// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_exec_queue.h" #include #include #include #include #include "xe_device.h" #include "xe_gt.h" #include "xe_hw_engine_class_sysfs.h" #include "xe_hw_engine_group.h" #include "xe_hw_fence.h" #include "xe_lrc.h" #include "xe_macros.h" #include "xe_migrate.h" #include "xe_pm.h" #include "xe_ring_ops_types.h" #include "xe_trace.h" #include "xe_vm.h" enum xe_exec_queue_sched_prop { XE_EXEC_QUEUE_JOB_TIMEOUT = 0, XE_EXEC_QUEUE_TIMESLICE = 1, XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2, XE_EXEC_QUEUE_SCHED_PROP_MAX = 3, }; static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q, u64 extensions, int ext_number); static void __xe_exec_queue_free(struct xe_exec_queue *q) { if (q->vm) xe_vm_put(q->vm); if (q->xef) xe_file_put(q->xef); kfree(q); } static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe, struct xe_vm *vm, u32 logical_mask, u16 width, struct xe_hw_engine *hwe, u32 flags, u64 extensions) { struct xe_exec_queue *q; struct xe_gt *gt = hwe->gt; int err; /* only kernel queues can be permanent */ XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL)); q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL); if (!q) return ERR_PTR(-ENOMEM); kref_init(&q->refcount); q->flags = flags; q->hwe = hwe; q->gt = gt; q->class = hwe->class; q->width = width; q->logical_mask = logical_mask; q->fence_irq = >->fence_irq[hwe->class]; q->ring_ops = gt->ring_ops[hwe->class]; q->ops = gt->exec_queue_ops; INIT_LIST_HEAD(&q->lr.link); INIT_LIST_HEAD(&q->multi_gt_link); INIT_LIST_HEAD(&q->hw_engine_group_link); q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us; q->sched_props.preempt_timeout_us = hwe->eclass->sched_props.preempt_timeout_us; q->sched_props.job_timeout_ms = hwe->eclass->sched_props.job_timeout_ms; if (q->flags & EXEC_QUEUE_FLAG_KERNEL && q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY) q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL; else q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL; if (vm) q->vm = xe_vm_get(vm); if (extensions) { /* * may set q->usm, must come before xe_lrc_create(), * may overwrite q->sched_props, must come before q->ops->init() */ err = exec_queue_user_extensions(xe, q, extensions, 0); if (err) { __xe_exec_queue_free(q); return ERR_PTR(err); } } return q; } static int __xe_exec_queue_init(struct xe_exec_queue *q) { struct xe_vm *vm = q->vm; int i, err; if (vm) { err = xe_vm_lock(vm, true); if (err) return err; } for (i = 0; i < q->width; ++i) { q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K); if (IS_ERR(q->lrc[i])) { err = PTR_ERR(q->lrc[i]); goto err_unlock; } } if (vm) xe_vm_unlock(vm); err = q->ops->init(q); if (err) goto err_lrc; return 0; err_unlock: if (vm) xe_vm_unlock(vm); err_lrc: for (i = i - 1; i >= 0; --i) xe_lrc_put(q->lrc[i]); return err; } struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm, u32 logical_mask, u16 width, struct xe_hw_engine *hwe, u32 flags, u64 extensions) { struct xe_exec_queue *q; int err; q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags, extensions); if (IS_ERR(q)) return q; err = __xe_exec_queue_init(q); if (err) goto err_post_alloc; return q; err_post_alloc: __xe_exec_queue_free(q); return ERR_PTR(err); } struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt, struct xe_vm *vm, enum xe_engine_class class, u32 flags, u64 extensions) { struct xe_hw_engine *hwe, *hwe0 = NULL; enum xe_hw_engine_id id; u32 logical_mask = 0; for_each_hw_engine(hwe, gt, id) { if (xe_hw_engine_is_reserved(hwe)) continue; if (hwe->class == class) { logical_mask |= BIT(hwe->logical_instance); if (!hwe0) hwe0 = hwe; } } if (!logical_mask) return ERR_PTR(-ENODEV); return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions); } /** * xe_exec_queue_create_bind() - Create bind exec queue. * @xe: Xe device. * @tile: tile which bind exec queue belongs to. * @flags: exec queue creation flags * @extensions: exec queue creation extensions * * Normalize bind exec queue creation. Bind exec queue is tied to migration VM * for access to physical memory required for page table programming. On a * faulting devices the reserved copy engine instance must be used to avoid * deadlocking (user binds cannot get stuck behind faults as kernel binds which * resolve faults depend on user binds). On non-faulting devices any copy engine * can be used. * * Returns exec queue on success, ERR_PTR on failure */ struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe, struct xe_tile *tile, u32 flags, u64 extensions) { struct xe_gt *gt = tile->primary_gt; struct xe_exec_queue *q; struct xe_vm *migrate_vm; migrate_vm = xe_migrate_get_vm(tile->migrate); if (xe->info.has_usm) { struct xe_hw_engine *hwe = xe_gt_hw_engine(gt, XE_ENGINE_CLASS_COPY, gt->usm.reserved_bcs_instance, false); if (!hwe) { xe_vm_put(migrate_vm); return ERR_PTR(-EINVAL); } q = xe_exec_queue_create(xe, migrate_vm, BIT(hwe->logical_instance), 1, hwe, flags, extensions); } else { q = xe_exec_queue_create_class(xe, gt, migrate_vm, XE_ENGINE_CLASS_COPY, flags, extensions); } xe_vm_put(migrate_vm); return q; } void xe_exec_queue_destroy(struct kref *ref) { struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount); struct xe_exec_queue *eq, *next; xe_exec_queue_last_fence_put_unlocked(q); if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) { list_for_each_entry_safe(eq, next, &q->multi_gt_list, multi_gt_link) xe_exec_queue_put(eq); } q->ops->fini(q); } void xe_exec_queue_fini(struct xe_exec_queue *q) { int i; /* * Before releasing our ref to lrc and xef, accumulate our run ticks */ xe_exec_queue_update_run_ticks(q); for (i = 0; i < q->width; ++i) xe_lrc_put(q->lrc[i]); __xe_exec_queue_free(q); } void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance) { switch (q->class) { case XE_ENGINE_CLASS_RENDER: snprintf(q->name, sizeof(q->name), "rcs%d", instance); break; case XE_ENGINE_CLASS_VIDEO_DECODE: snprintf(q->name, sizeof(q->name), "vcs%d", instance); break; case XE_ENGINE_CLASS_VIDEO_ENHANCE: snprintf(q->name, sizeof(q->name), "vecs%d", instance); break; case XE_ENGINE_CLASS_COPY: snprintf(q->name, sizeof(q->name), "bcs%d", instance); break; case XE_ENGINE_CLASS_COMPUTE: snprintf(q->name, sizeof(q->name), "ccs%d", instance); break; case XE_ENGINE_CLASS_OTHER: snprintf(q->name, sizeof(q->name), "gsccs%d", instance); break; default: XE_WARN_ON(q->class); } } struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id) { struct xe_exec_queue *q; mutex_lock(&xef->exec_queue.lock); q = xa_load(&xef->exec_queue.xa, id); if (q) xe_exec_queue_get(q); mutex_unlock(&xef->exec_queue.lock); return q; } enum xe_exec_queue_priority xe_exec_queue_device_get_max_priority(struct xe_device *xe) { return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH : XE_EXEC_QUEUE_PRIORITY_NORMAL; } static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q, u64 value) { if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH)) return -EINVAL; if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe))) return -EPERM; q->sched_props.priority = value; return 0; } static bool xe_exec_queue_enforce_schedule_limit(void) { #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT) return true; #else return !capable(CAP_SYS_NICE); #endif } static void xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass, enum xe_exec_queue_sched_prop prop, u32 *min, u32 *max) { switch (prop) { case XE_EXEC_QUEUE_JOB_TIMEOUT: *min = eclass->sched_props.job_timeout_min; *max = eclass->sched_props.job_timeout_max; break; case XE_EXEC_QUEUE_TIMESLICE: *min = eclass->sched_props.timeslice_min; *max = eclass->sched_props.timeslice_max; break; case XE_EXEC_QUEUE_PREEMPT_TIMEOUT: *min = eclass->sched_props.preempt_timeout_min; *max = eclass->sched_props.preempt_timeout_max; break; default: break; } #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT) if (capable(CAP_SYS_NICE)) { switch (prop) { case XE_EXEC_QUEUE_JOB_TIMEOUT: *min = XE_HW_ENGINE_JOB_TIMEOUT_MIN; *max = XE_HW_ENGINE_JOB_TIMEOUT_MAX; break; case XE_EXEC_QUEUE_TIMESLICE: *min = XE_HW_ENGINE_TIMESLICE_MIN; *max = XE_HW_ENGINE_TIMESLICE_MAX; break; case XE_EXEC_QUEUE_PREEMPT_TIMEOUT: *min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN; *max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX; break; default: break; } } #endif } static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q, u64 value) { u32 min = 0, max = 0; xe_exec_queue_get_prop_minmax(q->hwe->eclass, XE_EXEC_QUEUE_TIMESLICE, &min, &max); if (xe_exec_queue_enforce_schedule_limit() && !xe_hw_engine_timeout_in_range(value, min, max)) return -EINVAL; q->sched_props.timeslice_us = value; return 0; } typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe, struct xe_exec_queue *q, u64 value); static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = { [DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority, [DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice, }; static int exec_queue_user_ext_set_property(struct xe_device *xe, struct xe_exec_queue *q, u64 extension) { u64 __user *address = u64_to_user_ptr(extension); struct drm_xe_ext_set_property ext; int err; u32 idx; err = __copy_from_user(&ext, address, sizeof(ext)); if (XE_IOCTL_DBG(xe, err)) return -EFAULT; if (XE_IOCTL_DBG(xe, ext.property >= ARRAY_SIZE(exec_queue_set_property_funcs)) || XE_IOCTL_DBG(xe, ext.pad) || XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY && ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE)) return -EINVAL; idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs)); if (!exec_queue_set_property_funcs[idx]) return -EINVAL; return exec_queue_set_property_funcs[idx](xe, q, ext.value); } typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe, struct xe_exec_queue *q, u64 extension); static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = { [DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property, }; #define MAX_USER_EXTENSIONS 16 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q, u64 extensions, int ext_number) { u64 __user *address = u64_to_user_ptr(extensions); struct drm_xe_user_extension ext; int err; u32 idx; if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) return -E2BIG; err = __copy_from_user(&ext, address, sizeof(ext)); if (XE_IOCTL_DBG(xe, err)) return -EFAULT; if (XE_IOCTL_DBG(xe, ext.pad) || XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(exec_queue_user_extension_funcs))) return -EINVAL; idx = array_index_nospec(ext.name, ARRAY_SIZE(exec_queue_user_extension_funcs)); err = exec_queue_user_extension_funcs[idx](xe, q, extensions); if (XE_IOCTL_DBG(xe, err)) return err; if (ext.next_extension) return exec_queue_user_extensions(xe, q, ext.next_extension, ++ext_number); return 0; } static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt, struct drm_xe_engine_class_instance *eci, u16 width, u16 num_placements) { int len = width * num_placements; int i, j, n; u16 class; u16 gt_id; u32 return_mask = 0, prev_mask; if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) && len > 1)) return 0; for (i = 0; i < width; ++i) { u32 current_mask = 0; for (j = 0; j < num_placements; ++j) { struct xe_hw_engine *hwe; n = j * width + i; hwe = xe_hw_engine_lookup(xe, eci[n]); if (XE_IOCTL_DBG(xe, !hwe)) return 0; if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe))) return 0; if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) || XE_IOCTL_DBG(xe, n && eci[n].engine_class != class)) return 0; class = eci[n].engine_class; gt_id = eci[n].gt_id; if (width == 1 || !i) return_mask |= BIT(eci[n].engine_instance); current_mask |= BIT(eci[n].engine_instance); } /* Parallel submissions must be logically contiguous */ if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1)) return 0; prev_mask = current_mask; } return return_mask; } int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = to_xe_file(file); struct drm_xe_exec_queue_create *args = data; struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE]; struct drm_xe_engine_class_instance __user *user_eci = u64_to_user_ptr(args->instances); struct xe_hw_engine *hwe; struct xe_vm *vm; struct xe_gt *gt; struct xe_tile *tile; struct xe_exec_queue *q = NULL; u32 logical_mask; u32 id; u32 len; int err; if (XE_IOCTL_DBG(xe, args->flags) || XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; len = args->width * args->num_placements; if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE)) return -EINVAL; err = __copy_from_user(eci, user_eci, sizeof(struct drm_xe_engine_class_instance) * len); if (XE_IOCTL_DBG(xe, err)) return -EFAULT; if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count)) return -EINVAL; if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) { if (XE_IOCTL_DBG(xe, args->width != 1) || XE_IOCTL_DBG(xe, args->num_placements != 1) || XE_IOCTL_DBG(xe, eci[0].engine_instance != 0)) return -EINVAL; for_each_tile(tile, xe, id) { struct xe_exec_queue *new; u32 flags = EXEC_QUEUE_FLAG_VM; if (id) flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD; new = xe_exec_queue_create_bind(xe, tile, flags, args->extensions); if (IS_ERR(new)) { err = PTR_ERR(new); if (q) goto put_exec_queue; return err; } if (id == 0) q = new; else list_add_tail(&new->multi_gt_list, &q->multi_gt_link); } } else { gt = xe_device_get_gt(xe, eci[0].gt_id); logical_mask = calc_validate_logical_mask(xe, gt, eci, args->width, args->num_placements); if (XE_IOCTL_DBG(xe, !logical_mask)) return -EINVAL; hwe = xe_hw_engine_lookup(xe, eci[0]); if (XE_IOCTL_DBG(xe, !hwe)) return -EINVAL; vm = xe_vm_lookup(xef, args->vm_id); if (XE_IOCTL_DBG(xe, !vm)) return -ENOENT; err = down_read_interruptible(&vm->lock); if (err) { xe_vm_put(vm); return err; } if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) { up_read(&vm->lock); xe_vm_put(vm); return -ENOENT; } q = xe_exec_queue_create(xe, vm, logical_mask, args->width, hwe, 0, args->extensions); up_read(&vm->lock); xe_vm_put(vm); if (IS_ERR(q)) return PTR_ERR(q); if (xe_vm_in_preempt_fence_mode(vm)) { q->lr.context = dma_fence_context_alloc(1); err = xe_vm_add_compute_exec_queue(vm, q); if (XE_IOCTL_DBG(xe, err)) goto put_exec_queue; } if (q->vm && q->hwe->hw_engine_group) { err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q); if (err) goto put_exec_queue; } } q->xef = xe_file_get(xef); /* user id alloc must always be last in ioctl to prevent UAF */ err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL); if (err) goto kill_exec_queue; args->exec_queue_id = id; return 0; kill_exec_queue: xe_exec_queue_kill(q); put_exec_queue: xe_exec_queue_put(q); return err; } int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = to_xe_file(file); struct drm_xe_exec_queue_get_property *args = data; struct xe_exec_queue *q; int ret; if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; q = xe_exec_queue_lookup(xef, args->exec_queue_id); if (XE_IOCTL_DBG(xe, !q)) return -ENOENT; switch (args->property) { case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN: args->value = q->ops->reset_status(q); ret = 0; break; default: ret = -EINVAL; } xe_exec_queue_put(q); return ret; } /** * xe_exec_queue_is_lr() - Whether an exec_queue is long-running * @q: The exec_queue * * Return: True if the exec_queue is long-running, false otherwise. */ bool xe_exec_queue_is_lr(struct xe_exec_queue *q) { return q->vm && xe_vm_in_lr_mode(q->vm) && !(q->flags & EXEC_QUEUE_FLAG_VM); } static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q) { return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1; } /** * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full * @q: The exec_queue * * Return: True if the exec_queue's ring is full, false otherwise. */ bool xe_exec_queue_ring_full(struct xe_exec_queue *q) { struct xe_lrc *lrc = q->lrc[0]; s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES; return xe_exec_queue_num_job_inflight(q) >= max_job; } /** * xe_exec_queue_is_idle() - Whether an exec_queue is idle. * @q: The exec_queue * * FIXME: Need to determine what to use as the short-lived * timeline lock for the exec_queues, so that the return value * of this function becomes more than just an advisory * snapshot in time. The timeline lock must protect the * seqno from racing submissions on the same exec_queue. * Typically vm->resv, but user-created timeline locks use the migrate vm * and never grabs the migrate vm->resv so we have a race there. * * Return: True if the exec_queue is idle, false otherwise. */ bool xe_exec_queue_is_idle(struct xe_exec_queue *q) { if (xe_exec_queue_is_parallel(q)) { int i; for (i = 0; i < q->width; ++i) { if (xe_lrc_seqno(q->lrc[i]) != q->lrc[i]->fence_ctx.next_seqno - 1) return false; } return true; } return xe_lrc_seqno(q->lrc[0]) == q->lrc[0]->fence_ctx.next_seqno - 1; } /** * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue * from hw * @q: The exec queue * * Update the timestamp saved by HW for this exec queue and save run ticks * calculated by using the delta from last update. */ void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q) { struct xe_file *xef; struct xe_lrc *lrc; u32 old_ts, new_ts; /* * Jobs that are run during driver load may use an exec_queue, but are * not associated with a user xe file, so avoid accumulating busyness * for kernel specific work. */ if (!q->vm || !q->vm->xef) return; xef = q->vm->xef; /* * Only sample the first LRC. For parallel submission, all of them are * scheduled together and we compensate that below by multiplying by * width - this may introduce errors if that premise is not true and * they don't exit 100% aligned. On the other hand, looping through * the LRCs and reading them in different time could also introduce * errors. */ lrc = q->lrc[0]; new_ts = xe_lrc_update_timestamp(lrc, &old_ts); xef->run_ticks[q->class] += (new_ts - old_ts) * q->width; } /** * xe_exec_queue_kill - permanently stop all execution from an exec queue * @q: The exec queue * * This function permanently stops all activity on an exec queue. If the queue * is actively executing on the HW, it will be kicked off the engine; any * pending jobs are discarded and all future submissions are rejected. * This function is safe to call multiple times. */ void xe_exec_queue_kill(struct xe_exec_queue *q) { struct xe_exec_queue *eq = q, *next; list_for_each_entry_safe(eq, next, &eq->multi_gt_list, multi_gt_link) { q->ops->kill(eq); xe_vm_remove_compute_exec_queue(q->vm, eq); } q->ops->kill(q); xe_vm_remove_compute_exec_queue(q->vm, q); } int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = to_xe_file(file); struct drm_xe_exec_queue_destroy *args = data; struct xe_exec_queue *q; if (XE_IOCTL_DBG(xe, args->pad) || XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; mutex_lock(&xef->exec_queue.lock); q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id); mutex_unlock(&xef->exec_queue.lock); if (XE_IOCTL_DBG(xe, !q)) return -ENOENT; if (q->vm && q->hwe->hw_engine_group) xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q); xe_exec_queue_kill(q); trace_xe_exec_queue_close(q); xe_exec_queue_put(q); return 0; } static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q, struct xe_vm *vm) { if (q->flags & EXEC_QUEUE_FLAG_VM) { lockdep_assert_held(&vm->lock); } else { xe_vm_assert_held(vm); lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem); } } /** * xe_exec_queue_last_fence_put() - Drop ref to last fence * @q: The exec queue * @vm: The VM the engine does a bind or exec for */ void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm) { xe_exec_queue_last_fence_lockdep_assert(q, vm); xe_exec_queue_last_fence_put_unlocked(q); } /** * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked * @q: The exec queue * * Only safe to be called from xe_exec_queue_destroy(). */ void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q) { if (q->last_fence) { dma_fence_put(q->last_fence); q->last_fence = NULL; } } /** * xe_exec_queue_last_fence_get() - Get last fence * @q: The exec queue * @vm: The VM the engine does a bind or exec for * * Get last fence, takes a ref * * Returns: last fence if not signaled, dma fence stub if signaled */ struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q, struct xe_vm *vm) { struct dma_fence *fence; xe_exec_queue_last_fence_lockdep_assert(q, vm); if (q->last_fence && test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags)) xe_exec_queue_last_fence_put(q, vm); fence = q->last_fence ? q->last_fence : dma_fence_get_stub(); dma_fence_get(fence); return fence; } /** * xe_exec_queue_last_fence_get_for_resume() - Get last fence * @q: The exec queue * @vm: The VM the engine does a bind or exec for * * Get last fence, takes a ref. Only safe to be called in the context of * resuming the hw engine group's long-running exec queue, when the group * semaphore is held. * * Returns: last fence if not signaled, dma fence stub if signaled */ struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q, struct xe_vm *vm) { struct dma_fence *fence; lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem); if (q->last_fence && test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags)) xe_exec_queue_last_fence_put_unlocked(q); fence = q->last_fence ? q->last_fence : dma_fence_get_stub(); dma_fence_get(fence); return fence; } /** * xe_exec_queue_last_fence_set() - Set last fence * @q: The exec queue * @vm: The VM the engine does a bind or exec for * @fence: The fence * * Set the last fence for the engine. Increases reference count for fence, when * closing engine xe_exec_queue_last_fence_put should be called. */ void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm, struct dma_fence *fence) { xe_exec_queue_last_fence_lockdep_assert(q, vm); xe_exec_queue_last_fence_put(q, vm); q->last_fence = dma_fence_get(fence); } /** * xe_exec_queue_last_fence_test_dep - Test last fence dependency of queue * @q: The exec queue * @vm: The VM the engine does a bind or exec for * * Returns: * -ETIME if there exists an unsignalled last fence dependency, zero otherwise. */ int xe_exec_queue_last_fence_test_dep(struct xe_exec_queue *q, struct xe_vm *vm) { struct dma_fence *fence; int err = 0; fence = xe_exec_queue_last_fence_get(q, vm); if (fence) { err = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) ? 0 : -ETIME; dma_fence_put(fence); } return err; }