/* * Copyright © 2014 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** * DOC: Shader validator for VC4. * * Since the VC4 has no IOMMU between it and system memory, a user * with access to execute shaders could escalate privilege by * overwriting system memory (using the VPM write address register in * the general-purpose DMA mode) or reading system memory it shouldn't * (reading it as a texture, uniform data, or direct-addressed TMU * lookup). * * The shader validator walks over a shader's BO, ensuring that its * accesses are appropriately bounded, and recording where texture * accesses are made so that we can do relocations for them in the * uniform stream. * * Shader BO are immutable for their lifetimes (enforced by not * allowing mmaps, GEM prime export, or rendering to from a CL), so * this validation is only performed at BO creation time. */ #include "vc4_drv.h" #include "vc4_qpu_defines.h" #define LIVE_REG_COUNT (32 + 32 + 4) struct vc4_shader_validation_state { /* Current IP being validated. */ uint32_t ip; /* IP at the end of the BO, do not read shader[max_ip] */ uint32_t max_ip; uint64_t *shader; struct vc4_texture_sample_info tmu_setup[2]; int tmu_write_count[2]; /* For registers that were last written to by a MIN instruction with * one argument being a uniform, the address of the uniform. * Otherwise, ~0. * * This is used for the validation of direct address memory reads. */ uint32_t live_min_clamp_offsets[LIVE_REG_COUNT]; bool live_max_clamp_regs[LIVE_REG_COUNT]; uint32_t live_immediates[LIVE_REG_COUNT]; /* Bitfield of which IPs are used as branch targets. * * Used for validation that the uniform stream is updated at the right * points and clearing the texturing/clamping state. */ unsigned long *branch_targets; /* Set when entering a basic block, and cleared when the uniform * address update is found. This is used to make sure that we don't * read uniforms when the address is undefined. */ bool needs_uniform_address_update; /* Set when we find a backwards branch. If the branch is backwards, * the taraget is probably doing an address reset to read uniforms, * and so we need to be sure that a uniforms address is present in the * stream, even if the shader didn't need to read uniforms in later * basic blocks. */ bool needs_uniform_address_for_loop; /* Set when we find an instruction writing the top half of the * register files. If we allowed writing the unusable regs in * a threaded shader, then the other shader running on our * QPU's clamp validation would be invalid. */ bool all_registers_used; }; static uint32_t waddr_to_live_reg_index(uint32_t waddr, bool is_b) { if (waddr < 32) { if (is_b) return 32 + waddr; else return waddr; } else if (waddr <= QPU_W_ACC3) { return 64 + waddr - QPU_W_ACC0; } else { return ~0; } } static uint32_t raddr_add_a_to_live_reg_index(uint64_t inst) { uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG); uint32_t add_a = QPU_GET_FIELD(inst, QPU_ADD_A); uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A); uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B); if (add_a == QPU_MUX_A) return raddr_a; else if (add_a == QPU_MUX_B && sig != QPU_SIG_SMALL_IMM) return 32 + raddr_b; else if (add_a <= QPU_MUX_R3) return 64 + add_a; else return ~0; } static bool live_reg_is_upper_half(uint32_t lri) { return (lri >= 16 && lri < 32) || (lri >= 32 + 16 && lri < 32 + 32); } static bool is_tmu_submit(uint32_t waddr) { return (waddr == QPU_W_TMU0_S || waddr == QPU_W_TMU1_S); } static bool is_tmu_write(uint32_t waddr) { return (waddr >= QPU_W_TMU0_S && waddr <= QPU_W_TMU1_B); } static bool record_texture_sample(struct vc4_validated_shader_info *validated_shader, struct vc4_shader_validation_state *validation_state, int tmu) { uint32_t s = validated_shader->num_texture_samples; int i; struct vc4_texture_sample_info *temp_samples; temp_samples = krealloc(validated_shader->texture_samples, (s + 1) * sizeof(*temp_samples), GFP_KERNEL); if (!temp_samples) return false; memcpy(&temp_samples[s], &validation_state->tmu_setup[tmu], sizeof(*temp_samples)); validated_shader->num_texture_samples = s + 1; validated_shader->texture_samples = temp_samples; for (i = 0; i < 4; i++) validation_state->tmu_setup[tmu].p_offset[i] = ~0; return true; } static bool check_tmu_write(struct vc4_validated_shader_info *validated_shader, struct vc4_shader_validation_state *validation_state, bool is_mul) { uint64_t inst = validation_state->shader[validation_state->ip]; uint32_t waddr = (is_mul ? QPU_GET_FIELD(inst, QPU_WADDR_MUL) : QPU_GET_FIELD(inst, QPU_WADDR_ADD)); uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A); uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B); int tmu = waddr > QPU_W_TMU0_B; bool submit = is_tmu_submit(waddr); bool is_direct = submit && validation_state->tmu_write_count[tmu] == 0; uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG); if (is_direct) { uint32_t add_b = QPU_GET_FIELD(inst, QPU_ADD_B); uint32_t clamp_reg, clamp_offset; if (sig == QPU_SIG_SMALL_IMM) { DRM_DEBUG("direct TMU read used small immediate\n"); return false; } /* Make sure that this texture load is an add of the base * address of the UBO to a clamped offset within the UBO. */ if (is_mul || QPU_GET_FIELD(inst, QPU_OP_ADD) != QPU_A_ADD) { DRM_DEBUG("direct TMU load wasn't an add\n"); return false; } /* We assert that the clamped address is the first * argument, and the UBO base address is the second argument. * This is arbitrary, but simpler than supporting flipping the * two either way. */ clamp_reg = raddr_add_a_to_live_reg_index(inst); if (clamp_reg == ~0) { DRM_DEBUG("direct TMU load wasn't clamped\n"); return false; } clamp_offset = validation_state->live_min_clamp_offsets[clamp_reg]; if (clamp_offset == ~0) { DRM_DEBUG("direct TMU load wasn't clamped\n"); return false; } /* Store the clamp value's offset in p1 (see reloc_tex() in * vc4_validate.c). */ validation_state->tmu_setup[tmu].p_offset[1] = clamp_offset; if (!(add_b == QPU_MUX_A && raddr_a == QPU_R_UNIF) && !(add_b == QPU_MUX_B && raddr_b == QPU_R_UNIF)) { DRM_DEBUG("direct TMU load didn't add to a uniform\n"); return false; } validation_state->tmu_setup[tmu].is_direct = true; } else { if (raddr_a == QPU_R_UNIF || (sig != QPU_SIG_SMALL_IMM && raddr_b == QPU_R_UNIF)) { DRM_DEBUG("uniform read in the same instruction as " "texture setup.\n"); return false; } } if (validation_state->tmu_write_count[tmu] >= 4) { DRM_DEBUG("TMU%d got too many parameters before dispatch\n", tmu); return false; } validation_state->tmu_setup[tmu].p_offset[validation_state->tmu_write_count[tmu]] = validated_shader->uniforms_size; validation_state->tmu_write_count[tmu]++; /* Since direct uses a RADDR uniform reference, it will get counted in * check_instruction_reads() */ if (!is_direct) { if (validation_state->needs_uniform_address_update) { DRM_DEBUG("Texturing with undefined uniform address\n"); return false; } validated_shader->uniforms_size += 4; } if (submit) { if (!record_texture_sample(validated_shader, validation_state, tmu)) { return false; } validation_state->tmu_write_count[tmu] = 0; } return true; } static bool require_uniform_address_uniform(struct vc4_validated_shader_info *validated_shader) { uint32_t o = validated_shader->num_uniform_addr_offsets; uint32_t num_uniforms = validated_shader->uniforms_size / 4; validated_shader->uniform_addr_offsets = krealloc(validated_shader->uniform_addr_offsets, (o + 1) * sizeof(*validated_shader->uniform_addr_offsets), GFP_KERNEL); if (!validated_shader->uniform_addr_offsets) return false; validated_shader->uniform_addr_offsets[o] = num_uniforms; validated_shader->num_uniform_addr_offsets++; return true; } static bool validate_uniform_address_write(struct vc4_validated_shader_info *validated_shader, struct vc4_shader_validation_state *validation_state, bool is_mul) { uint64_t inst = validation_state->shader[validation_state->ip]; u32 add_b = QPU_GET_FIELD(inst, QPU_ADD_B); u32 raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A); u32 raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B); u32 add_lri = raddr_add_a_to_live_reg_index(inst); /* We want our reset to be pointing at whatever uniform follows the * uniforms base address. */ u32 expected_offset = validated_shader->uniforms_size + 4; /* We only support absolute uniform address changes, and we * require that they be in the current basic block before any * of its uniform reads. * * One could potentially emit more efficient QPU code, by * noticing that (say) an if statement does uniform control * flow for all threads and that the if reads the same number * of uniforms on each side. However, this scheme is easy to * validate so it's all we allow for now. */ switch (QPU_GET_FIELD(inst, QPU_SIG)) { case QPU_SIG_NONE: case QPU_SIG_SCOREBOARD_UNLOCK: case QPU_SIG_COLOR_LOAD: case QPU_SIG_LOAD_TMU0: case QPU_SIG_LOAD_TMU1: break; default: DRM_DEBUG("uniforms address change must be " "normal math\n"); return false; } if (is_mul || QPU_GET_FIELD(inst, QPU_OP_ADD) != QPU_A_ADD) { DRM_DEBUG("Uniform address reset must be an ADD.\n"); return false; } if (QPU_GET_FIELD(inst, QPU_COND_ADD) != QPU_COND_ALWAYS) { DRM_DEBUG("Uniform address reset must be unconditional.\n"); return false; } if (QPU_GET_FIELD(inst, QPU_PACK) != QPU_PACK_A_NOP && !(inst & QPU_PM)) { DRM_DEBUG("No packing allowed on uniforms reset\n"); return false; } if (add_lri == -1) { DRM_DEBUG("First argument of uniform address write must be " "an immediate value.\n"); return false; } if (validation_state->live_immediates[add_lri] != expected_offset) { DRM_DEBUG("Resetting uniforms with offset %db instead of %db\n", validation_state->live_immediates[add_lri], expected_offset); return false; } if (!(add_b == QPU_MUX_A && raddr_a == QPU_R_UNIF) && !(add_b == QPU_MUX_B && raddr_b == QPU_R_UNIF)) { DRM_DEBUG("Second argument of uniform address write must be " "a uniform.\n"); return false; } validation_state->needs_uniform_address_update = false; validation_state->needs_uniform_address_for_loop = false; return require_uniform_address_uniform(validated_shader); } static bool check_reg_write(struct vc4_validated_shader_info *validated_shader, struct vc4_shader_validation_state *validation_state, bool is_mul) { uint64_t inst = validation_state->shader[validation_state->ip]; uint32_t waddr = (is_mul ? QPU_GET_FIELD(inst, QPU_WADDR_MUL) : QPU_GET_FIELD(inst, QPU_WADDR_ADD)); uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG); bool ws = inst & QPU_WS; bool is_b = is_mul ^ ws; u32 lri = waddr_to_live_reg_index(waddr, is_b); if (lri != -1) { uint32_t cond_add = QPU_GET_FIELD(inst, QPU_COND_ADD); uint32_t cond_mul = QPU_GET_FIELD(inst, QPU_COND_MUL); if (sig == QPU_SIG_LOAD_IMM && QPU_GET_FIELD(inst, QPU_PACK) == QPU_PACK_A_NOP && ((is_mul && cond_mul == QPU_COND_ALWAYS) || (!is_mul && cond_add == QPU_COND_ALWAYS))) { validation_state->live_immediates[lri] = QPU_GET_FIELD(inst, QPU_LOAD_IMM); } else { validation_state->live_immediates[lri] = ~0; } if (live_reg_is_upper_half(lri)) validation_state->all_registers_used = true; } switch (waddr) { case QPU_W_UNIFORMS_ADDRESS: if (is_b) { DRM_DEBUG("relative uniforms address change " "unsupported\n"); return false; } return validate_uniform_address_write(validated_shader, validation_state, is_mul); case QPU_W_TLB_COLOR_MS: case QPU_W_TLB_COLOR_ALL: case QPU_W_TLB_Z: /* These only interact with the tile buffer, not main memory, * so they're safe. */ return true; case QPU_W_TMU0_S: case QPU_W_TMU0_T: case QPU_W_TMU0_R: case QPU_W_TMU0_B: case QPU_W_TMU1_S: case QPU_W_TMU1_T: case QPU_W_TMU1_R: case QPU_W_TMU1_B: return check_tmu_write(validated_shader, validation_state, is_mul); case QPU_W_HOST_INT: case QPU_W_TMU_NOSWAP: case QPU_W_TLB_ALPHA_MASK: case QPU_W_MUTEX_RELEASE: /* XXX: I haven't thought about these, so don't support them * for now. */ DRM_DEBUG("Unsupported waddr %d\n", waddr); return false; case QPU_W_VPM_ADDR: DRM_DEBUG("General VPM DMA unsupported\n"); return false; case QPU_W_VPM: case QPU_W_VPMVCD_SETUP: /* We allow VPM setup in general, even including VPM DMA * configuration setup, because the (unsafe) DMA can only be * triggered by QPU_W_VPM_ADDR writes. */ return true; case QPU_W_TLB_STENCIL_SETUP: return true; } return true; } static void track_live_clamps(struct vc4_validated_shader_info *validated_shader, struct vc4_shader_validation_state *validation_state) { uint64_t inst = validation_state->shader[validation_state->ip]; uint32_t op_add = QPU_GET_FIELD(inst, QPU_OP_ADD); uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD); uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL); uint32_t cond_add = QPU_GET_FIELD(inst, QPU_COND_ADD); uint32_t add_a = QPU_GET_FIELD(inst, QPU_ADD_A); uint32_t add_b = QPU_GET_FIELD(inst, QPU_ADD_B); uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A); uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B); uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG); bool ws = inst & QPU_WS; uint32_t lri_add_a, lri_add, lri_mul; bool add_a_is_min_0; /* Check whether OP_ADD's A argumennt comes from a live MAX(x, 0), * before we clear previous live state. */ lri_add_a = raddr_add_a_to_live_reg_index(inst); add_a_is_min_0 = (lri_add_a != ~0 && validation_state->live_max_clamp_regs[lri_add_a]); /* Clear live state for registers written by our instruction. */ lri_add = waddr_to_live_reg_index(waddr_add, ws); lri_mul = waddr_to_live_reg_index(waddr_mul, !ws); if (lri_mul != ~0) { validation_state->live_max_clamp_regs[lri_mul] = false; validation_state->live_min_clamp_offsets[lri_mul] = ~0; } if (lri_add != ~0) { validation_state->live_max_clamp_regs[lri_add] = false; validation_state->live_min_clamp_offsets[lri_add] = ~0; } else { /* Nothing further to do for live tracking, since only ADDs * generate new live clamp registers. */ return; } /* Now, handle remaining live clamp tracking for the ADD operation. */ if (cond_add != QPU_COND_ALWAYS) return; if (op_add == QPU_A_MAX) { /* Track live clamps of a value to a minimum of 0 (in either * arg). */ if (sig != QPU_SIG_SMALL_IMM || raddr_b != 0 || (add_a != QPU_MUX_B && add_b != QPU_MUX_B)) { return; } validation_state->live_max_clamp_regs[lri_add] = true; } else if (op_add == QPU_A_MIN) { /* Track live clamps of a value clamped to a minimum of 0 and * a maximum of some uniform's offset. */ if (!add_a_is_min_0) return; if (!(add_b == QPU_MUX_A && raddr_a == QPU_R_UNIF) && !(add_b == QPU_MUX_B && raddr_b == QPU_R_UNIF && sig != QPU_SIG_SMALL_IMM)) { return; } validation_state->live_min_clamp_offsets[lri_add] = validated_shader->uniforms_size; } } static bool check_instruction_writes(struct vc4_validated_shader_info *validated_shader, struct vc4_shader_validation_state *validation_state) { uint64_t inst = validation_state->shader[validation_state->ip]; uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD); uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL); bool ok; if (is_tmu_write(waddr_add) && is_tmu_write(waddr_mul)) { DRM_DEBUG("ADD and MUL both set up textures\n"); return false; } ok = (check_reg_write(validated_shader, validation_state, false) && check_reg_write(validated_shader, validation_state, true)); track_live_clamps(validated_shader, validation_state); return ok; } static bool check_branch(uint64_t inst, struct vc4_validated_shader_info *validated_shader, struct vc4_shader_validation_state *validation_state, int ip) { int32_t branch_imm = QPU_GET_FIELD(inst, QPU_BRANCH_TARGET); uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD); uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL); if ((int)branch_imm < 0) validation_state->needs_uniform_address_for_loop = true; /* We don't want to have to worry about validation of this, and * there's no need for it. */ if (waddr_add != QPU_W_NOP || waddr_mul != QPU_W_NOP) { DRM_DEBUG("branch instruction at %d wrote a register.\n", validation_state->ip); return false; } return true; } static bool check_instruction_reads(struct vc4_validated_shader_info *validated_shader, struct vc4_shader_validation_state *validation_state) { uint64_t inst = validation_state->shader[validation_state->ip]; uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A); uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B); uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG); if (raddr_a == QPU_R_UNIF || (raddr_b == QPU_R_UNIF && sig != QPU_SIG_SMALL_IMM)) { /* This can't overflow the uint32_t, because we're reading 8 * bytes of instruction to increment by 4 here, so we'd * already be OOM. */ validated_shader->uniforms_size += 4; if (validation_state->needs_uniform_address_update) { DRM_DEBUG("Uniform read with undefined uniform " "address\n"); return false; } } if ((raddr_a >= 16 && raddr_a < 32) || (raddr_b >= 16 && raddr_b < 32 && sig != QPU_SIG_SMALL_IMM)) { validation_state->all_registers_used = true; } return true; } /* Make sure that all branches are absolute and point within the shader, and * note their targets for later. */ static bool vc4_validate_branches(struct vc4_shader_validation_state *validation_state) { uint32_t max_branch_target = 0; int ip; int last_branch = -2; for (ip = 0; ip < validation_state->max_ip; ip++) { uint64_t inst = validation_state->shader[ip]; int32_t branch_imm = QPU_GET_FIELD(inst, QPU_BRANCH_TARGET); uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG); uint32_t after_delay_ip = ip + 4; uint32_t branch_target_ip; if (sig == QPU_SIG_PROG_END) { /* There are two delay slots after program end is * signaled that are still executed, then we're * finished. validation_state->max_ip is the * instruction after the last valid instruction in the * program. */ validation_state->max_ip = ip + 3; continue; } if (sig != QPU_SIG_BRANCH) continue; if (ip - last_branch < 4) { DRM_DEBUG("Branch at %d during delay slots\n", ip); return false; } last_branch = ip; if (inst & QPU_BRANCH_REG) { DRM_DEBUG("branching from register relative " "not supported\n"); return false; } if (!(inst & QPU_BRANCH_REL)) { DRM_DEBUG("relative branching required\n"); return false; } /* The actual branch target is the instruction after the delay * slots, plus whatever byte offset is in the low 32 bits of * the instruction. Make sure we're not branching beyond the * end of the shader object. */ if (branch_imm % sizeof(inst) != 0) { DRM_DEBUG("branch target not aligned\n"); return false; } branch_target_ip = after_delay_ip + (branch_imm >> 3); if (branch_target_ip >= validation_state->max_ip) { DRM_DEBUG("Branch at %d outside of shader (ip %d/%d)\n", ip, branch_target_ip, validation_state->max_ip); return false; } set_bit(branch_target_ip, validation_state->branch_targets); /* Make sure that the non-branching path is also not outside * the shader. */ if (after_delay_ip >= validation_state->max_ip) { DRM_DEBUG("Branch at %d continues past shader end " "(%d/%d)\n", ip, after_delay_ip, validation_state->max_ip); return false; } set_bit(after_delay_ip, validation_state->branch_targets); max_branch_target = max(max_branch_target, after_delay_ip); } if (max_branch_target > validation_state->max_ip - 3) { DRM_DEBUG("Branch landed after QPU_SIG_PROG_END"); return false; } return true; } /* Resets any known state for the shader, used when we may be branched to from * multiple locations in the program (or at shader start). */ static void reset_validation_state(struct vc4_shader_validation_state *validation_state) { int i; for (i = 0; i < 8; i++) validation_state->tmu_setup[i / 4].p_offset[i % 4] = ~0; for (i = 0; i < LIVE_REG_COUNT; i++) { validation_state->live_min_clamp_offsets[i] = ~0; validation_state->live_max_clamp_regs[i] = false; validation_state->live_immediates[i] = ~0; } } static bool texturing_in_progress(struct vc4_shader_validation_state *validation_state) { return (validation_state->tmu_write_count[0] != 0 || validation_state->tmu_write_count[1] != 0); } static bool vc4_handle_branch_target(struct vc4_shader_validation_state *validation_state) { uint32_t ip = validation_state->ip; if (!test_bit(ip, validation_state->branch_targets)) return true; if (texturing_in_progress(validation_state)) { DRM_DEBUG("Branch target landed during TMU setup\n"); return false; } /* Reset our live values tracking, since this instruction may have * multiple predecessors. * * One could potentially do analysis to determine that, for * example, all predecessors have a live max clamp in the same * register, but we don't bother with that. */ reset_validation_state(validation_state); /* Since we've entered a basic block from potentially multiple * predecessors, we need the uniforms address to be updated before any * unforms are read. We require that after any branch point, the next * uniform to be loaded is a uniform address offset. That uniform's * offset will be marked by the uniform address register write * validation, or a one-off the end-of-program check. */ validation_state->needs_uniform_address_update = true; return true; } struct vc4_validated_shader_info * vc4_validate_shader(struct drm_gem_dma_object *shader_obj) { struct vc4_dev *vc4 = to_vc4_dev(shader_obj->base.dev); bool found_shader_end = false; int shader_end_ip = 0; uint32_t last_thread_switch_ip = -3; uint32_t ip; struct vc4_validated_shader_info *validated_shader = NULL; struct vc4_shader_validation_state validation_state; if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4)) return NULL; memset(&validation_state, 0, sizeof(validation_state)); validation_state.shader = shader_obj->vaddr; validation_state.max_ip = shader_obj->base.size / sizeof(uint64_t); reset_validation_state(&validation_state); validation_state.branch_targets = kcalloc(BITS_TO_LONGS(validation_state.max_ip), sizeof(unsigned long), GFP_KERNEL); if (!validation_state.branch_targets) goto fail; validated_shader = kcalloc(1, sizeof(*validated_shader), GFP_KERNEL); if (!validated_shader) goto fail; if (!vc4_validate_branches(&validation_state)) goto fail; for (ip = 0; ip < validation_state.max_ip; ip++) { uint64_t inst = validation_state.shader[ip]; uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG); validation_state.ip = ip; if (!vc4_handle_branch_target(&validation_state)) goto fail; if (ip == last_thread_switch_ip + 3) { /* Reset r0-r3 live clamp data */ int i; for (i = 64; i < LIVE_REG_COUNT; i++) { validation_state.live_min_clamp_offsets[i] = ~0; validation_state.live_max_clamp_regs[i] = false; validation_state.live_immediates[i] = ~0; } } switch (sig) { case QPU_SIG_NONE: case QPU_SIG_WAIT_FOR_SCOREBOARD: case QPU_SIG_SCOREBOARD_UNLOCK: case QPU_SIG_COLOR_LOAD: case QPU_SIG_LOAD_TMU0: case QPU_SIG_LOAD_TMU1: case QPU_SIG_PROG_END: case QPU_SIG_SMALL_IMM: case QPU_SIG_THREAD_SWITCH: case QPU_SIG_LAST_THREAD_SWITCH: if (!check_instruction_writes(validated_shader, &validation_state)) { DRM_DEBUG("Bad write at ip %d\n", ip); goto fail; } if (!check_instruction_reads(validated_shader, &validation_state)) goto fail; if (sig == QPU_SIG_PROG_END) { found_shader_end = true; shader_end_ip = ip; } if (sig == QPU_SIG_THREAD_SWITCH || sig == QPU_SIG_LAST_THREAD_SWITCH) { validated_shader->is_threaded = true; if (ip < last_thread_switch_ip + 3) { DRM_DEBUG("Thread switch too soon after " "last switch at ip %d\n", ip); goto fail; } last_thread_switch_ip = ip; } break; case QPU_SIG_LOAD_IMM: if (!check_instruction_writes(validated_shader, &validation_state)) { DRM_DEBUG("Bad LOAD_IMM write at ip %d\n", ip); goto fail; } break; case QPU_SIG_BRANCH: if (!check_branch(inst, validated_shader, &validation_state, ip)) goto fail; if (ip < last_thread_switch_ip + 3) { DRM_DEBUG("Branch in thread switch at ip %d", ip); goto fail; } break; default: DRM_DEBUG("Unsupported QPU signal %d at " "instruction %d\n", sig, ip); goto fail; } /* There are two delay slots after program end is signaled * that are still executed, then we're finished. */ if (found_shader_end && ip == shader_end_ip + 2) break; } if (ip == validation_state.max_ip) { DRM_DEBUG("shader failed to terminate before " "shader BO end at %zd\n", shader_obj->base.size); goto fail; } /* Might corrupt other thread */ if (validated_shader->is_threaded && validation_state.all_registers_used) { DRM_DEBUG("Shader uses threading, but uses the upper " "half of the registers, too\n"); goto fail; } /* If we did a backwards branch and we haven't emitted a uniforms * reset since then, we still need the uniforms stream to have the * uniforms address available so that the backwards branch can do its * uniforms reset. * * We could potentially prove that the backwards branch doesn't * contain any uses of uniforms until program exit, but that doesn't * seem to be worth the trouble. */ if (validation_state.needs_uniform_address_for_loop) { if (!require_uniform_address_uniform(validated_shader)) goto fail; validated_shader->uniforms_size += 4; } /* Again, no chance of integer overflow here because the worst case * scenario is 8 bytes of uniforms plus handles per 8-byte * instruction. */ validated_shader->uniforms_src_size = (validated_shader->uniforms_size + 4 * validated_shader->num_texture_samples); kfree(validation_state.branch_targets); return validated_shader; fail: kfree(validation_state.branch_targets); if (validated_shader) { kfree(validated_shader->uniform_addr_offsets); kfree(validated_shader->texture_samples); kfree(validated_shader); } return NULL; }