// SPDX-License-Identifier: GPL-2.0+ /* Copyright (C) 2018 Broadcom */ /** * DOC: Broadcom V3D scheduling * * The shared DRM GPU scheduler is used to coordinate submitting jobs * to the hardware. Each DRM fd (roughly a client process) gets its * own scheduler entity, which will process jobs in order. The GPU * scheduler will round-robin between clients to submit the next job. * * For simplicity, and in order to keep latency low for interactive * jobs when bulk background jobs are queued up, we submit a new job * to the HW only when it has completed the last one, instead of * filling up the CT[01]Q FIFOs with jobs. Similarly, we use * drm_sched_job_add_dependency() to manage the dependency between bin and * render, instead of having the clients submit jobs using the HW's * semaphores to interlock between them. */ #include #include #include #include "v3d_drv.h" #include "v3d_regs.h" #include "v3d_trace.h" #define V3D_CSD_CFG012_WG_COUNT_SHIFT 16 static struct v3d_job * to_v3d_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_job, base); } static struct v3d_bin_job * to_bin_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_bin_job, base.base); } static struct v3d_render_job * to_render_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_render_job, base.base); } static struct v3d_tfu_job * to_tfu_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_tfu_job, base.base); } static struct v3d_csd_job * to_csd_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_csd_job, base.base); } static struct v3d_cpu_job * to_cpu_job(struct drm_sched_job *sched_job) { return container_of(sched_job, struct v3d_cpu_job, base.base); } static void v3d_sched_job_free(struct drm_sched_job *sched_job) { struct v3d_job *job = to_v3d_job(sched_job); v3d_job_cleanup(job); } void v3d_timestamp_query_info_free(struct v3d_timestamp_query_info *query_info, unsigned int count) { if (query_info->queries) { unsigned int i; for (i = 0; i < count; i++) drm_syncobj_put(query_info->queries[i].syncobj); kvfree(query_info->queries); } } void v3d_performance_query_info_free(struct v3d_performance_query_info *query_info, unsigned int count) { if (query_info->queries) { unsigned int i; for (i = 0; i < count; i++) { drm_syncobj_put(query_info->queries[i].syncobj); kvfree(query_info->queries[i].kperfmon_ids); } kvfree(query_info->queries); } } static void v3d_cpu_job_free(struct drm_sched_job *sched_job) { struct v3d_cpu_job *job = to_cpu_job(sched_job); v3d_timestamp_query_info_free(&job->timestamp_query, job->timestamp_query.count); v3d_performance_query_info_free(&job->performance_query, job->performance_query.count); v3d_job_cleanup(&job->base); } static void v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job) { if (job->perfmon != v3d->active_perfmon) v3d_perfmon_stop(v3d, v3d->active_perfmon, true); if (job->perfmon && v3d->active_perfmon != job->perfmon) v3d_perfmon_start(v3d, job->perfmon); } static void v3d_job_start_stats(struct v3d_job *job, enum v3d_queue queue) { struct v3d_dev *v3d = job->v3d; struct v3d_file_priv *file = job->file->driver_priv; struct v3d_stats *global_stats = &v3d->queue[queue].stats; struct v3d_stats *local_stats = &file->stats[queue]; u64 now = local_clock(); unsigned long flags; /* * We only need to disable local interrupts to appease lockdep who * otherwise would think v3d_job_start_stats vs v3d_stats_update has an * unsafe in-irq vs no-irq-off usage problem. This is a false positive * because all the locks are per queue and stats type, and all jobs are * completely one at a time serialised. More specifically: * * 1. Locks for GPU queues are updated from interrupt handlers under a * spin lock and started here with preemption disabled. * * 2. Locks for CPU queues are updated from the worker with preemption * disabled and equally started here with preemption disabled. * * Therefore both are consistent. * * 3. Because next job can only be queued after the previous one has * been signaled, and locks are per queue, there is also no scope for * the start part to race with the update part. */ if (IS_ENABLED(CONFIG_LOCKDEP)) local_irq_save(flags); else preempt_disable(); write_seqcount_begin(&local_stats->lock); local_stats->start_ns = now; write_seqcount_end(&local_stats->lock); write_seqcount_begin(&global_stats->lock); global_stats->start_ns = now; write_seqcount_end(&global_stats->lock); if (IS_ENABLED(CONFIG_LOCKDEP)) local_irq_restore(flags); else preempt_enable(); } static void v3d_stats_update(struct v3d_stats *stats, u64 now) { write_seqcount_begin(&stats->lock); stats->enabled_ns += now - stats->start_ns; stats->jobs_completed++; stats->start_ns = 0; write_seqcount_end(&stats->lock); } void v3d_job_update_stats(struct v3d_job *job, enum v3d_queue queue) { struct v3d_dev *v3d = job->v3d; struct v3d_file_priv *file = job->file->driver_priv; struct v3d_stats *global_stats = &v3d->queue[queue].stats; struct v3d_stats *local_stats = &file->stats[queue]; u64 now = local_clock(); unsigned long flags; /* See comment in v3d_job_start_stats() */ if (IS_ENABLED(CONFIG_LOCKDEP)) local_irq_save(flags); else preempt_disable(); v3d_stats_update(local_stats, now); v3d_stats_update(global_stats, now); if (IS_ENABLED(CONFIG_LOCKDEP)) local_irq_restore(flags); else preempt_enable(); } static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job) { struct v3d_bin_job *job = to_bin_job(sched_job); struct v3d_dev *v3d = job->base.v3d; struct drm_device *dev = &v3d->drm; struct dma_fence *fence; unsigned long irqflags; if (unlikely(job->base.base.s_fence->finished.error)) return NULL; /* Lock required around bin_job update vs * v3d_overflow_mem_work(). */ spin_lock_irqsave(&v3d->job_lock, irqflags); v3d->bin_job = job; /* Clear out the overflow allocation, so we don't * reuse the overflow attached to a previous job. */ V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0); spin_unlock_irqrestore(&v3d->job_lock, irqflags); v3d_invalidate_caches(v3d); fence = v3d_fence_create(v3d, V3D_BIN); if (IS_ERR(fence)) return NULL; if (job->base.irq_fence) dma_fence_put(job->base.irq_fence); job->base.irq_fence = dma_fence_get(fence); trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno, job->start, job->end); v3d_job_start_stats(&job->base, V3D_BIN); v3d_switch_perfmon(v3d, &job->base); /* Set the current and end address of the control list. * Writing the end register is what starts the job. */ if (job->qma) { V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma); V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms); } if (job->qts) { V3D_CORE_WRITE(0, V3D_CLE_CT0QTS, V3D_CLE_CT0QTS_ENABLE | job->qts); } V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start); V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end); return fence; } static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job) { struct v3d_render_job *job = to_render_job(sched_job); struct v3d_dev *v3d = job->base.v3d; struct drm_device *dev = &v3d->drm; struct dma_fence *fence; if (unlikely(job->base.base.s_fence->finished.error)) return NULL; v3d->render_job = job; /* Can we avoid this flush? We need to be careful of * scheduling, though -- imagine job0 rendering to texture and * job1 reading, and them being executed as bin0, bin1, * render0, render1, so that render1's flush at bin time * wasn't enough. */ v3d_invalidate_caches(v3d); fence = v3d_fence_create(v3d, V3D_RENDER); if (IS_ERR(fence)) return NULL; if (job->base.irq_fence) dma_fence_put(job->base.irq_fence); job->base.irq_fence = dma_fence_get(fence); trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno, job->start, job->end); v3d_job_start_stats(&job->base, V3D_RENDER); v3d_switch_perfmon(v3d, &job->base); /* XXX: Set the QCFG */ /* Set the current and end address of the control list. * Writing the end register is what starts the job. */ V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start); V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end); return fence; } static struct dma_fence * v3d_tfu_job_run(struct drm_sched_job *sched_job) { struct v3d_tfu_job *job = to_tfu_job(sched_job); struct v3d_dev *v3d = job->base.v3d; struct drm_device *dev = &v3d->drm; struct dma_fence *fence; fence = v3d_fence_create(v3d, V3D_TFU); if (IS_ERR(fence)) return NULL; v3d->tfu_job = job; if (job->base.irq_fence) dma_fence_put(job->base.irq_fence); job->base.irq_fence = dma_fence_get(fence); trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno); v3d_job_start_stats(&job->base, V3D_TFU); V3D_WRITE(V3D_TFU_IIA(v3d->ver), job->args.iia); V3D_WRITE(V3D_TFU_IIS(v3d->ver), job->args.iis); V3D_WRITE(V3D_TFU_ICA(v3d->ver), job->args.ica); V3D_WRITE(V3D_TFU_IUA(v3d->ver), job->args.iua); V3D_WRITE(V3D_TFU_IOA(v3d->ver), job->args.ioa); if (v3d->ver >= 71) V3D_WRITE(V3D_V7_TFU_IOC, job->args.v71.ioc); V3D_WRITE(V3D_TFU_IOS(v3d->ver), job->args.ios); V3D_WRITE(V3D_TFU_COEF0(v3d->ver), job->args.coef[0]); if (v3d->ver >= 71 || (job->args.coef[0] & V3D_TFU_COEF0_USECOEF)) { V3D_WRITE(V3D_TFU_COEF1(v3d->ver), job->args.coef[1]); V3D_WRITE(V3D_TFU_COEF2(v3d->ver), job->args.coef[2]); V3D_WRITE(V3D_TFU_COEF3(v3d->ver), job->args.coef[3]); } /* ICFG kicks off the job. */ V3D_WRITE(V3D_TFU_ICFG(v3d->ver), job->args.icfg | V3D_TFU_ICFG_IOC); return fence; } static struct dma_fence * v3d_csd_job_run(struct drm_sched_job *sched_job) { struct v3d_csd_job *job = to_csd_job(sched_job); struct v3d_dev *v3d = job->base.v3d; struct drm_device *dev = &v3d->drm; struct dma_fence *fence; int i, csd_cfg0_reg; v3d->csd_job = job; v3d_invalidate_caches(v3d); fence = v3d_fence_create(v3d, V3D_CSD); if (IS_ERR(fence)) return NULL; if (job->base.irq_fence) dma_fence_put(job->base.irq_fence); job->base.irq_fence = dma_fence_get(fence); trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno); v3d_job_start_stats(&job->base, V3D_CSD); v3d_switch_perfmon(v3d, &job->base); csd_cfg0_reg = V3D_CSD_QUEUED_CFG0(v3d->ver); for (i = 1; i <= 6; i++) V3D_CORE_WRITE(0, csd_cfg0_reg + 4 * i, job->args.cfg[i]); /* Although V3D 7.1 has an eighth configuration register, we are not * using it. Therefore, make sure it remains unused. * * XXX: Set the CFG7 register */ if (v3d->ver >= 71) V3D_CORE_WRITE(0, V3D_V7_CSD_QUEUED_CFG7, 0); /* CFG0 write kicks off the job. */ V3D_CORE_WRITE(0, csd_cfg0_reg, job->args.cfg[0]); return fence; } static void v3d_rewrite_csd_job_wg_counts_from_indirect(struct v3d_cpu_job *job) { struct v3d_indirect_csd_info *indirect_csd = &job->indirect_csd; struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); struct v3d_bo *indirect = to_v3d_bo(indirect_csd->indirect); struct drm_v3d_submit_csd *args = &indirect_csd->job->args; u32 *wg_counts; v3d_get_bo_vaddr(bo); v3d_get_bo_vaddr(indirect); wg_counts = (uint32_t *)(bo->vaddr + indirect_csd->offset); if (wg_counts[0] == 0 || wg_counts[1] == 0 || wg_counts[2] == 0) return; args->cfg[0] = wg_counts[0] << V3D_CSD_CFG012_WG_COUNT_SHIFT; args->cfg[1] = wg_counts[1] << V3D_CSD_CFG012_WG_COUNT_SHIFT; args->cfg[2] = wg_counts[2] << V3D_CSD_CFG012_WG_COUNT_SHIFT; args->cfg[4] = DIV_ROUND_UP(indirect_csd->wg_size, 16) * (wg_counts[0] * wg_counts[1] * wg_counts[2]) - 1; for (int i = 0; i < 3; i++) { /* 0xffffffff indicates that the uniform rewrite is not needed */ if (indirect_csd->wg_uniform_offsets[i] != 0xffffffff) { u32 uniform_idx = indirect_csd->wg_uniform_offsets[i]; ((uint32_t *)indirect->vaddr)[uniform_idx] = wg_counts[i]; } } v3d_put_bo_vaddr(indirect); v3d_put_bo_vaddr(bo); } static void v3d_timestamp_query(struct v3d_cpu_job *job) { struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query; struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); u8 *value_addr; v3d_get_bo_vaddr(bo); for (int i = 0; i < timestamp_query->count; i++) { value_addr = ((u8 *)bo->vaddr) + timestamp_query->queries[i].offset; *((u64 *)value_addr) = i == 0 ? ktime_get_ns() : 0ull; drm_syncobj_replace_fence(timestamp_query->queries[i].syncobj, job->base.done_fence); } v3d_put_bo_vaddr(bo); } static void v3d_reset_timestamp_queries(struct v3d_cpu_job *job) { struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query; struct v3d_timestamp_query *queries = timestamp_query->queries; struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); u8 *value_addr; v3d_get_bo_vaddr(bo); for (int i = 0; i < timestamp_query->count; i++) { value_addr = ((u8 *)bo->vaddr) + queries[i].offset; *((u64 *)value_addr) = 0; drm_syncobj_replace_fence(queries[i].syncobj, NULL); } v3d_put_bo_vaddr(bo); } static void write_to_buffer_32(u32 *dst, unsigned int idx, u32 value) { dst[idx] = value; } static void write_to_buffer_64(u64 *dst, unsigned int idx, u64 value) { dst[idx] = value; } static void write_to_buffer(void *dst, unsigned int idx, bool do_64bit, u64 value) { if (do_64bit) write_to_buffer_64(dst, idx, value); else write_to_buffer_32(dst, idx, value); } static void v3d_copy_query_results(struct v3d_cpu_job *job) { struct v3d_timestamp_query_info *timestamp_query = &job->timestamp_query; struct v3d_timestamp_query *queries = timestamp_query->queries; struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); struct v3d_bo *timestamp = to_v3d_bo(job->base.bo[1]); struct v3d_copy_query_results_info *copy = &job->copy; struct dma_fence *fence; u8 *query_addr; bool available, write_result; u8 *data; int i; v3d_get_bo_vaddr(bo); v3d_get_bo_vaddr(timestamp); data = ((u8 *)bo->vaddr) + copy->offset; for (i = 0; i < timestamp_query->count; i++) { fence = drm_syncobj_fence_get(queries[i].syncobj); available = fence ? dma_fence_is_signaled(fence) : false; write_result = available || copy->do_partial; if (write_result) { query_addr = ((u8 *)timestamp->vaddr) + queries[i].offset; write_to_buffer(data, 0, copy->do_64bit, *((u64 *)query_addr)); } if (copy->availability_bit) write_to_buffer(data, 1, copy->do_64bit, available ? 1u : 0u); data += copy->stride; dma_fence_put(fence); } v3d_put_bo_vaddr(timestamp); v3d_put_bo_vaddr(bo); } static void v3d_reset_performance_queries(struct v3d_cpu_job *job) { struct v3d_performance_query_info *performance_query = &job->performance_query; struct v3d_file_priv *v3d_priv = job->base.file->driver_priv; struct v3d_dev *v3d = job->base.v3d; struct v3d_perfmon *perfmon; for (int i = 0; i < performance_query->count; i++) { for (int j = 0; j < performance_query->nperfmons; j++) { perfmon = v3d_perfmon_find(v3d_priv, performance_query->queries[i].kperfmon_ids[j]); if (!perfmon) { DRM_DEBUG("Failed to find perfmon."); continue; } v3d_perfmon_stop(v3d, perfmon, false); memset(perfmon->values, 0, perfmon->ncounters * sizeof(u64)); v3d_perfmon_put(perfmon); } drm_syncobj_replace_fence(performance_query->queries[i].syncobj, NULL); } } static void v3d_write_performance_query_result(struct v3d_cpu_job *job, void *data, unsigned int query) { struct v3d_performance_query_info *performance_query = &job->performance_query; struct v3d_file_priv *v3d_priv = job->base.file->driver_priv; struct v3d_performance_query *perf_query = &performance_query->queries[query]; struct v3d_dev *v3d = job->base.v3d; unsigned int i, j, offset; for (i = 0, offset = 0; i < performance_query->nperfmons; i++, offset += DRM_V3D_MAX_PERF_COUNTERS) { struct v3d_perfmon *perfmon; perfmon = v3d_perfmon_find(v3d_priv, perf_query->kperfmon_ids[i]); if (!perfmon) { DRM_DEBUG("Failed to find perfmon."); continue; } v3d_perfmon_stop(v3d, perfmon, true); if (job->copy.do_64bit) { for (j = 0; j < perfmon->ncounters; j++) write_to_buffer_64(data, offset + j, perfmon->values[j]); } else { for (j = 0; j < perfmon->ncounters; j++) write_to_buffer_32(data, offset + j, perfmon->values[j]); } v3d_perfmon_put(perfmon); } } static void v3d_copy_performance_query(struct v3d_cpu_job *job) { struct v3d_performance_query_info *performance_query = &job->performance_query; struct v3d_copy_query_results_info *copy = &job->copy; struct v3d_bo *bo = to_v3d_bo(job->base.bo[0]); struct dma_fence *fence; bool available, write_result; u8 *data; v3d_get_bo_vaddr(bo); data = ((u8 *)bo->vaddr) + copy->offset; for (int i = 0; i < performance_query->count; i++) { fence = drm_syncobj_fence_get(performance_query->queries[i].syncobj); available = fence ? dma_fence_is_signaled(fence) : false; write_result = available || copy->do_partial; if (write_result) v3d_write_performance_query_result(job, data, i); if (copy->availability_bit) write_to_buffer(data, performance_query->ncounters, copy->do_64bit, available ? 1u : 0u); data += copy->stride; dma_fence_put(fence); } v3d_put_bo_vaddr(bo); } static const v3d_cpu_job_fn cpu_job_function[] = { [V3D_CPU_JOB_TYPE_INDIRECT_CSD] = v3d_rewrite_csd_job_wg_counts_from_indirect, [V3D_CPU_JOB_TYPE_TIMESTAMP_QUERY] = v3d_timestamp_query, [V3D_CPU_JOB_TYPE_RESET_TIMESTAMP_QUERY] = v3d_reset_timestamp_queries, [V3D_CPU_JOB_TYPE_COPY_TIMESTAMP_QUERY] = v3d_copy_query_results, [V3D_CPU_JOB_TYPE_RESET_PERFORMANCE_QUERY] = v3d_reset_performance_queries, [V3D_CPU_JOB_TYPE_COPY_PERFORMANCE_QUERY] = v3d_copy_performance_query, }; static struct dma_fence * v3d_cpu_job_run(struct drm_sched_job *sched_job) { struct v3d_cpu_job *job = to_cpu_job(sched_job); struct v3d_dev *v3d = job->base.v3d; v3d->cpu_job = job; if (job->job_type >= ARRAY_SIZE(cpu_job_function)) { DRM_DEBUG_DRIVER("Unknown CPU job: %d\n", job->job_type); return NULL; } v3d_job_start_stats(&job->base, V3D_CPU); trace_v3d_cpu_job_begin(&v3d->drm, job->job_type); cpu_job_function[job->job_type](job); trace_v3d_cpu_job_end(&v3d->drm, job->job_type); v3d_job_update_stats(&job->base, V3D_CPU); return NULL; } static struct dma_fence * v3d_cache_clean_job_run(struct drm_sched_job *sched_job) { struct v3d_job *job = to_v3d_job(sched_job); struct v3d_dev *v3d = job->v3d; v3d_job_start_stats(job, V3D_CACHE_CLEAN); v3d_clean_caches(v3d); v3d_job_update_stats(job, V3D_CACHE_CLEAN); return NULL; } static enum drm_gpu_sched_stat v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job) { enum v3d_queue q; mutex_lock(&v3d->reset_lock); /* block scheduler */ for (q = 0; q < V3D_MAX_QUEUES; q++) drm_sched_stop(&v3d->queue[q].sched, sched_job); if (sched_job) drm_sched_increase_karma(sched_job); /* get the GPU back into the init state */ v3d_reset(v3d); for (q = 0; q < V3D_MAX_QUEUES; q++) drm_sched_resubmit_jobs(&v3d->queue[q].sched); /* Unblock schedulers and restart their jobs. */ for (q = 0; q < V3D_MAX_QUEUES; q++) { drm_sched_start(&v3d->queue[q].sched, 0); } mutex_unlock(&v3d->reset_lock); return DRM_GPU_SCHED_STAT_NOMINAL; } /* If the current address or return address have changed, then the GPU * has probably made progress and we should delay the reset. This * could fail if the GPU got in an infinite loop in the CL, but that * is pretty unlikely outside of an i-g-t testcase. */ static enum drm_gpu_sched_stat v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q, u32 *timedout_ctca, u32 *timedout_ctra) { struct v3d_job *job = to_v3d_job(sched_job); struct v3d_dev *v3d = job->v3d; u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q)); u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q)); if (*timedout_ctca != ctca || *timedout_ctra != ctra) { *timedout_ctca = ctca; *timedout_ctra = ctra; return DRM_GPU_SCHED_STAT_NOMINAL; } return v3d_gpu_reset_for_timeout(v3d, sched_job); } static enum drm_gpu_sched_stat v3d_bin_job_timedout(struct drm_sched_job *sched_job) { struct v3d_bin_job *job = to_bin_job(sched_job); return v3d_cl_job_timedout(sched_job, V3D_BIN, &job->timedout_ctca, &job->timedout_ctra); } static enum drm_gpu_sched_stat v3d_render_job_timedout(struct drm_sched_job *sched_job) { struct v3d_render_job *job = to_render_job(sched_job); return v3d_cl_job_timedout(sched_job, V3D_RENDER, &job->timedout_ctca, &job->timedout_ctra); } static enum drm_gpu_sched_stat v3d_generic_job_timedout(struct drm_sched_job *sched_job) { struct v3d_job *job = to_v3d_job(sched_job); return v3d_gpu_reset_for_timeout(job->v3d, sched_job); } static enum drm_gpu_sched_stat v3d_csd_job_timedout(struct drm_sched_job *sched_job) { struct v3d_csd_job *job = to_csd_job(sched_job); struct v3d_dev *v3d = job->base.v3d; u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4(v3d->ver)); /* If we've made progress, skip reset and let the timer get * rearmed. */ if (job->timedout_batches != batches) { job->timedout_batches = batches; return DRM_GPU_SCHED_STAT_NOMINAL; } return v3d_gpu_reset_for_timeout(v3d, sched_job); } static const struct drm_sched_backend_ops v3d_bin_sched_ops = { .run_job = v3d_bin_job_run, .timedout_job = v3d_bin_job_timedout, .free_job = v3d_sched_job_free, }; static const struct drm_sched_backend_ops v3d_render_sched_ops = { .run_job = v3d_render_job_run, .timedout_job = v3d_render_job_timedout, .free_job = v3d_sched_job_free, }; static const struct drm_sched_backend_ops v3d_tfu_sched_ops = { .run_job = v3d_tfu_job_run, .timedout_job = v3d_generic_job_timedout, .free_job = v3d_sched_job_free, }; static const struct drm_sched_backend_ops v3d_csd_sched_ops = { .run_job = v3d_csd_job_run, .timedout_job = v3d_csd_job_timedout, .free_job = v3d_sched_job_free }; static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = { .run_job = v3d_cache_clean_job_run, .timedout_job = v3d_generic_job_timedout, .free_job = v3d_sched_job_free }; static const struct drm_sched_backend_ops v3d_cpu_sched_ops = { .run_job = v3d_cpu_job_run, .timedout_job = v3d_generic_job_timedout, .free_job = v3d_cpu_job_free }; int v3d_sched_init(struct v3d_dev *v3d) { int hw_jobs_limit = 1; int job_hang_limit = 0; int hang_limit_ms = 500; int ret; ret = drm_sched_init(&v3d->queue[V3D_BIN].sched, &v3d_bin_sched_ops, NULL, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_bin", v3d->drm.dev); if (ret) return ret; ret = drm_sched_init(&v3d->queue[V3D_RENDER].sched, &v3d_render_sched_ops, NULL, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_render", v3d->drm.dev); if (ret) goto fail; ret = drm_sched_init(&v3d->queue[V3D_TFU].sched, &v3d_tfu_sched_ops, NULL, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_tfu", v3d->drm.dev); if (ret) goto fail; if (v3d_has_csd(v3d)) { ret = drm_sched_init(&v3d->queue[V3D_CSD].sched, &v3d_csd_sched_ops, NULL, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_csd", v3d->drm.dev); if (ret) goto fail; ret = drm_sched_init(&v3d->queue[V3D_CACHE_CLEAN].sched, &v3d_cache_clean_sched_ops, NULL, DRM_SCHED_PRIORITY_COUNT, hw_jobs_limit, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_cache_clean", v3d->drm.dev); if (ret) goto fail; } ret = drm_sched_init(&v3d->queue[V3D_CPU].sched, &v3d_cpu_sched_ops, NULL, DRM_SCHED_PRIORITY_COUNT, 1, job_hang_limit, msecs_to_jiffies(hang_limit_ms), NULL, NULL, "v3d_cpu", v3d->drm.dev); if (ret) goto fail; return 0; fail: v3d_sched_fini(v3d); return ret; } void v3d_sched_fini(struct v3d_dev *v3d) { enum v3d_queue q; for (q = 0; q < V3D_MAX_QUEUES; q++) { if (v3d->queue[q].sched.ready) drm_sched_fini(&v3d->queue[q].sched); } }