_size(job, native_deps_remaining))) { job = NULL; goto out_unlock; } dma_fence_signal(job->cccb_fence); pvr_queue_fence_put(job->cccb_fence); job->cccb_fence = NULL; queue->cccb_fence_ctx.job = NULL; out_unlock: mutex_unlock(&queue->cccb_fence_ctx.job_lock); pvr_job_put(job); } /** * pvr_queue_process() - Process events that happened on a queue. * @queue: Queue to check * * Signal job fences and check if jobs waiting for CCCB space can be unblocked. */ void pvr_queue_process(struct pvr_queue *queue) { lockdep_assert_held(&queue->ctx->pvr_dev->queues.lock); pvr_queue_check_job_waiting_for_cccb_space(queue); pvr_queue_signal_done_fences(queue); pvr_queue_update_active_state_locked(queue); } static u32 get_dm_type(struct pvr_queue *queue) { switch (queue->type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return PVR_FWIF_DM_GEOM; case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: case DRM_PVR_JOB_TYPE_FRAGMENT: return PVR_FWIF_DM_FRAG; case DRM_PVR_JOB_TYPE_COMPUTE: return PVR_FWIF_DM_CDM; } return ~0; } /** * init_fw_context() - Initializes the queue part of a FW context. * @queue: Queue object to initialize the FW context for. * @fw_ctx_map: The FW context CPU mapping. * * FW contexts are containing various states, one of them being a per-queue state * that needs to be initialized for each queue being exposed by a context. This * function takes care of that. */ static void init_fw_context(struct pvr_queue *queue, void *fw_ctx_map) { struct pvr_context *ctx = queue->ctx; struct pvr_fw_object *fw_mem_ctx_obj = pvr_vm_get_fw_mem_context(ctx->vm_ctx); struct rogue_fwif_fwcommoncontext *cctx_fw; struct pvr_cccb *cccb = &queue->cccb; cctx_fw = fw_ctx_map + queue->ctx_offset; cctx_fw->ccbctl_fw_addr = cccb->ctrl_fw_addr; cctx_fw->ccb_fw_addr = cccb->cccb_fw_addr; cctx_fw->dm = get_dm_type(queue); cctx_fw->priority = ctx->priority; cctx_fw->priority_seq_num = 0; cctx_fw->max_deadline_ms = MAX_DEADLINE_MS; cctx_fw->pid = task_tgid_nr(current); cctx_fw->server_common_context_id = ctx->ctx_id; pvr_fw_object_get_fw_addr(fw_mem_ctx_obj, &cctx_fw->fw_mem_context_fw_addr); pvr_fw_object_get_fw_addr(queue->reg_state_obj, &cctx_fw->context_state_addr); } /** * pvr_queue_cleanup_fw_context() - Wait for the FW context to be idle and clean it up. * @queue: Queue on FW context to clean up. * * Return: * * 0 on success, * * Any error returned by pvr_fw_structure_cleanup() otherwise. */ static int pvr_queue_cleanup_fw_context(struct pvr_queue *queue) { if (!queue->ctx->fw_obj) return 0; return pvr_fw_structure_cleanup(queue->ctx->pvr_dev, ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT, queue->ctx->fw_obj, queue->ctx_offset); } /** * pvr_queue_job_init() - Initialize queue related fields in a pvr_job object. * @job: The job to initialize. * * Bind the job to a queue and allocate memory to guarantee pvr_queue_job_arm() * and pvr_queue_job_push() can't fail. We also make sure the context type is * valid and the job can fit in the CCCB. * * Return: * * 0 on success, or * * An error code if something failed. */ int pvr_queue_job_init(struct pvr_job *job) { /* Fragment jobs need at least one native fence wait on the geometry job fence. */ u32 min_native_dep_count = job->type == DRM_PVR_JOB_TYPE_FRAGMENT ? 1 : 0; struct pvr_queue *queue; int err; if (atomic_read(&job->ctx->faulty)) return -EIO; queue = pvr_context_get_queue_for_job(job->ctx, job->type); if (!queue) return -EINVAL; if (!pvr_cccb_cmdseq_can_fit(&queue->cccb, job_cmds_size(job, min_native_dep_count))) return -E2BIG; err = drm_sched_job_init(&job->base, &queue->entity, 1, THIS_MODULE); if (err) return err; job->cccb_fence = pvr_queue_fence_alloc(); job->kccb_fence = pvr_kccb_fence_alloc(); job->done_fence = pvr_queue_fence_alloc(); if (!job->cccb_fence || !job->kccb_fence || !job->done_fence) return -ENOMEM; return 0; } /** * pvr_queue_job_arm() - Arm a job object. * @job: The job to arm. * * Initializes fences and return the drm_sched finished fence so it can * be exposed to the outside world. Once this function is called, you should * make sure the job is pushed using pvr_queue_job_push(), or guarantee that * no one grabbed a reference to the returned fence. The latter can happen if * we do multi-job submission, and something failed when creating/initializing * a job. In that case, we know the fence didn't leave the driver, and we * can thus guarantee nobody will wait on an dead fence object. * * Return: * * A dma_fence object. */ struct dma_fence *pvr_queue_job_arm(struct pvr_job *job) { drm_sched_job_arm(&job->base); return &job->base.s_fence->finished; } /** * pvr_queue_job_cleanup() - Cleanup fence/scheduler related fields in the job object. * @job: The job to cleanup. * * Should be called in the job release path. */ void pvr_queue_job_cleanup(struct pvr_job *job) { pvr_queue_fence_put(job->done_fence); pvr_queue_fence_put(job->cccb_fence); pvr_kccb_fence_put(job->kccb_fence); if (job->base.s_fence) drm_sched_job_cleanup(&job->base); } /** * pvr_queue_job_push() - Push a job to its queue. * @job: The job to push. * * Must be called after pvr_queue_job_init() and after all dependencies * have been added to the job. This will effectively queue the job to * the drm_sched_entity attached to the queue. We grab a reference on * the job object, so the caller is free to drop its reference when it's * done accessing the job object. */ void pvr_queue_job_push(struct pvr_job *job) { struct pvr_queue *queue = container_of(job->base.sched, struct pvr_queue, scheduler); /* Keep track of the last queued job scheduled fence for combined submit. */ dma_fence_put(queue->last_queued_job_scheduled_fence); queue->last_queued_job_scheduled_fence = dma_fence_get(&job->base.s_fence->scheduled); pvr_job_get(job); drm_sched_entity_push_job(&job->base); } static void reg_state_init(void *cpu_ptr, void *priv) { struct pvr_queue *queue = priv; if (queue->type == DRM_PVR_JOB_TYPE_GEOMETRY) { struct rogue_fwif_geom_ctx_state *geom_ctx_state_fw = cpu_ptr; geom_ctx_state_fw->geom_core[0].geom_reg_vdm_call_stack_pointer_init = queue->callstack_addr; } } /** * pvr_queue_create() - Create a queue object. * @ctx: The context this queue will be attached to. * @type: The type of jobs being pushed to this queue. * @args: The arguments passed to the context creation function. * @fw_ctx_map: CPU mapping of the FW context object. * * Create a queue object that will be used to queue and track jobs. * * Return: * * A valid pointer to a pvr_queue object, or * * An error pointer if the creation/initialization failed. */ struct pvr_queue *pvr_queue_create(struct pvr_context *ctx, enum drm_pvr_job_type type, struct drm_pvr_ioctl_create_context_args *args, void *fw_ctx_map) { static const struct { u32 cccb_size; const char *name; } props[] = { [DRM_PVR_JOB_TYPE_GEOMETRY] = { .cccb_size = CTX_GEOM_CCCB_SIZE_LOG2, .name = "geometry", }, [DRM_PVR_JOB_TYPE_FRAGMENT] = { .cccb_size = CTX_FRAG_CCCB_SIZE_LOG2, .name = "fragment" }, [DRM_PVR_JOB_TYPE_COMPUTE] = { .cccb_size = CTX_COMPUTE_CCCB_SIZE_LOG2, .name = "compute" }, [DRM_PVR_JOB_TYPE_TRANSFER_FRAG] = { .cccb_size = CTX_TRANSFER_CCCB_SIZE_LOG2, .name = "transfer_frag" }, }; struct pvr_device *pvr_dev = ctx->pvr_dev; struct drm_gpu_scheduler *sched; struct pvr_queue *queue; int ctx_state_size, err; void *cpu_map; if (WARN_ON(type >= sizeof(props))) return ERR_PTR(-EINVAL); switch (ctx->type) { case DRM_PVR_CTX_TYPE_RENDER: if (type != DRM_PVR_JOB_TYPE_GEOMETRY && type != DRM_PVR_JOB_TYPE_FRAGMENT) return ERR_PTR(-EINVAL); break; case DRM_PVR_CTX_TYPE_COMPUTE: if (type != DRM_PVR_JOB_TYPE_COMPUTE) return ERR_PTR(-EINVAL); break; case DRM_PVR_CTX_TYPE_TRANSFER_FRAG: if (type != DRM_PVR_JOB_TYPE_TRANSFER_FRAG) return ERR_PTR(-EINVAL); break; default: return ERR_PTR(-EINVAL); } ctx_state_size = get_ctx_state_size(pvr_dev, type); if (ctx_state_size < 0) return ERR_PTR(ctx_state_size); queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) return ERR_PTR(-ENOMEM); queue->type = type; queue->ctx_offset = get_ctx_offset(type); queue->ctx = ctx; queue->callstack_addr = args->callstack_addr; sched = &queue->scheduler; INIT_LIST_HEAD(&queue->node); mutex_init(&queue->cccb_fence_ctx.job_lock); pvr_queue_fence_ctx_init(&queue->cccb_fence_ctx.base); pvr_queue_fence_ctx_init(&queue->job_fence_ctx); err = pvr_cccb_init(pvr_dev, &queue->cccb, props[type].cccb_size, props[type].name); if (err) goto err_free_queue; err = pvr_fw_object_create(pvr_dev, ctx_state_size, PVR_BO_FW_FLAGS_DEVICE_UNCACHED, reg_state_init, queue, &queue->reg_state_obj); if (err) goto err_cccb_fini; init_fw_context(queue, fw_ctx_map); if (type != DRM_PVR_JOB_TYPE_GEOMETRY && type != DRM_PVR_JOB_TYPE_FRAGMENT && args->callstack_addr) { err = -EINVAL; goto err_release_reg_state; } cpu_map = pvr_fw_object_create_and_map(pvr_dev, sizeof(*queue->timeline_ufo.value), PVR_BO_FW_FLAGS_DEVICE_UNCACHED, NULL, NULL, &queue->timeline_ufo.fw_obj); if (IS_ERR(cpu_map)) { err = PTR_ERR(cpu_map); goto err_release_reg_state; } queue->timeline_ufo.value = cpu_map; err = drm_sched_init(&queue->scheduler, &pvr_queue_sched_ops, pvr_dev->sched_wq, 1, 64 * 1024, 1, msecs_to_jiffies(500), pvr_dev->sched_wq, NULL, "pvr-queue", pvr_dev->base.dev); if (err) goto err_release_ufo; err = drm_sched_entity_init(&queue->entity, DRM_SCHED_PRIORITY_KERNEL, &sched, 1, &ctx->faulty); if (err) goto err_sched_fini; mutex_lock(&pvr_dev->queues.lock); list_add_tail(&queue->node, &pvr_dev->queues.idle); mutex_unlock(&pvr_dev->queues.lock); return queue; err_sched_fini: drm_sched_fini(&queue->scheduler); err_release_ufo: pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj); err_release_reg_state: pvr_fw_object_destroy(queue->reg_state_obj); err_cccb_fini: pvr_cccb_fini(&queue->cccb); err_free_queue: mutex_destroy(&queue->cccb_fence_ctx.job_lock); kfree(queue); return ERR_PTR(err); } void pvr_queue_device_pre_reset(struct pvr_device *pvr_dev) { struct pvr_queue *queue; mutex_lock(&pvr_dev->queues.lock); list_for_each_entry(queue, &pvr_dev->queues.idle, node) pvr_queue_stop(queue, NULL); list_for_each_entry(queue, &pvr_dev->queues.active, node) pvr_queue_stop(queue, NULL); mutex_unlock(&pvr_dev->queues.lock); } void pvr_queue_device_post_reset(struct pvr_device *pvr_dev) { struct pvr_queue *queue; mutex_lock(&pvr_dev->queues.lock); list_for_each_entry(queue, &pvr_dev->queues.active, node) pvr_queue_start(queue); list_for_each_entry(queue, &pvr_dev->queues.idle, node) pvr_queue_start(queue); mutex_unlock(&pvr_dev->queues.lock); } /** * pvr_queue_kill() - Kill a queue. * @queue: The queue to kill. * * Kill the queue so no new jobs can be pushed. Should be called when the * context handle is destroyed. The queue object might last longer if jobs * are still in flight and holding a reference to the context this queue * belongs to. */ void pvr_queue_kill(struct pvr_queue *queue) { drm_sched_entity_destroy(&queue->entity); dma_fence_put(queue->last_queued_job_scheduled_fence); queue->last_queued_job_scheduled_fence = NULL; } /** * pvr_queue_destroy() - Destroy a queue. * @queue: The queue to destroy. * * Cleanup the queue and free the resources attached to it. Should be * called from the context release function. */ void pvr_queue_destroy(struct pvr_queue *queue) { if (!queue) return; mutex_lock(&queue->ctx->pvr_dev->queues.lock); list_del_init(&queue->node); mutex_unlock(&queue->ctx->pvr_dev->queues.lock); drm_sched_fini(&queue->scheduler); drm_sched_entity_fini(&queue->entity); if (WARN_ON(queue->last_queued_job_scheduled_fence)) dma_fence_put(queue->last_queued_job_scheduled_fence); pvr_queue_cleanup_fw_context(queue); pvr_fw_object_unmap_and_destroy(queue->timeline_ufo.fw_obj); pvr_fw_object_destroy(queue->reg_state_obj); pvr_cccb_fini(&queue->cccb); mutex_destroy(&queue->cccb_fence_ctx.job_lock); kfree(queue); } /** * pvr_queue_device_init() - Device-level initialization of queue related fields. * @pvr_dev: The device to initialize. * * Initializes all fields related to queue management in pvr_device. * * Return: * * 0 on success, or * * An error code on failure. */ int pvr_queue_device_init(struct pvr_device *pvr_dev) { int err; INIT_LIST_HEAD(&pvr_dev->queues.active); INIT_LIST_HEAD(&pvr_dev->queues.idle); err = drmm_mutex_init(from_pvr_device(pvr_dev), &pvr_dev->queues.lock); if (err) return err; pvr_dev->sched_wq = alloc_workqueue("powervr-sched", WQ_UNBOUND, 0); if (!pvr_dev->sched_wq) return -ENOMEM; return 0; } /** * pvr_queue_device_fini() - Device-level cleanup of queue related fields. * @pvr_dev: The device to cleanup. * * Cleanup/free all queue-related resources attached to a pvr_device object. */ void pvr_queue_device_fini(struct pvr_device *pvr_dev) { destroy_workqueue(pvr_dev->sched_wq); }