// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd * Zheng Yang * Yakir Yang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rockchip_drm_drv.h" #include "inno_hdmi.h" #define INNO_HDMI_MIN_TMDS_CLOCK 25000000U struct inno_hdmi_phy_config { unsigned long pixelclock; u8 pre_emphasis; u8 voltage_level_control; }; struct inno_hdmi_variant { struct inno_hdmi_phy_config *phy_configs; struct inno_hdmi_phy_config *default_phy_config; }; struct inno_hdmi_i2c { struct i2c_adapter adap; u8 ddc_addr; u8 segment_addr; struct mutex lock; struct completion cmp; }; struct inno_hdmi { struct device *dev; struct clk *pclk; struct clk *refclk; void __iomem *regs; struct drm_connector connector; struct rockchip_encoder encoder; struct inno_hdmi_i2c *i2c; struct i2c_adapter *ddc; const struct inno_hdmi_variant *variant; }; struct inno_hdmi_connector_state { struct drm_connector_state base; unsigned int colorimetry; }; static struct inno_hdmi *encoder_to_inno_hdmi(struct drm_encoder *encoder) { struct rockchip_encoder *rkencoder = to_rockchip_encoder(encoder); return container_of(rkencoder, struct inno_hdmi, encoder); } static struct inno_hdmi *connector_to_inno_hdmi(struct drm_connector *connector) { return container_of(connector, struct inno_hdmi, connector); } #define to_inno_hdmi_conn_state(conn_state) \ container_of_const(conn_state, struct inno_hdmi_connector_state, base) enum { CSC_RGB_0_255_TO_ITU601_16_235_8BIT, CSC_RGB_0_255_TO_ITU709_16_235_8BIT, CSC_RGB_0_255_TO_RGB_16_235_8BIT, }; static const char coeff_csc[][24] = { /* * RGB2YUV:601 SD mode: * Cb = -0.291G - 0.148R + 0.439B + 128 * Y = 0.504G + 0.257R + 0.098B + 16 * Cr = -0.368G + 0.439R - 0.071B + 128 */ { 0x11, 0x5f, 0x01, 0x82, 0x10, 0x23, 0x00, 0x80, 0x02, 0x1c, 0x00, 0xa1, 0x00, 0x36, 0x00, 0x1e, 0x11, 0x29, 0x10, 0x59, 0x01, 0x82, 0x00, 0x80 }, /* * RGB2YUV:709 HD mode: * Cb = - 0.338G - 0.101R + 0.439B + 128 * Y = 0.614G + 0.183R + 0.062B + 16 * Cr = - 0.399G + 0.439R - 0.040B + 128 */ { 0x11, 0x98, 0x01, 0xc1, 0x10, 0x28, 0x00, 0x80, 0x02, 0x74, 0x00, 0xbb, 0x00, 0x3f, 0x00, 0x10, 0x11, 0x5a, 0x10, 0x67, 0x01, 0xc1, 0x00, 0x80 }, /* * RGB[0:255]2RGB[16:235]: * R' = R x (235-16)/255 + 16; * G' = G x (235-16)/255 + 16; * B' = B x (235-16)/255 + 16; */ { 0x00, 0x00, 0x03, 0x6F, 0x00, 0x00, 0x00, 0x10, 0x03, 0x6F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x03, 0x6F, 0x00, 0x10 }, }; static struct inno_hdmi_phy_config rk3036_hdmi_phy_configs[] = { { 74250000, 0x3f, 0xbb }, { 165000000, 0x6f, 0xbb }, { ~0UL, 0x00, 0x00 } }; static struct inno_hdmi_phy_config rk3128_hdmi_phy_configs[] = { { 74250000, 0x3f, 0xaa }, { 165000000, 0x5f, 0xaa }, { ~0UL, 0x00, 0x00 } }; static int inno_hdmi_find_phy_config(struct inno_hdmi *hdmi, unsigned long pixelclk) { const struct inno_hdmi_phy_config *phy_configs = hdmi->variant->phy_configs; int i; for (i = 0; phy_configs[i].pixelclock != ~0UL; i++) { if (pixelclk <= phy_configs[i].pixelclock) return i; } DRM_DEV_DEBUG(hdmi->dev, "No phy configuration for pixelclock %lu\n", pixelclk); return -EINVAL; } static inline u8 hdmi_readb(struct inno_hdmi *hdmi, u16 offset) { return readl_relaxed(hdmi->regs + (offset) * 0x04); } static inline void hdmi_writeb(struct inno_hdmi *hdmi, u16 offset, u32 val) { writel_relaxed(val, hdmi->regs + (offset) * 0x04); } static inline void hdmi_modb(struct inno_hdmi *hdmi, u16 offset, u32 msk, u32 val) { u8 temp = hdmi_readb(hdmi, offset) & ~msk; temp |= val & msk; hdmi_writeb(hdmi, offset, temp); } static void inno_hdmi_i2c_init(struct inno_hdmi *hdmi, unsigned long long rate) { unsigned long long ddc_bus_freq = rate >> 2; do_div(ddc_bus_freq, HDMI_SCL_RATE); hdmi_writeb(hdmi, DDC_BUS_FREQ_L, ddc_bus_freq & 0xFF); hdmi_writeb(hdmi, DDC_BUS_FREQ_H, (ddc_bus_freq >> 8) & 0xFF); /* Clear the EDID interrupt flag and mute the interrupt */ hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0); hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY); } static void inno_hdmi_sys_power(struct inno_hdmi *hdmi, bool enable) { if (enable) hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_ON); else hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_OFF); } static void inno_hdmi_standby(struct inno_hdmi *hdmi) { inno_hdmi_sys_power(hdmi, false); hdmi_writeb(hdmi, HDMI_PHY_DRIVER, 0x00); hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, 0x00); hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x00); hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15); }; static void inno_hdmi_power_up(struct inno_hdmi *hdmi, unsigned long mpixelclock) { struct inno_hdmi_phy_config *phy_config; int ret = inno_hdmi_find_phy_config(hdmi, mpixelclock); if (ret < 0) { phy_config = hdmi->variant->default_phy_config; DRM_DEV_ERROR(hdmi->dev, "Using default phy configuration for TMDS rate %lu", mpixelclock); } else { phy_config = &hdmi->variant->phy_configs[ret]; } inno_hdmi_sys_power(hdmi, false); hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, phy_config->pre_emphasis); hdmi_writeb(hdmi, HDMI_PHY_DRIVER, phy_config->voltage_level_control); hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15); hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x14); hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x10); hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x0f); hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x00); hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x01); inno_hdmi_sys_power(hdmi, true); }; static void inno_hdmi_reset(struct inno_hdmi *hdmi) { u32 val; u32 msk; hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_DIGITAL, v_NOT_RST_DIGITAL); udelay(100); hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_ANALOG, v_NOT_RST_ANALOG); udelay(100); msk = m_REG_CLK_INV | m_REG_CLK_SOURCE | m_POWER | m_INT_POL; val = v_REG_CLK_INV | v_REG_CLK_SOURCE_SYS | v_PWR_ON | v_INT_POL_HIGH; hdmi_modb(hdmi, HDMI_SYS_CTRL, msk, val); inno_hdmi_standby(hdmi); } static int inno_hdmi_disable_frame(struct drm_connector *connector, enum hdmi_infoframe_type type) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); if (type != HDMI_INFOFRAME_TYPE_AVI) { drm_err(connector->dev, "Unsupported infoframe type: %u\n", type); return 0; } hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_BUF_INDEX, INFOFRAME_AVI); return 0; } static int inno_hdmi_upload_frame(struct drm_connector *connector, enum hdmi_infoframe_type type, const u8 *buffer, size_t len) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); ssize_t i; if (type != HDMI_INFOFRAME_TYPE_AVI) { drm_err(connector->dev, "Unsupported infoframe type: %u\n", type); return 0; } inno_hdmi_disable_frame(connector, type); for (i = 0; i < len; i++) hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_ADDR + i, buffer[i]); return 0; } static const struct drm_connector_hdmi_funcs inno_hdmi_hdmi_connector_funcs = { .clear_infoframe = inno_hdmi_disable_frame, .write_infoframe = inno_hdmi_upload_frame, }; static int inno_hdmi_config_video_csc(struct inno_hdmi *hdmi) { struct drm_connector *connector = &hdmi->connector; struct drm_connector_state *conn_state = connector->state; struct inno_hdmi_connector_state *inno_conn_state = to_inno_hdmi_conn_state(conn_state); int c0_c2_change = 0; int csc_enable = 0; int csc_mode = 0; int auto_csc = 0; int value; int i; /* Input video mode is SDR RGB24bit, data enable signal from external */ hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL1, v_DE_EXTERNAL | v_VIDEO_INPUT_FORMAT(VIDEO_INPUT_SDR_RGB444)); /* Input color hardcode to RGB, and output color hardcode to RGB888 */ value = v_VIDEO_INPUT_BITS(VIDEO_INPUT_8BITS) | v_VIDEO_OUTPUT_COLOR(0) | v_VIDEO_INPUT_CSP(0); hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL2, value); if (conn_state->hdmi.output_format == HDMI_COLORSPACE_RGB) { if (conn_state->hdmi.is_limited_range) { csc_mode = CSC_RGB_0_255_TO_RGB_16_235_8BIT; auto_csc = AUTO_CSC_DISABLE; c0_c2_change = C0_C2_CHANGE_DISABLE; csc_enable = v_CSC_ENABLE; } else { value = v_SOF_DISABLE | v_COLOR_DEPTH_NOT_INDICATED(1); hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value); hdmi_modb(hdmi, HDMI_VIDEO_CONTRL, m_VIDEO_AUTO_CSC | m_VIDEO_C0_C2_SWAP, v_VIDEO_AUTO_CSC(AUTO_CSC_DISABLE) | v_VIDEO_C0_C2_SWAP(C0_C2_CHANGE_DISABLE)); return 0; } } else { if (inno_conn_state->colorimetry == HDMI_COLORIMETRY_ITU_601) { if (conn_state->hdmi.output_format == HDMI_COLORSPACE_YUV444) { csc_mode = CSC_RGB_0_255_TO_ITU601_16_235_8BIT; auto_csc = AUTO_CSC_DISABLE; c0_c2_change = C0_C2_CHANGE_DISABLE; csc_enable = v_CSC_ENABLE; } } else { if (conn_state->hdmi.output_format == HDMI_COLORSPACE_YUV444) { csc_mode = CSC_RGB_0_255_TO_ITU709_16_235_8BIT; auto_csc = AUTO_CSC_DISABLE; c0_c2_change = C0_C2_CHANGE_DISABLE; csc_enable = v_CSC_ENABLE; } } } for (i = 0; i < 24; i++) hdmi_writeb(hdmi, HDMI_VIDEO_CSC_COEF + i, coeff_csc[csc_mode][i]); value = v_SOF_DISABLE | csc_enable | v_COLOR_DEPTH_NOT_INDICATED(1); hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value); hdmi_modb(hdmi, HDMI_VIDEO_CONTRL, m_VIDEO_AUTO_CSC | m_VIDEO_C0_C2_SWAP, v_VIDEO_AUTO_CSC(auto_csc) | v_VIDEO_C0_C2_SWAP(c0_c2_change)); return 0; } static int inno_hdmi_config_video_timing(struct inno_hdmi *hdmi, struct drm_display_mode *mode) { int value; /* Set detail external video timing polarity and interlace mode */ value = v_EXTERANL_VIDEO(1); value |= mode->flags & DRM_MODE_FLAG_PHSYNC ? v_HSYNC_POLARITY(1) : v_HSYNC_POLARITY(0); value |= mode->flags & DRM_MODE_FLAG_PVSYNC ? v_VSYNC_POLARITY(1) : v_VSYNC_POLARITY(0); value |= mode->flags & DRM_MODE_FLAG_INTERLACE ? v_INETLACE(1) : v_INETLACE(0); hdmi_writeb(hdmi, HDMI_VIDEO_TIMING_CTL, value); /* Set detail external video timing */ value = mode->htotal; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_H, (value >> 8) & 0xFF); value = mode->htotal - mode->hdisplay; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_H, (value >> 8) & 0xFF); value = mode->htotal - mode->hsync_start; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_H, (value >> 8) & 0xFF); value = mode->hsync_end - mode->hsync_start; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_H, (value >> 8) & 0xFF); value = mode->vtotal; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_H, (value >> 8) & 0xFF); value = mode->vtotal - mode->vdisplay; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VBLANK, value & 0xFF); value = mode->vtotal - mode->vsync_start; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDELAY, value & 0xFF); value = mode->vsync_end - mode->vsync_start; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDURATION, value & 0xFF); hdmi_writeb(hdmi, HDMI_PHY_PRE_DIV_RATIO, 0x1e); hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_LOW, 0x2c); hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_HIGH, 0x01); return 0; } static int inno_hdmi_setup(struct inno_hdmi *hdmi, struct drm_atomic_state *state) { struct drm_connector *connector = &hdmi->connector; struct drm_display_info *display = &connector->display_info; struct drm_connector_state *new_conn_state; struct drm_crtc_state *new_crtc_state; new_conn_state = drm_atomic_get_new_connector_state(state, connector); if (WARN_ON(!new_conn_state)) return -EINVAL; new_crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); if (WARN_ON(!new_crtc_state)) return -EINVAL; /* Mute video and audio output */ hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK, v_AUDIO_MUTE(1) | v_VIDEO_MUTE(1)); /* Set HDMI Mode */ hdmi_writeb(hdmi, HDMI_HDCP_CTRL, v_HDMI_DVI(display->is_hdmi)); inno_hdmi_config_video_timing(hdmi, &new_crtc_state->adjusted_mode); inno_hdmi_config_video_csc(hdmi); drm_atomic_helper_connector_hdmi_update_infoframes(connector, state); /* * When IP controller have configured to an accurate video * timing, then the TMDS clock source would be switched to * DCLK_LCDC, so we need to init the TMDS rate to mode pixel * clock rate, and reconfigure the DDC clock. */ inno_hdmi_i2c_init(hdmi, new_conn_state->hdmi.tmds_char_rate); /* Unmute video and audio output */ hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK, v_AUDIO_MUTE(0) | v_VIDEO_MUTE(0)); inno_hdmi_power_up(hdmi, new_conn_state->hdmi.tmds_char_rate); return 0; } static enum drm_mode_status inno_hdmi_display_mode_valid(struct inno_hdmi *hdmi, struct drm_display_mode *mode) { unsigned long mpixelclk, max_tolerance; long rounded_refclk; /* No support for double-clock modes */ if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_BAD; mpixelclk = mode->clock * 1000; if (mpixelclk < INNO_HDMI_MIN_TMDS_CLOCK) return MODE_CLOCK_LOW; if (inno_hdmi_find_phy_config(hdmi, mpixelclk) < 0) return MODE_CLOCK_HIGH; if (hdmi->refclk) { rounded_refclk = clk_round_rate(hdmi->refclk, mpixelclk); if (rounded_refclk < 0) return MODE_BAD; /* Vesa DMT standard mentions +/- 0.5% max tolerance */ max_tolerance = mpixelclk / 200; if (abs_diff((unsigned long)rounded_refclk, mpixelclk) > max_tolerance) return MODE_NOCLOCK; } return MODE_OK; } static void inno_hdmi_encoder_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct inno_hdmi *hdmi = encoder_to_inno_hdmi(encoder); inno_hdmi_setup(hdmi, state); } static void inno_hdmi_encoder_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct inno_hdmi *hdmi = encoder_to_inno_hdmi(encoder); inno_hdmi_standby(hdmi); } static int inno_hdmi_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state); struct drm_display_mode *mode = &crtc_state->adjusted_mode; u8 vic = drm_match_cea_mode(mode); struct inno_hdmi_connector_state *inno_conn_state = to_inno_hdmi_conn_state(conn_state); s->output_mode = ROCKCHIP_OUT_MODE_P888; s->output_type = DRM_MODE_CONNECTOR_HDMIA; if (vic == 6 || vic == 7 || vic == 21 || vic == 22 || vic == 2 || vic == 3 || vic == 17 || vic == 18) inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_601; else inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_709; return 0; } static const struct drm_encoder_helper_funcs inno_hdmi_encoder_helper_funcs = { .atomic_check = inno_hdmi_encoder_atomic_check, .atomic_enable = inno_hdmi_encoder_enable, .atomic_disable = inno_hdmi_encoder_disable, }; static enum drm_connector_status inno_hdmi_connector_detect(struct drm_connector *connector, bool force) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); return (hdmi_readb(hdmi, HDMI_STATUS) & m_HOTPLUG) ? connector_status_connected : connector_status_disconnected; } static int inno_hdmi_connector_get_modes(struct drm_connector *connector) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); const struct drm_edid *drm_edid; int ret = 0; if (!hdmi->ddc) return 0; drm_edid = drm_edid_read_ddc(connector, hdmi->ddc); drm_edid_connector_update(connector, drm_edid); ret = drm_edid_connector_add_modes(connector); drm_edid_free(drm_edid); return ret; } static enum drm_mode_status inno_hdmi_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); return inno_hdmi_display_mode_valid(hdmi, mode); } static void inno_hdmi_connector_destroy_state(struct drm_connector *connector, struct drm_connector_state *state) { struct inno_hdmi_connector_state *inno_conn_state = to_inno_hdmi_conn_state(state); __drm_atomic_helper_connector_destroy_state(&inno_conn_state->base); kfree(inno_conn_state); } static void inno_hdmi_connector_reset(struct drm_connector *connector) { struct inno_hdmi_connector_state *inno_conn_state; if (connector->state) { inno_hdmi_connector_destroy_state(connector, connector->state); connector->state = NULL; } inno_conn_state = kzalloc(sizeof(*inno_conn_state), GFP_KERNEL); if (!inno_conn_state) return; __drm_atomic_helper_connector_reset(connector, &inno_conn_state->base); __drm_atomic_helper_connector_hdmi_reset(connector, connector->state); inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_709; } static struct drm_connector_state * inno_hdmi_connector_duplicate_state(struct drm_connector *connector) { struct inno_hdmi_connector_state *inno_conn_state; if (WARN_ON(!connector->state)) return NULL; inno_conn_state = kmemdup(to_inno_hdmi_conn_state(connector->state), sizeof(*inno_conn_state), GFP_KERNEL); if (!inno_conn_state) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, &inno_conn_state->base); return &inno_conn_state->base; } static const struct drm_connector_funcs inno_hdmi_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .detect = inno_hdmi_connector_detect, .reset = inno_hdmi_connector_reset, .atomic_duplicate_state = inno_hdmi_connector_duplicate_state, .atomic_destroy_state = inno_hdmi_connector_destroy_state, }; static struct drm_connector_helper_funcs inno_hdmi_connector_helper_funcs = { .atomic_check = drm_atomic_helper_connector_hdmi_check, .get_modes = inno_hdmi_connector_get_modes, .mode_valid = inno_hdmi_connector_mode_valid, }; static int inno_hdmi_register(struct drm_device *drm, struct inno_hdmi *hdmi) { struct drm_encoder *encoder = &hdmi->encoder.encoder; struct device *dev = hdmi->dev; encoder->possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); /* * If we failed to find the CRTC(s) which this encoder is * supposed to be connected to, it's because the CRTC has * not been registered yet. Defer probing, and hope that * the required CRTC is added later. */ if (encoder->possible_crtcs == 0) return -EPROBE_DEFER; drm_encoder_helper_add(encoder, &inno_hdmi_encoder_helper_funcs); drm_simple_encoder_init(drm, encoder, DRM_MODE_ENCODER_TMDS); hdmi->connector.polled = DRM_CONNECTOR_POLL_HPD; drm_connector_helper_add(&hdmi->connector, &inno_hdmi_connector_helper_funcs); drmm_connector_hdmi_init(drm, &hdmi->connector, "Rockchip", "Inno HDMI", &inno_hdmi_connector_funcs, &inno_hdmi_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA, hdmi->ddc, BIT(HDMI_COLORSPACE_RGB), 8); drm_connector_attach_encoder(&hdmi->connector, encoder); return 0; } static irqreturn_t inno_hdmi_i2c_irq(struct inno_hdmi *hdmi) { struct inno_hdmi_i2c *i2c = hdmi->i2c; u8 stat; stat = hdmi_readb(hdmi, HDMI_INTERRUPT_STATUS1); if (!(stat & m_INT_EDID_READY)) return IRQ_NONE; /* Clear HDMI EDID interrupt flag */ hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY); complete(&i2c->cmp); return IRQ_HANDLED; } static irqreturn_t inno_hdmi_hardirq(int irq, void *dev_id) { struct inno_hdmi *hdmi = dev_id; irqreturn_t ret = IRQ_NONE; u8 interrupt; if (hdmi->i2c) ret = inno_hdmi_i2c_irq(hdmi); interrupt = hdmi_readb(hdmi, HDMI_STATUS); if (interrupt & m_INT_HOTPLUG) { hdmi_modb(hdmi, HDMI_STATUS, m_INT_HOTPLUG, m_INT_HOTPLUG); ret = IRQ_WAKE_THREAD; } return ret; } static irqreturn_t inno_hdmi_irq(int irq, void *dev_id) { struct inno_hdmi *hdmi = dev_id; drm_helper_hpd_irq_event(hdmi->connector.dev); return IRQ_HANDLED; } static int inno_hdmi_i2c_read(struct inno_hdmi *hdmi, struct i2c_msg *msgs) { int length = msgs->len; u8 *buf = msgs->buf; int ret; ret = wait_for_completion_timeout(&hdmi->i2c->cmp, HZ / 10); if (!ret) return -EAGAIN; while (length--) *buf++ = hdmi_readb(hdmi, HDMI_EDID_FIFO_ADDR); return 0; } static int inno_hdmi_i2c_write(struct inno_hdmi *hdmi, struct i2c_msg *msgs) { /* * The DDC module only support read EDID message, so * we assume that each word write to this i2c adapter * should be the offset of EDID word address. */ if ((msgs->len != 1) || ((msgs->addr != DDC_ADDR) && (msgs->addr != DDC_SEGMENT_ADDR))) return -EINVAL; reinit_completion(&hdmi->i2c->cmp); if (msgs->addr == DDC_SEGMENT_ADDR) hdmi->i2c->segment_addr = msgs->buf[0]; if (msgs->addr == DDC_ADDR) hdmi->i2c->ddc_addr = msgs->buf[0]; /* Set edid fifo first addr */ hdmi_writeb(hdmi, HDMI_EDID_FIFO_OFFSET, 0x00); /* Set edid word address 0x00/0x80 */ hdmi_writeb(hdmi, HDMI_EDID_WORD_ADDR, hdmi->i2c->ddc_addr); /* Set edid segment pointer */ hdmi_writeb(hdmi, HDMI_EDID_SEGMENT_POINTER, hdmi->i2c->segment_addr); return 0; } static int inno_hdmi_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct inno_hdmi *hdmi = i2c_get_adapdata(adap); struct inno_hdmi_i2c *i2c = hdmi->i2c; int i, ret = 0; mutex_lock(&i2c->lock); /* Clear the EDID interrupt flag and unmute the interrupt */ hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, m_INT_EDID_READY); hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY); for (i = 0; i < num; i++) { DRM_DEV_DEBUG(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n", i + 1, num, msgs[i].len, msgs[i].flags); if (msgs[i].flags & I2C_M_RD) ret = inno_hdmi_i2c_read(hdmi, &msgs[i]); else ret = inno_hdmi_i2c_write(hdmi, &msgs[i]); if (ret < 0) break; } if (!ret) ret = num; /* Mute HDMI EDID interrupt */ hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0); mutex_unlock(&i2c->lock); return ret; } static u32 inno_hdmi_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm inno_hdmi_algorithm = { .master_xfer = inno_hdmi_i2c_xfer, .functionality = inno_hdmi_i2c_func, }; static struct i2c_adapter *inno_hdmi_i2c_adapter(struct inno_hdmi *hdmi) { struct i2c_adapter *adap; struct inno_hdmi_i2c *i2c; int ret; i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL); if (!i2c) return ERR_PTR(-ENOMEM); mutex_init(&i2c->lock); init_completion(&i2c->cmp); adap = &i2c->adap; adap->owner = THIS_MODULE; adap->dev.parent = hdmi->dev; adap->dev.of_node = hdmi->dev->of_node; adap->algo = &inno_hdmi_algorithm; strscpy(adap->name, "Inno HDMI", sizeof(adap->name)); i2c_set_adapdata(adap, hdmi); ret = i2c_add_adapter(adap); if (ret) { dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name); devm_kfree(hdmi->dev, i2c); return ERR_PTR(ret); } hdmi->i2c = i2c; DRM_DEV_INFO(hdmi->dev, "registered %s I2C bus driver\n", adap->name); return adap; } static int inno_hdmi_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = data; struct inno_hdmi *hdmi; const struct inno_hdmi_variant *variant; int irq; int ret; hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL); if (!hdmi) return -ENOMEM; hdmi->dev = dev; variant = of_device_get_match_data(hdmi->dev); if (!variant) return -EINVAL; hdmi->variant = variant; hdmi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hdmi->regs)) return PTR_ERR(hdmi->regs); hdmi->pclk = devm_clk_get(hdmi->dev, "pclk"); if (IS_ERR(hdmi->pclk)) { DRM_DEV_ERROR(hdmi->dev, "Unable to get HDMI pclk clk\n"); return PTR_ERR(hdmi->pclk); } ret = clk_prepare_enable(hdmi->pclk); if (ret) { DRM_DEV_ERROR(hdmi->dev, "Cannot enable HDMI pclk clock: %d\n", ret); return ret; } hdmi->refclk = devm_clk_get_optional(hdmi->dev, "ref"); if (IS_ERR(hdmi->refclk)) { DRM_DEV_ERROR(hdmi->dev, "Unable to get HDMI reference clock\n"); ret = PTR_ERR(hdmi->refclk); goto err_disable_pclk; } ret = clk_prepare_enable(hdmi->refclk); if (ret) { DRM_DEV_ERROR(hdmi->dev, "Cannot enable HDMI reference clock: %d\n", ret); goto err_disable_pclk; } irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto err_disable_clk; } inno_hdmi_reset(hdmi); hdmi->ddc = inno_hdmi_i2c_adapter(hdmi); if (IS_ERR(hdmi->ddc)) { ret = PTR_ERR(hdmi->ddc); hdmi->ddc = NULL; goto err_disable_clk; } /* * When the controller isn't configured to an accurate * video timing and there is no reference clock available, * then the TMDS clock source would be switched to PCLK_HDMI, * so we need to init the TMDS rate to PCLK rate, and * reconfigure the DDC clock. */ if (hdmi->refclk) inno_hdmi_i2c_init(hdmi, clk_get_rate(hdmi->refclk)); else inno_hdmi_i2c_init(hdmi, clk_get_rate(hdmi->pclk)); ret = inno_hdmi_register(drm, hdmi); if (ret) goto err_put_adapter; dev_set_drvdata(dev, hdmi); /* Unmute hotplug interrupt */ hdmi_modb(hdmi, HDMI_STATUS, m_MASK_INT_HOTPLUG, v_MASK_INT_HOTPLUG(1)); ret = devm_request_threaded_irq(dev, irq, inno_hdmi_hardirq, inno_hdmi_irq, IRQF_SHARED, dev_name(dev), hdmi); if (ret < 0) goto err_cleanup_hdmi; return 0; err_cleanup_hdmi: hdmi->connector.funcs->destroy(&hdmi->connector); hdmi->encoder.encoder.funcs->destroy(&hdmi->encoder.encoder); err_put_adapter: i2c_put_adapter(hdmi->ddc); err_disable_clk: clk_disable_unprepare(hdmi->refclk); err_disable_pclk: clk_disable_unprepare(hdmi->pclk); return ret; } static void inno_hdmi_unbind(struct device *dev, struct device *master, void *data) { struct inno_hdmi *hdmi = dev_get_drvdata(dev); hdmi->connector.funcs->destroy(&hdmi->connector); hdmi->encoder.encoder.funcs->destroy(&hdmi->encoder.encoder); i2c_put_adapter(hdmi->ddc); clk_disable_unprepare(hdmi->refclk); clk_disable_unprepare(hdmi->pclk); } static const struct component_ops inno_hdmi_ops = { .bind = inno_hdmi_bind, .unbind = inno_hdmi_unbind, }; static int inno_hdmi_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &inno_hdmi_ops); } static void inno_hdmi_remove(struct platform_device *pdev) { component_del(&pdev->dev, &inno_hdmi_ops); } static const struct inno_hdmi_variant rk3036_inno_hdmi_variant = { .phy_configs = rk3036_hdmi_phy_configs, .default_phy_config = &rk3036_hdmi_phy_configs[1], }; static const struct inno_hdmi_variant rk3128_inno_hdmi_variant = { .phy_configs = rk3128_hdmi_phy_configs, .default_phy_config = &rk3128_hdmi_phy_configs[1], }; static const struct of_device_id inno_hdmi_dt_ids[] = { { .compatible = "rockchip,rk3036-inno-hdmi", .data = &rk3036_inno_hdmi_variant, }, { .compatible = "rockchip,rk3128-inno-hdmi", .data = &rk3128_inno_hdmi_variant, }, {}, }; MODULE_DEVICE_TABLE(of, inno_hdmi_dt_ids); struct platform_driver inno_hdmi_driver = { .probe = inno_hdmi_probe, .remove = inno_hdmi_remove, .driver = { .name = "innohdmi-rockchip", .of_match_table = inno_hdmi_dt_ids, }, };