// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_guc.h" #include #include #include "abi/guc_actions_abi.h" #include "abi/guc_errors_abi.h" #include "regs/xe_gt_regs.h" #include "regs/xe_gtt_defs.h" #include "regs/xe_guc_regs.h" #include "regs/xe_irq_regs.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_force_wake.h" #include "xe_gt.h" #include "xe_gt_printk.h" #include "xe_gt_sriov_vf.h" #include "xe_gt_throttle.h" #include "xe_guc_ads.h" #include "xe_guc_capture.h" #include "xe_guc_ct.h" #include "xe_guc_db_mgr.h" #include "xe_guc_hwconfig.h" #include "xe_guc_log.h" #include "xe_guc_pc.h" #include "xe_guc_relay.h" #include "xe_guc_submit.h" #include "xe_memirq.h" #include "xe_mmio.h" #include "xe_platform_types.h" #include "xe_sriov.h" #include "xe_uc.h" #include "xe_uc_fw.h" #include "xe_wa.h" #include "xe_wopcm.h" static u32 guc_bo_ggtt_addr(struct xe_guc *guc, struct xe_bo *bo) { struct xe_device *xe = guc_to_xe(guc); u32 addr = xe_bo_ggtt_addr(bo); /* GuC addresses above GUC_GGTT_TOP don't map through the GTT */ xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc))); xe_assert(xe, addr < GUC_GGTT_TOP); xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr); return addr; } static u32 guc_ctl_debug_flags(struct xe_guc *guc) { u32 level = xe_guc_log_get_level(&guc->log); u32 flags = 0; if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) flags |= GUC_LOG_DISABLED; else flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << GUC_LOG_VERBOSITY_SHIFT; return flags; } static u32 guc_ctl_feature_flags(struct xe_guc *guc) { u32 flags = GUC_CTL_ENABLE_LITE_RESTORE; if (!guc_to_xe(guc)->info.skip_guc_pc) flags |= GUC_CTL_ENABLE_SLPC; return flags; } static u32 guc_ctl_log_params_flags(struct xe_guc *guc) { u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT; u32 flags; #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) #define LOG_UNIT SZ_1M #define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS #else #define LOG_UNIT SZ_4K #define LOG_FLAG 0 #endif #if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0) #define CAPTURE_UNIT SZ_1M #define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS #else #define CAPTURE_UNIT SZ_4K #define CAPTURE_FLAG 0 #endif BUILD_BUG_ON(!CRASH_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT)); BUILD_BUG_ON(!DEBUG_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT)); BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE); BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT)); BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) > (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) > (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT)); BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) > (GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT)); flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL | CAPTURE_FLAG | LOG_FLAG | ((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) | ((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) | ((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) << GUC_LOG_CAPTURE_SHIFT) | (offset << GUC_LOG_BUF_ADDR_SHIFT); #undef LOG_UNIT #undef LOG_FLAG #undef CAPTURE_UNIT #undef CAPTURE_FLAG return flags; } static u32 guc_ctl_ads_flags(struct xe_guc *guc) { u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT; u32 flags = ads << GUC_ADS_ADDR_SHIFT; return flags; } static u32 guc_ctl_wa_flags(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); struct xe_gt *gt = guc_to_gt(guc); u32 flags = 0; if (XE_WA(gt, 22012773006)) flags |= GUC_WA_POLLCS; if (XE_WA(gt, 14014475959)) flags |= GUC_WA_HOLD_CCS_SWITCHOUT; if (XE_WA(gt, 22011391025)) flags |= GUC_WA_DUAL_QUEUE; /* * Wa_22011802037: FIXME - there's more to be done than simply setting * this flag: make sure each CS is stopped when preparing for GT reset * and wait for pending MI_FW. */ if (GRAPHICS_VERx100(xe) < 1270) flags |= GUC_WA_PRE_PARSER; if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685)) flags |= GUC_WA_CONTEXT_ISOLATION; if (XE_WA(gt, 18020744125) && !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER)) flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; if (XE_WA(gt, 1509372804)) flags |= GUC_WA_RENDER_RST_RC6_EXIT; if (XE_WA(gt, 14018913170)) flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; return flags; } static u32 guc_ctl_devid(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); return (((u32)xe->info.devid) << 16) | xe->info.revid; } static void guc_print_params(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 *params = guc->params; int i; BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]); } static void guc_init_params(struct xe_guc *guc) { u32 *params = guc->params; params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); params[GUC_CTL_FEATURE] = 0; params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); params[GUC_CTL_WA] = 0; params[GUC_CTL_DEVID] = guc_ctl_devid(guc); guc_print_params(guc); } static void guc_init_params_post_hwconfig(struct xe_guc *guc) { u32 *params = guc->params; params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); params[GUC_CTL_DEVID] = guc_ctl_devid(guc); guc_print_params(guc); } /* * Initialize the GuC parameter block before starting the firmware * transfer. These parameters are read by the firmware on startup * and cannot be changed thereafter. */ static void guc_write_params(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); int i; xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); xe_mmio_write32(>->mmio, SOFT_SCRATCH(0), 0); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) xe_mmio_write32(>->mmio, SOFT_SCRATCH(1 + i), guc->params[i]); } static void guc_fini_hw(void *arg) { struct xe_guc *guc = arg; struct xe_gt *gt = guc_to_gt(guc); unsigned int fw_ref; fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); xe_uc_fini_hw(&guc_to_gt(guc)->uc); xe_force_wake_put(gt_to_fw(gt), fw_ref); } /** * xe_guc_comm_init_early - early initialization of GuC communication * @guc: the &xe_guc to initialize * * Must be called prior to first MMIO communication with GuC firmware. */ void xe_guc_comm_init_early(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); if (xe_gt_is_media_type(gt)) guc->notify_reg = MED_GUC_HOST_INTERRUPT; else guc->notify_reg = GUC_HOST_INTERRUPT; } static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc) { struct xe_tile *tile = gt_to_tile(guc_to_gt(guc)); struct xe_device *xe = guc_to_xe(guc); int ret; if (!IS_DGFX(guc_to_xe(guc))) return 0; ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo); if (ret) return ret; ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo); if (ret) return ret; ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo); if (ret) return ret; ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo); if (ret) return ret; return 0; } static int vf_guc_init(struct xe_guc *guc) { int err; xe_guc_comm_init_early(guc); err = xe_guc_ct_init(&guc->ct); if (err) return err; err = xe_guc_relay_init(&guc->relay); if (err) return err; return 0; } int xe_guc_init(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); struct xe_gt *gt = guc_to_gt(guc); int ret; guc->fw.type = XE_UC_FW_TYPE_GUC; ret = xe_uc_fw_init(&guc->fw); if (ret) goto out; if (!xe_uc_fw_is_enabled(&guc->fw)) return 0; if (IS_SRIOV_VF(xe)) { ret = vf_guc_init(guc); if (ret) goto out; return 0; } ret = xe_guc_log_init(&guc->log); if (ret) goto out; ret = xe_guc_capture_init(guc); if (ret) goto out; ret = xe_guc_ads_init(&guc->ads); if (ret) goto out; ret = xe_guc_ct_init(&guc->ct); if (ret) goto out; ret = xe_guc_relay_init(&guc->relay); if (ret) goto out; xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE); ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc); if (ret) goto out; guc_init_params(guc); xe_guc_comm_init_early(guc); return 0; out: xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret)); return ret; } static int vf_guc_init_post_hwconfig(struct xe_guc *guc) { int err; err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc))); if (err) return err; /* XXX xe_guc_db_mgr_init not needed for now */ return 0; } /** * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load * @guc: The GuC object * * Return: 0 on success, negative error code on error. */ int xe_guc_init_post_hwconfig(struct xe_guc *guc) { int ret; if (IS_SRIOV_VF(guc_to_xe(guc))) return vf_guc_init_post_hwconfig(guc); ret = xe_guc_realloc_post_hwconfig(guc); if (ret) return ret; guc_init_params_post_hwconfig(guc); ret = xe_guc_submit_init(guc, ~0); if (ret) return ret; ret = xe_guc_db_mgr_init(&guc->dbm, ~0); if (ret) return ret; ret = xe_guc_pc_init(&guc->pc); if (ret) return ret; return xe_guc_ads_init_post_hwconfig(&guc->ads); } int xe_guc_post_load_init(struct xe_guc *guc) { xe_guc_ads_populate_post_load(&guc->ads); guc->submission_state.enabled = true; return 0; } int xe_guc_reset(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); struct xe_mmio *mmio = >->mmio; u32 guc_status, gdrst; int ret; xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); if (IS_SRIOV_VF(gt_to_xe(gt))) return xe_gt_sriov_vf_bootstrap(gt); xe_mmio_write32(mmio, GDRST, GRDOM_GUC); ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false); if (ret) { xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst); goto err_out; } guc_status = xe_mmio_read32(mmio, GUC_STATUS); if (!(guc_status & GS_MIA_IN_RESET)) { xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n", guc_status); ret = -EIO; goto err_out; } return 0; err_out: return ret; } static void guc_prepare_xfer(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); struct xe_mmio *mmio = >->mmio; struct xe_device *xe = guc_to_xe(guc); u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC | GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA | GUC_ENABLE_MIA_CLOCK_GATING; if (GRAPHICS_VERx100(xe) < 1250) shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES | GUC_ENABLE_MIA_CACHING; if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC) shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index); /* Must program this register before loading the ucode with DMA */ xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags); xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE); /* Make sure GuC receives ARAT interrupts */ xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0); } /* * Supporting MMIO & in memory RSA */ static int guc_xfer_rsa(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 rsa[UOS_RSA_SCRATCH_COUNT]; size_t copied; int i; if (guc->fw.rsa_size > 256) { u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) + xe_uc_fw_rsa_offset(&guc->fw); xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr); return 0; } copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa)); if (copied < sizeof(rsa)) return -ENOMEM; for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++) xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(i), rsa[i]); return 0; } /* * Check a previously read GuC status register (GUC_STATUS) looking for * known terminal states (either completion or failure) of either the * microkernel status field or the boot ROM status field. Returns +1 for * successful completion, -1 for failure and 0 for any intermediate state. */ static int guc_load_done(u32 status) { u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status); u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status); switch (uk_val) { case XE_GUC_LOAD_STATUS_READY: return 1; case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH: case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH: case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE: case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR: case XE_GUC_LOAD_STATUS_DPC_ERROR: case XE_GUC_LOAD_STATUS_EXCEPTION: case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID: case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID: case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: return -1; } switch (br_val) { case XE_BOOTROM_STATUS_NO_KEY_FOUND: case XE_BOOTROM_STATUS_RSA_FAILED: case XE_BOOTROM_STATUS_PAVPC_FAILED: case XE_BOOTROM_STATUS_WOPCM_FAILED: case XE_BOOTROM_STATUS_LOADLOC_FAILED: case XE_BOOTROM_STATUS_JUMP_FAILED: case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED: case XE_BOOTROM_STATUS_MPUMAP_INCORRECT: case XE_BOOTROM_STATUS_EXCEPTION: case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: return -1; } return 0; } static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc) { u32 freq; int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq); return ret ? ret : freq; } /* * Wait for the GuC to start up. * * Measurements indicate this should take no more than 20ms (assuming the GT * clock is at maximum frequency). However, thermal throttling and other issues * can prevent the clock hitting max and thus making the load take significantly * longer. Allow up to 200ms as a safety margin for real world worst case situations. * * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can * lead to even longer times. E.g. if the GT is clamped to minimum frequency then * the load times can be in the seconds range. So the timeout is increased for debug * builds to ensure that problems can be correctly analysed. For release builds, the * timeout is kept short so that users don't wait forever to find out that there is a * problem. In either case, if the load took longer than is reasonable even with some * 'sensible' throttling, then flag a warning because something is not right. * * Note that there is a limit on how long an individual usleep_range() can wait for, * hence longer waits require wrapping a shorter wait in a loop. * * Note that the only reason an end user should hit the shorter timeout is in case of * extreme thermal throttling. And a system that is that hot during boot is probably * dead anyway! */ #if IS_ENABLED(CONFIG_DRM_XE_DEBUG) #define GUC_LOAD_RETRY_LIMIT 20 #else #define GUC_LOAD_RETRY_LIMIT 3 #endif #define GUC_LOAD_TIME_WARN_MS 200 static void guc_wait_ucode(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); struct xe_mmio *mmio = >->mmio; struct xe_guc_pc *guc_pc = >->uc.guc.pc; ktime_t before, after, delta; int load_done; u32 status = 0; int count = 0; u64 delta_ms; u32 before_freq; before_freq = xe_guc_pc_get_act_freq(guc_pc); before = ktime_get(); /* * Note, can't use any kind of timing information from the call to xe_mmio_wait. * It could return a thousand intermediate stages at random times. Instead, must * manually track the total time taken and locally implement the timeout. */ do { u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK); int ret; /* * Wait for any change (intermediate or terminal) in the status register. * Note, the return value is a don't care. The only failure code is timeout * but the timeouts need to be accumulated over all the intermediate partial * timeouts rather than allowing a huge timeout each time. So basically, need * to treat a timeout no different to a value change. */ ret = xe_mmio_wait32_not(mmio, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK, last_status, 1000 * 1000, &status, false); if (ret < 0) count++; after = ktime_get(); delta = ktime_sub(after, before); delta_ms = ktime_to_ms(delta); load_done = guc_load_done(status); if (load_done != 0) break; if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000)) break; xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n", count, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc), status, REG_FIELD_GET(GS_BOOTROM_MASK, status), REG_FIELD_GET(GS_UKERNEL_MASK, status)); } while (1); if (load_done != 1) { u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status); u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status); xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n", status, delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc), load_done); xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n", REG_FIELD_GET(GS_MIA_IN_RESET, status), bootrom, ukernel, REG_FIELD_GET(GS_MIA_MASK, status), REG_FIELD_GET(GS_AUTH_STATUS_MASK, status)); switch (bootrom) { case XE_BOOTROM_STATUS_NO_KEY_FOUND: xe_gt_err(gt, "invalid key requested, header = 0x%08X\n", xe_mmio_read32(mmio, GUC_HEADER_INFO)); break; case XE_BOOTROM_STATUS_RSA_FAILED: xe_gt_err(gt, "firmware signature verification failed\n"); break; case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: xe_gt_err(gt, "firmware production part check failure\n"); break; } switch (ukernel) { case XE_GUC_LOAD_STATUS_EXCEPTION: xe_gt_err(gt, "firmware exception. EIP: %#x\n", xe_mmio_read32(mmio, SOFT_SCRATCH(13))); break; case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: xe_gt_err(gt, "illegal register in save/restore workaround list\n"); break; case XE_GUC_LOAD_STATUS_HWCONFIG_START: xe_gt_err(gt, "still extracting hwconfig table.\n"); break; } xe_device_declare_wedged(gt_to_xe(gt)); } else if (delta_ms > GUC_LOAD_TIME_WARN_MS) { xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n", delta_ms, status, count); xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n", xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc), before_freq, xe_gt_throttle_get_limit_reasons(gt)); } else { xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n", delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc), before_freq, status, count); } } static int __xe_guc_upload(struct xe_guc *guc) { int ret; /* Raise GT freq to speed up HuC/GuC load */ xe_guc_pc_raise_unslice(&guc->pc); guc_write_params(guc); guc_prepare_xfer(guc); /* * Note that GuC needs the CSS header plus uKernel code to be copied * by the DMA engine in one operation, whereas the RSA signature is * loaded separately, either by copying it to the UOS_RSA_SCRATCH * register (if key size <= 256) or through a ggtt-pinned vma (if key * size > 256). The RSA size and therefore the way we provide it to the * HW is fixed for each platform and hard-coded in the bootrom. */ ret = guc_xfer_rsa(guc); if (ret) goto out; /* * Current uCode expects the code to be loaded at 8k; locations below * this are used for the stack. */ ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE); if (ret) goto out; /* Wait for authentication */ guc_wait_ucode(guc); xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING); return 0; out: xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL); return 0 /* FIXME: ret, don't want to stop load currently */; } static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); int ret; ret = xe_gt_sriov_vf_bootstrap(gt); if (ret) return ret; ret = xe_gt_sriov_vf_query_config(gt); if (ret) return ret; ret = xe_guc_hwconfig_init(guc); if (ret) return ret; ret = xe_guc_enable_communication(guc); if (ret) return ret; ret = xe_gt_sriov_vf_connect(gt); if (ret) return ret; ret = xe_gt_sriov_vf_query_runtime(gt); if (ret) return ret; return 0; } /** * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table * @guc: The GuC object * * This function uploads a minimal GuC that does not support submissions but * in a state where the hwconfig table can be read. Next, it reads and parses * the hwconfig table so it can be used for subsequent steps in the driver load. * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only). * * Return: 0 on success, negative error code on error. */ int xe_guc_min_load_for_hwconfig(struct xe_guc *guc) { int ret; if (IS_SRIOV_VF(guc_to_xe(guc))) return vf_guc_min_load_for_hwconfig(guc); xe_guc_ads_populate_minimal(&guc->ads); xe_guc_pc_init_early(&guc->pc); ret = __xe_guc_upload(guc); if (ret) return ret; ret = xe_guc_hwconfig_init(guc); if (ret) return ret; ret = xe_guc_enable_communication(guc); if (ret) return ret; return 0; } int xe_guc_upload(struct xe_guc *guc) { xe_guc_ads_populate(&guc->ads); return __xe_guc_upload(guc); } static void guc_handle_mmio_msg(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 msg; if (IS_SRIOV_VF(guc_to_xe(guc))) return; xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); msg = xe_mmio_read32(>->mmio, SOFT_SCRATCH(15)); msg &= XE_GUC_RECV_MSG_EXCEPTION | XE_GUC_RECV_MSG_CRASH_DUMP_POSTED; xe_mmio_write32(>->mmio, SOFT_SCRATCH(15), 0); if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED) xe_gt_err(gt, "Received early GuC crash dump notification!\n"); if (msg & XE_GUC_RECV_MSG_EXCEPTION) xe_gt_err(gt, "Received early GuC exception notification!\n"); } static void guc_enable_irq(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 events = xe_gt_is_media_type(gt) ? REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) : REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); /* Primary GuC and media GuC share a single enable bit */ xe_mmio_write32(>->mmio, GUC_SG_INTR_ENABLE, REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST)); /* * There are separate mask bits for primary and media GuCs, so use * a RMW operation to avoid clobbering the other GuC's setting. */ xe_mmio_rmw32(>->mmio, GUC_SG_INTR_MASK, events, 0); } int xe_guc_enable_communication(struct xe_guc *guc) { struct xe_device *xe = guc_to_xe(guc); int err; if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) { struct xe_gt *gt = guc_to_gt(guc); struct xe_tile *tile = gt_to_tile(gt); err = xe_memirq_init_guc(&tile->memirq, guc); if (err) return err; } else { guc_enable_irq(guc); } err = xe_guc_ct_enable(&guc->ct); if (err) return err; guc_handle_mmio_msg(guc); return 0; } int xe_guc_suspend(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); u32 action[] = { XE_GUC_ACTION_CLIENT_SOFT_RESET, }; int ret; ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action)); if (ret) { xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret)); return ret; } xe_guc_sanitize(guc); return 0; } void xe_guc_notify(struct xe_guc *guc) { struct xe_gt *gt = guc_to_gt(guc); const u32 default_notify_data = 0; /* * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass * additional payload data to the GuC but this capability is not * used by the firmware yet. Use default value in the meantime. */ xe_mmio_write32(>->mmio, guc->notify_reg, default_notify_data); } int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr) { u32 action[] = { XE_GUC_ACTION_AUTHENTICATE_HUC, rsa_addr }; return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action)); } int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request, u32 len, u32 *response_buf) { struct xe_device *xe = guc_to_xe(guc); struct xe_gt *gt = guc_to_gt(guc); struct xe_mmio *mmio = >->mmio; u32 header, reply; struct xe_reg reply_reg = xe_gt_is_media_type(gt) ? MED_VF_SW_FLAG(0) : VF_SW_FLAG(0); const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1; int ret; int i; BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT); xe_assert(xe, !xe_guc_ct_enabled(&guc->ct)); xe_assert(xe, len); xe_assert(xe, len <= VF_SW_FLAG_COUNT); xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT); xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) == GUC_HXG_ORIGIN_HOST); xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) == GUC_HXG_TYPE_REQUEST); retry: /* Not in critical data-path, just do if else for GT type */ if (xe_gt_is_media_type(gt)) { for (i = 0; i < len; ++i) xe_mmio_write32(mmio, MED_VF_SW_FLAG(i), request[i]); xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX)); } else { for (i = 0; i < len; ++i) xe_mmio_write32(mmio, VF_SW_FLAG(i), request[i]); xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX)); } xe_guc_notify(guc); ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN, FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC), 50000, &reply, false); if (ret) { timeout: xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n", request[0], reply); return ret; } header = xe_mmio_read32(mmio, reply_reg); if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { /* * Once we got a BUSY reply we must wait again for the final * response but this time we can't use ORIGIN mask anymore. * To spot a right change in the reply, we take advantage that * response SUCCESS and FAILURE differ only by the single bit * and all other bits are set and can be used as a new mask. */ u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE; u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits); BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS); BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1); ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask, 1000000, &header, false); if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC)) goto proto; if (unlikely(ret)) { if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY) goto proto; goto timeout; } } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n", request[0], reason); goto retry; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n", request[0], error, hint); return -ENXIO; } if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { proto: xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n", request[0], header); return -EPROTO; } /* Just copy entire possible message response */ if (response_buf) { response_buf[0] = header; for (i = 1; i < VF_SW_FLAG_COUNT; i++) { reply_reg.addr += sizeof(u32); response_buf[i] = xe_mmio_read32(mmio, reply_reg); } } /* Use data from the GuC response as our return value */ return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); } int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len) { return xe_guc_mmio_send_recv(guc, request, len, NULL); } static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val) { struct xe_device *xe = guc_to_xe(guc); u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(val)), FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(val)), }; int ret; xe_assert(xe, len <= 2); xe_assert(xe, len != 1 || !upper_32_bits(val)); /* Self config must go over MMIO */ ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request)); if (unlikely(ret < 0)) return ret; if (unlikely(ret > 1)) return -EPROTO; if (unlikely(!ret)) return -ENOKEY; return 0; } int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val) { return guc_self_cfg(guc, key, 1, val); } int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val) { return guc_self_cfg(guc, key, 2, val); } void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir) { if (iir & GUC_INTR_GUC2HOST) xe_guc_ct_irq_handler(&guc->ct); } void xe_guc_sanitize(struct xe_guc *guc) { xe_uc_fw_sanitize(&guc->fw); xe_guc_ct_disable(&guc->ct); guc->submission_state.enabled = false; } int xe_guc_reset_prepare(struct xe_guc *guc) { return xe_guc_submit_reset_prepare(guc); } void xe_guc_reset_wait(struct xe_guc *guc) { xe_guc_submit_reset_wait(guc); } void xe_guc_stop_prepare(struct xe_guc *guc) { if (!IS_SRIOV_VF(guc_to_xe(guc))) { int err; err = xe_guc_pc_stop(&guc->pc); xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n", ERR_PTR(err)); } } void xe_guc_stop(struct xe_guc *guc) { xe_guc_ct_stop(&guc->ct); xe_guc_submit_stop(guc); } int xe_guc_start(struct xe_guc *guc) { if (!IS_SRIOV_VF(guc_to_xe(guc))) { int err; err = xe_guc_pc_start(&guc->pc); xe_gt_WARN(guc_to_gt(guc), err, "Failed to start GuC PC: %pe\n", ERR_PTR(err)); } return xe_guc_submit_start(guc); } void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p) { struct xe_gt *gt = guc_to_gt(guc); unsigned int fw_ref; u32 status; int i; xe_uc_fw_print(&guc->fw, p); fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (!fw_ref) return; status = xe_mmio_read32(>->mmio, GUC_STATUS); drm_printf(p, "\nGuC status 0x%08x:\n", status); drm_printf(p, "\tBootrom status = 0x%x\n", REG_FIELD_GET(GS_BOOTROM_MASK, status)); drm_printf(p, "\tuKernel status = 0x%x\n", REG_FIELD_GET(GS_UKERNEL_MASK, status)); drm_printf(p, "\tMIA Core status = 0x%x\n", REG_FIELD_GET(GS_MIA_MASK, status)); drm_printf(p, "\tLog level = %d\n", xe_guc_log_get_level(&guc->log)); drm_puts(p, "\nScratch registers:\n"); for (i = 0; i < SOFT_SCRATCH_COUNT; i++) { drm_printf(p, "\t%2d: \t0x%x\n", i, xe_mmio_read32(>->mmio, SOFT_SCRATCH(i))); } xe_force_wake_put(gt_to_fw(gt), fw_ref); drm_puts(p, "\n"); xe_guc_ct_print(&guc->ct, p, false); drm_puts(p, "\n"); xe_guc_submit_print(guc, p); } /** * xe_guc_declare_wedged() - Declare GuC wedged * @guc: the GuC object * * Wedge the GuC which stops all submission, saves desired debug state, and * cleans up anything which could timeout. */ void xe_guc_declare_wedged(struct xe_guc *guc) { xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode); xe_guc_reset_prepare(guc); xe_guc_ct_stop(&guc->ct); xe_guc_submit_wedge(guc); }