// SPDX-License-Identifier: GPL-2.0+ #include #include #include #include #include #include "vkms_formats.h" /** * pixel_offset() - Get the offset of the pixel at coordinates x/y in the first plane * * @frame_info: Buffer metadata * @x: The x coordinate of the wanted pixel in the buffer * @y: The y coordinate of the wanted pixel in the buffer * * The caller must ensure that the framebuffer associated with this request uses a pixel format * where block_h == block_w == 1. * If this requirement is not fulfilled, the resulting offset can point to an other pixel or * outside of the buffer. */ static size_t pixel_offset(const struct vkms_frame_info *frame_info, int x, int y) { return frame_info->offset + (y * frame_info->pitch) + (x * frame_info->cpp); } /** * packed_pixels_addr() - Get the pointer to the block containing the pixel at the given * coordinates * * @frame_info: Buffer metadata * @x: The x (width) coordinate inside the plane * @y: The y (height) coordinate inside the plane * * Takes the information stored in the frame_info, a pair of coordinates, and * returns the address of the first color channel. * This function assumes the channels are packed together, i.e. a color channel * comes immediately after another in the memory. And therefore, this function * doesn't work for YUV with chroma subsampling (e.g. YUV420 and NV21). * * The caller must ensure that the framebuffer associated with this request uses a pixel format * where block_h == block_w == 1, otherwise the returned pointer can be outside the buffer. */ static void *packed_pixels_addr(const struct vkms_frame_info *frame_info, int x, int y) { size_t offset = pixel_offset(frame_info, x, y); return (u8 *)frame_info->map[0].vaddr + offset; } static void *get_packed_src_addr(const struct vkms_frame_info *frame_info, int y) { int x_src = frame_info->src.x1 >> 16; int y_src = y - frame_info->rotated.y1 + (frame_info->src.y1 >> 16); return packed_pixels_addr(frame_info, x_src, y_src); } static int get_x_position(const struct vkms_frame_info *frame_info, int limit, int x) { if (frame_info->rotation & (DRM_MODE_REFLECT_X | DRM_MODE_ROTATE_270)) return limit - x - 1; return x; } /* * The following functions take pixel data from the buffer and convert them to the format * ARGB16161616 in @out_pixel. * * They are used in the vkms_compose_row() function to handle multiple formats. */ static void ARGB8888_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel) { /* * The 257 is the "conversion ratio". This number is obtained by the * (2^16 - 1) / (2^8 - 1) division. Which, in this case, tries to get * the best color value in a pixel format with more possibilities. * A similar idea applies to others RGB color conversions. */ out_pixel->a = (u16)src_pixels[3] * 257; out_pixel->r = (u16)src_pixels[2] * 257; out_pixel->g = (u16)src_pixels[1] * 257; out_pixel->b = (u16)src_pixels[0] * 257; } static void XRGB8888_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel) { out_pixel->a = (u16)0xffff; out_pixel->r = (u16)src_pixels[2] * 257; out_pixel->g = (u16)src_pixels[1] * 257; out_pixel->b = (u16)src_pixels[0] * 257; } static void ARGB16161616_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel) { __le16 *pixels = (__force __le16 *)src_pixels; out_pixel->a = le16_to_cpu(pixels[3]); out_pixel->r = le16_to_cpu(pixels[2]); out_pixel->g = le16_to_cpu(pixels[1]); out_pixel->b = le16_to_cpu(pixels[0]); } static void XRGB16161616_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel) { __le16 *pixels = (__force __le16 *)src_pixels; out_pixel->a = (u16)0xffff; out_pixel->r = le16_to_cpu(pixels[2]); out_pixel->g = le16_to_cpu(pixels[1]); out_pixel->b = le16_to_cpu(pixels[0]); } static void RGB565_to_argb_u16(u8 *src_pixels, struct pixel_argb_u16 *out_pixel) { __le16 *pixels = (__force __le16 *)src_pixels; s64 fp_rb_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(31)); s64 fp_g_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(63)); u16 rgb_565 = le16_to_cpu(*pixels); s64 fp_r = drm_int2fixp((rgb_565 >> 11) & 0x1f); s64 fp_g = drm_int2fixp((rgb_565 >> 5) & 0x3f); s64 fp_b = drm_int2fixp(rgb_565 & 0x1f); out_pixel->a = (u16)0xffff; out_pixel->r = drm_fixp2int_round(drm_fixp_mul(fp_r, fp_rb_ratio)); out_pixel->g = drm_fixp2int_round(drm_fixp_mul(fp_g, fp_g_ratio)); out_pixel->b = drm_fixp2int_round(drm_fixp_mul(fp_b, fp_rb_ratio)); } /** * vkms_compose_row - compose a single row of a plane * @stage_buffer: output line with the composed pixels * @plane: state of the plane that is being composed * @y: y coordinate of the row * * This function composes a single row of a plane. It gets the source pixels * through the y coordinate (see get_packed_src_addr()) and goes linearly * through the source pixel, reading the pixels and converting it to * ARGB16161616 (see the pixel_read() callback). For rotate-90 and rotate-270, * the source pixels are not traversed linearly. The source pixels are queried * on each iteration in order to traverse the pixels vertically. */ void vkms_compose_row(struct line_buffer *stage_buffer, struct vkms_plane_state *plane, int y) { struct pixel_argb_u16 *out_pixels = stage_buffer->pixels; struct vkms_frame_info *frame_info = plane->frame_info; u8 *src_pixels = get_packed_src_addr(frame_info, y); int limit = min_t(size_t, drm_rect_width(&frame_info->dst), stage_buffer->n_pixels); for (size_t x = 0; x < limit; x++, src_pixels += frame_info->cpp) { int x_pos = get_x_position(frame_info, limit, x); if (drm_rotation_90_or_270(frame_info->rotation)) src_pixels = get_packed_src_addr(frame_info, x + frame_info->rotated.y1) + frame_info->cpp * y; plane->pixel_read(src_pixels, &out_pixels[x_pos]); } } /* * The following functions take one &struct pixel_argb_u16 and convert it to a specific format. * The result is stored in @dst_pixels. * * They are used in vkms_writeback_row() to convert and store a pixel from the src_buffer to * the writeback buffer. */ static void argb_u16_to_ARGB8888(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel) { /* * This sequence below is important because the format's byte order is * in little-endian. In the case of the ARGB8888 the memory is * organized this way: * * | Addr | = blue channel * | Addr + 1 | = green channel * | Addr + 2 | = Red channel * | Addr + 3 | = Alpha channel */ dst_pixels[3] = DIV_ROUND_CLOSEST(in_pixel->a, 257); dst_pixels[2] = DIV_ROUND_CLOSEST(in_pixel->r, 257); dst_pixels[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257); dst_pixels[0] = DIV_ROUND_CLOSEST(in_pixel->b, 257); } static void argb_u16_to_XRGB8888(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel) { dst_pixels[3] = 0xff; dst_pixels[2] = DIV_ROUND_CLOSEST(in_pixel->r, 257); dst_pixels[1] = DIV_ROUND_CLOSEST(in_pixel->g, 257); dst_pixels[0] = DIV_ROUND_CLOSEST(in_pixel->b, 257); } static void argb_u16_to_ARGB16161616(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel) { __le16 *pixels = (__force __le16 *)dst_pixels; pixels[3] = cpu_to_le16(in_pixel->a); pixels[2] = cpu_to_le16(in_pixel->r); pixels[1] = cpu_to_le16(in_pixel->g); pixels[0] = cpu_to_le16(in_pixel->b); } static void argb_u16_to_XRGB16161616(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel) { __le16 *pixels = (__force __le16 *)dst_pixels; pixels[3] = cpu_to_le16(0xffff); pixels[2] = cpu_to_le16(in_pixel->r); pixels[1] = cpu_to_le16(in_pixel->g); pixels[0] = cpu_to_le16(in_pixel->b); } static void argb_u16_to_RGB565(u8 *dst_pixels, struct pixel_argb_u16 *in_pixel) { __le16 *pixels = (__force __le16 *)dst_pixels; s64 fp_rb_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(31)); s64 fp_g_ratio = drm_fixp_div(drm_int2fixp(65535), drm_int2fixp(63)); s64 fp_r = drm_int2fixp(in_pixel->r); s64 fp_g = drm_int2fixp(in_pixel->g); s64 fp_b = drm_int2fixp(in_pixel->b); u16 r = drm_fixp2int(drm_fixp_div(fp_r, fp_rb_ratio)); u16 g = drm_fixp2int(drm_fixp_div(fp_g, fp_g_ratio)); u16 b = drm_fixp2int(drm_fixp_div(fp_b, fp_rb_ratio)); *pixels = cpu_to_le16(r << 11 | g << 5 | b); } /** * vkms_writeback_row() - Generic loop for all supported writeback format. It is executed just * after the blending to write a line in the writeback buffer. * * @wb: Job where to insert the final image * @src_buffer: Line to write * @y: Row to write in the writeback buffer */ void vkms_writeback_row(struct vkms_writeback_job *wb, const struct line_buffer *src_buffer, int y) { struct vkms_frame_info *frame_info = &wb->wb_frame_info; int x_dst = frame_info->dst.x1; u8 *dst_pixels = packed_pixels_addr(frame_info, x_dst, y); struct pixel_argb_u16 *in_pixels = src_buffer->pixels; int x_limit = min_t(size_t, drm_rect_width(&frame_info->dst), src_buffer->n_pixels); for (size_t x = 0; x < x_limit; x++, dst_pixels += frame_info->cpp) wb->pixel_write(dst_pixels, &in_pixels[x]); } /** * get_pixel_conversion_function() - Retrieve the correct read_pixel function for a specific * format. The returned pointer is NULL for unsupported pixel formats. The caller must ensure that * the pointer is valid before using it in a vkms_plane_state. * * @format: DRM_FORMAT_* value for which to obtain a conversion function (see [drm_fourcc.h]) */ void *get_pixel_conversion_function(u32 format) { switch (format) { case DRM_FORMAT_ARGB8888: return &ARGB8888_to_argb_u16; case DRM_FORMAT_XRGB8888: return &XRGB8888_to_argb_u16; case DRM_FORMAT_ARGB16161616: return &ARGB16161616_to_argb_u16; case DRM_FORMAT_XRGB16161616: return &XRGB16161616_to_argb_u16; case DRM_FORMAT_RGB565: return &RGB565_to_argb_u16; default: return NULL; } } /** * get_pixel_write_function() - Retrieve the correct write_pixel function for a specific format. * The returned pointer is NULL for unsupported pixel formats. The caller must ensure that the * pointer is valid before using it in a vkms_writeback_job. * * @format: DRM_FORMAT_* value for which to obtain a conversion function (see [drm_fourcc.h]) */ void *get_pixel_write_function(u32 format) { switch (format) { case DRM_FORMAT_ARGB8888: return &argb_u16_to_ARGB8888; case DRM_FORMAT_XRGB8888: return &argb_u16_to_XRGB8888; case DRM_FORMAT_ARGB16161616: return &argb_u16_to_ARGB16161616; case DRM_FORMAT_XRGB16161616: return &argb_u16_to_XRGB16161616; case DRM_FORMAT_RGB565: return &argb_u16_to_RGB565; default: return NULL; } }