/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2017, 2019 The Linux Foundation. All rights reserved. */ #ifndef __A6XX_GPU_H__ #define __A6XX_GPU_H__ #include "adreno_gpu.h" #include "a6xx.xml.h" #include "a6xx_gmu.h" extern bool hang_debug; struct cpu_gpu_lock { uint32_t gpu_req; uint32_t cpu_req; uint32_t turn; union { struct { uint16_t list_length; uint16_t list_offset; }; struct { uint8_t ifpc_list_len; uint8_t preemption_list_len; uint16_t dynamic_list_len; }; }; uint64_t regs[62]; }; /** * struct a6xx_info - a6xx specific information from device table * * @hwcg: hw clock gating register sequence * @protect: CP_PROTECT settings * @pwrup_reglist pwrup reglist for preemption */ struct a6xx_info { const struct adreno_reglist *hwcg; const struct adreno_protect *protect; const struct adreno_reglist_list *pwrup_reglist; u32 gmu_chipid; u32 gmu_cgc_mode; u32 prim_fifo_threshold; }; struct a6xx_gpu { struct adreno_gpu base; struct drm_gem_object *sqe_bo; uint64_t sqe_iova; struct msm_ringbuffer *cur_ring; struct msm_ringbuffer *next_ring; struct drm_gem_object *preempt_bo[MSM_GPU_MAX_RINGS]; void *preempt[MSM_GPU_MAX_RINGS]; uint64_t preempt_iova[MSM_GPU_MAX_RINGS]; struct drm_gem_object *preempt_smmu_bo[MSM_GPU_MAX_RINGS]; void *preempt_smmu[MSM_GPU_MAX_RINGS]; uint64_t preempt_smmu_iova[MSM_GPU_MAX_RINGS]; uint32_t last_seqno[MSM_GPU_MAX_RINGS]; atomic_t preempt_state; spinlock_t eval_lock; struct timer_list preempt_timer; unsigned int preempt_level; bool uses_gmem; bool skip_save_restore; struct drm_gem_object *preempt_postamble_bo; void *preempt_postamble_ptr; uint64_t preempt_postamble_iova; uint64_t preempt_postamble_len; bool postamble_enabled; struct a6xx_gmu gmu; struct drm_gem_object *shadow_bo; uint64_t shadow_iova; uint32_t *shadow; struct drm_gem_object *pwrup_reglist_bo; void *pwrup_reglist_ptr; uint64_t pwrup_reglist_iova; bool pwrup_reglist_emitted; bool has_whereami; void __iomem *llc_mmio; void *llc_slice; void *htw_llc_slice; bool have_mmu500; bool hung; }; #define to_a6xx_gpu(x) container_of(x, struct a6xx_gpu, base) /* * In order to do lockless preemption we use a simple state machine to progress * through the process. * * PREEMPT_NONE - no preemption in progress. Next state START. * PREEMPT_START - The trigger is evaluating if preemption is possible. Next * states: TRIGGERED, NONE * PREEMPT_FINISH - An intermediate state before moving back to NONE. Next * state: NONE. * PREEMPT_TRIGGERED: A preemption has been executed on the hardware. Next * states: FAULTED, PENDING * PREEMPT_FAULTED: A preemption timed out (never completed). This will trigger * recovery. Next state: N/A * PREEMPT_PENDING: Preemption complete interrupt fired - the callback is * checking the success of the operation. Next state: FAULTED, NONE. */ enum a6xx_preempt_state { PREEMPT_NONE = 0, PREEMPT_START, PREEMPT_FINISH, PREEMPT_TRIGGERED, PREEMPT_FAULTED, PREEMPT_PENDING, }; /* * struct a6xx_preempt_record is a shared buffer between the microcode and the * CPU to store the state for preemption. The record itself is much larger * (2112k) but most of that is used by the CP for storage. * * There is a preemption record assigned per ringbuffer. When the CPU triggers a * preemption, it fills out the record with the useful information (wptr, ring * base, etc) and the microcode uses that information to set up the CP following * the preemption. When a ring is switched out, the CP will save the ringbuffer * state back to the record. In this way, once the records are properly set up * the CPU can quickly switch back and forth between ringbuffers by only * updating a few registers (often only the wptr). * * These are the CPU aware registers in the record: * @magic: Must always be 0xAE399D6EUL * @info: Type of the record - written 0 by the CPU, updated by the CP * @errno: preemption error record * @data: Data field in YIELD and SET_MARKER packets, Written and used by CP * @cntl: Value of RB_CNTL written by CPU, save/restored by CP * @rptr: Value of RB_RPTR written by CPU, save/restored by CP * @wptr: Value of RB_WPTR written by CPU, save/restored by CP * @_pad: Reserved/padding * @rptr_addr: Value of RB_RPTR_ADDR_LO|HI written by CPU, save/restored by CP * @rbase: Value of RB_BASE written by CPU, save/restored by CP * @counter: GPU address of the storage area for the preemption counters * @bv_rptr_addr: Value of BV_RB_RPTR_ADDR_LO|HI written by CPU, save/restored by CP */ struct a6xx_preempt_record { u32 magic; u32 info; u32 errno; u32 data; u32 cntl; u32 rptr; u32 wptr; u32 _pad; u64 rptr_addr; u64 rbase; u64 counter; u64 bv_rptr_addr; }; #define A6XX_PREEMPT_RECORD_MAGIC 0xAE399D6EUL #define PREEMPT_SMMU_INFO_SIZE 4096 #define PREEMPT_RECORD_SIZE(adreno_gpu) \ ((adreno_gpu->info->preempt_record_size) == 0 ? \ 4192 * SZ_1K : (adreno_gpu->info->preempt_record_size)) /* * The preemption counter block is a storage area for the value of the * preemption counters that are saved immediately before context switch. We * append it on to the end of the allocation for the preemption record. */ #define A6XX_PREEMPT_COUNTER_SIZE (16 * 4) struct a7xx_cp_smmu_info { u32 magic; u32 _pad4; u64 ttbr0; u32 asid; u32 context_idr; u32 context_bank; }; #define GEN7_CP_SMMU_INFO_MAGIC 0x241350d5UL /* * Given a register and a count, return a value to program into * REG_CP_PROTECT_REG(n) - this will block both reads and writes for * _len + 1 registers starting at _reg. */ #define A6XX_PROTECT_NORDWR(_reg, _len) \ ((1 << 31) | \ (((_len) & 0x3FFF) << 18) | ((_reg) & 0x3FFFF)) /* * Same as above, but allow reads over the range. For areas of mixed use (such * as performance counters) this allows us to protect a much larger range with a * single register */ #define A6XX_PROTECT_RDONLY(_reg, _len) \ ((((_len) & 0x3FFF) << 18) | ((_reg) & 0x3FFFF)) static inline bool a6xx_has_gbif(struct adreno_gpu *gpu) { if(adreno_is_a630(gpu)) return false; return true; } static inline void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or) { return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or); } static inline u32 a6xx_llc_read(struct a6xx_gpu *a6xx_gpu, u32 reg) { return readl(a6xx_gpu->llc_mmio + (reg << 2)); } static inline void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value) { writel(value, a6xx_gpu->llc_mmio + (reg << 2)); } #define shadowptr(_a6xx_gpu, _ring) ((_a6xx_gpu)->shadow_iova + \ ((_ring)->id * sizeof(uint32_t))) int a6xx_gmu_resume(struct a6xx_gpu *gpu); int a6xx_gmu_stop(struct a6xx_gpu *gpu); int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu); bool a6xx_gmu_isidle(struct a6xx_gmu *gmu); int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state); void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state); int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node); int a6xx_gmu_wrapper_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node); void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu); void a6xx_preempt_init(struct msm_gpu *gpu); void a6xx_preempt_hw_init(struct msm_gpu *gpu); void a6xx_preempt_trigger(struct msm_gpu *gpu); void a6xx_preempt_irq(struct msm_gpu *gpu); void a6xx_preempt_fini(struct msm_gpu *gpu); int a6xx_preempt_submitqueue_setup(struct msm_gpu *gpu, struct msm_gpu_submitqueue *queue); void a6xx_preempt_submitqueue_close(struct msm_gpu *gpu, struct msm_gpu_submitqueue *queue); /* Return true if we are in a preempt state */ static inline bool a6xx_in_preempt(struct a6xx_gpu *a6xx_gpu) { /* * Make sure the read to preempt_state is ordered with respect to reads * of other variables before ... */ smp_rmb(); int preempt_state = atomic_read(&a6xx_gpu->preempt_state); /* ... and after. */ smp_rmb(); return !(preempt_state == PREEMPT_NONE || preempt_state == PREEMPT_FINISH); } void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp, bool suspended); unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu); void a6xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state, struct drm_printer *p); struct msm_gpu_state *a6xx_gpu_state_get(struct msm_gpu *gpu); int a6xx_gpu_state_put(struct msm_gpu_state *state); void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off); void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert); #endif /* __A6XX_GPU_H__ */