// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_irq.h" #include #include #include "display/xe_display.h" #include "regs/xe_irq_regs.h" #include "xe_device.h" #include "xe_drv.h" #include "xe_gsc_proxy.h" #include "xe_gt.h" #include "xe_guc.h" #include "xe_hw_engine.h" #include "xe_memirq.h" #include "xe_mmio.h" #include "xe_sriov.h" /* * Interrupt registers for a unit are always consecutive and ordered * ISR, IMR, IIR, IER. */ #define IMR(offset) XE_REG(offset + 0x4) #define IIR(offset) XE_REG(offset + 0x8) #define IER(offset) XE_REG(offset + 0xc) static void assert_iir_is_zero(struct xe_mmio *mmio, struct xe_reg reg) { u32 val = xe_mmio_read32(mmio, reg); if (val == 0) return; drm_WARN(&mmio->tile->xe->drm, 1, "Interrupt register 0x%x is not zero: 0x%08x\n", reg.addr, val); xe_mmio_write32(mmio, reg, 0xffffffff); xe_mmio_read32(mmio, reg); xe_mmio_write32(mmio, reg, 0xffffffff); xe_mmio_read32(mmio, reg); } /* * Unmask and enable the specified interrupts. Does not check current state, * so any bits not specified here will become masked and disabled. */ static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits) { struct xe_mmio *mmio = &tile->mmio; /* * If we're just enabling an interrupt now, it shouldn't already * be raised in the IIR. */ assert_iir_is_zero(mmio, IIR(irqregs)); xe_mmio_write32(mmio, IER(irqregs), bits); xe_mmio_write32(mmio, IMR(irqregs), ~bits); /* Posting read */ xe_mmio_read32(mmio, IMR(irqregs)); } /* Mask and disable all interrupts. */ static void mask_and_disable(struct xe_tile *tile, u32 irqregs) { struct xe_mmio *mmio = &tile->mmio; xe_mmio_write32(mmio, IMR(irqregs), ~0); /* Posting read */ xe_mmio_read32(mmio, IMR(irqregs)); xe_mmio_write32(mmio, IER(irqregs), 0); /* IIR can theoretically queue up two events. Be paranoid. */ xe_mmio_write32(mmio, IIR(irqregs), ~0); xe_mmio_read32(mmio, IIR(irqregs)); xe_mmio_write32(mmio, IIR(irqregs), ~0); xe_mmio_read32(mmio, IIR(irqregs)); } static u32 xelp_intr_disable(struct xe_device *xe) { struct xe_mmio *mmio = xe_root_tile_mmio(xe); xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0); /* * Now with master disabled, get a sample of level indications * for this interrupt. Indications will be cleared on related acks. * New indications can and will light up during processing, * and will generate new interrupt after enabling master. */ return xe_mmio_read32(mmio, GFX_MSTR_IRQ); } static u32 gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl) { struct xe_mmio *mmio = xe_root_tile_mmio(xe); u32 iir; if (!(master_ctl & GU_MISC_IRQ)) return 0; iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET)); if (likely(iir)) xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir); return iir; } static inline void xelp_intr_enable(struct xe_device *xe, bool stall) { struct xe_mmio *mmio = xe_root_tile_mmio(xe); xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ); if (stall) xe_mmio_read32(mmio, GFX_MSTR_IRQ); } /* Enable/unmask the HWE interrupts for a specific GT's engines. */ void xe_irq_enable_hwe(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); struct xe_mmio *mmio = >->mmio; u32 ccs_mask, bcs_mask; u32 irqs, dmask, smask; u32 gsc_mask = 0; u32 heci_mask = 0; if (xe_device_uses_memirq(xe)) return; if (xe_device_uc_enabled(xe)) { irqs = GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT; } else { irqs = GT_RENDER_USER_INTERRUPT | GT_CS_MASTER_ERROR_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT | GT_WAIT_SEMAPHORE_INTERRUPT; } ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE); bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY); dmask = irqs << 16 | irqs; smask = irqs << 16; if (!xe_gt_is_media_type(gt)) { /* Enable interrupts for each engine class */ xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, dmask); if (ccs_mask) xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, smask); /* Unmask interrupts for each engine instance */ xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~smask); xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~smask); if (bcs_mask & (BIT(1)|BIT(2))) xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask); if (bcs_mask & (BIT(3)|BIT(4))) xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask); if (bcs_mask & (BIT(5)|BIT(6))) xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask); if (bcs_mask & (BIT(7)|BIT(8))) xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask); if (ccs_mask & (BIT(0)|BIT(1))) xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~dmask); if (ccs_mask & (BIT(2)|BIT(3))) xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~dmask); } if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) { /* Enable interrupts for each engine class */ xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, dmask); /* Unmask interrupts for each engine instance */ xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~dmask); xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~dmask); xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~dmask); /* * the heci2 interrupt is enabled via the same register as the * GSCCS interrupts, but it has its own mask register. */ if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) { gsc_mask = irqs | GSC_ER_COMPLETE; heci_mask = GSC_IRQ_INTF(1); } else if (HAS_HECI_GSCFI(xe)) { gsc_mask = GSC_IRQ_INTF(1); } if (gsc_mask) { xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask); xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~gsc_mask); } if (heci_mask) xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16)); } } static u32 gt_engine_identity(struct xe_device *xe, struct xe_mmio *mmio, const unsigned int bank, const unsigned int bit) { u32 timeout_ts; u32 ident; lockdep_assert_held(&xe->irq.lock); xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit)); /* * NB: Specs do not specify how long to spin wait, * so we do ~100us as an educated guess. */ timeout_ts = (local_clock() >> 10) + 100; do { ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank)); } while (!(ident & INTR_DATA_VALID) && !time_after32(local_clock() >> 10, timeout_ts)); if (unlikely(!(ident & INTR_DATA_VALID))) { drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", bank, bit, ident); return 0; } xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident); return ident; } #define OTHER_MEDIA_GUC_INSTANCE 16 static void gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir) { if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt)) return xe_guc_irq_handler(>->uc.guc, iir); if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt)) return xe_guc_irq_handler(>->uc.guc, iir); if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt)) return xe_gsc_proxy_irq_handler(>->uc.gsc, iir); if (instance != OTHER_GUC_INSTANCE && instance != OTHER_MEDIA_GUC_INSTANCE) { WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", instance, iir); } } static struct xe_gt *pick_engine_gt(struct xe_tile *tile, enum xe_engine_class class, unsigned int instance) { struct xe_device *xe = tile_to_xe(tile); if (MEDIA_VER(xe) < 13) return tile->primary_gt; switch (class) { case XE_ENGINE_CLASS_VIDEO_DECODE: case XE_ENGINE_CLASS_VIDEO_ENHANCE: return tile->media_gt; case XE_ENGINE_CLASS_OTHER: switch (instance) { case OTHER_MEDIA_GUC_INSTANCE: case OTHER_GSC_INSTANCE: case OTHER_GSC_HECI2_INSTANCE: return tile->media_gt; default: break; } fallthrough; default: return tile->primary_gt; } } static void gt_irq_handler(struct xe_tile *tile, u32 master_ctl, unsigned long *intr_dw, u32 *identity) { struct xe_device *xe = tile_to_xe(tile); struct xe_mmio *mmio = &tile->mmio; unsigned int bank, bit; u16 instance, intr_vec; enum xe_engine_class class; struct xe_hw_engine *hwe; spin_lock(&xe->irq.lock); for (bank = 0; bank < 2; bank++) { if (!(master_ctl & GT_DW_IRQ(bank))) continue; intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank)); for_each_set_bit(bit, intr_dw + bank, 32) identity[bit] = gt_engine_identity(xe, mmio, bank, bit); xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]); for_each_set_bit(bit, intr_dw + bank, 32) { struct xe_gt *engine_gt; class = INTR_ENGINE_CLASS(identity[bit]); instance = INTR_ENGINE_INSTANCE(identity[bit]); intr_vec = INTR_ENGINE_INTR(identity[bit]); engine_gt = pick_engine_gt(tile, class, instance); hwe = xe_gt_hw_engine(engine_gt, class, instance, false); if (hwe) { xe_hw_engine_handle_irq(hwe, intr_vec); continue; } if (class == XE_ENGINE_CLASS_OTHER) { /* HECI GSCFI interrupts come from outside of GT */ if (HAS_HECI_GSCFI(xe) && instance == OTHER_GSC_INSTANCE) xe_heci_gsc_irq_handler(xe, intr_vec); else gt_other_irq_handler(engine_gt, instance, intr_vec); } } } spin_unlock(&xe->irq.lock); } /* * Top-level interrupt handler for Xe_LP platforms (which did not have * a "master tile" interrupt register. */ static irqreturn_t xelp_irq_handler(int irq, void *arg) { struct xe_device *xe = arg; struct xe_tile *tile = xe_device_get_root_tile(xe); u32 master_ctl, gu_misc_iir; unsigned long intr_dw[2]; u32 identity[32]; spin_lock(&xe->irq.lock); if (!xe->irq.enabled) { spin_unlock(&xe->irq.lock); return IRQ_NONE; } spin_unlock(&xe->irq.lock); master_ctl = xelp_intr_disable(xe); if (!master_ctl) { xelp_intr_enable(xe, false); return IRQ_NONE; } gt_irq_handler(tile, master_ctl, intr_dw, identity); xe_display_irq_handler(xe, master_ctl); gu_misc_iir = gu_misc_irq_ack(xe, master_ctl); xelp_intr_enable(xe, false); xe_display_irq_enable(xe, gu_misc_iir); return IRQ_HANDLED; } static u32 dg1_intr_disable(struct xe_device *xe) { struct xe_mmio *mmio = xe_root_tile_mmio(xe); u32 val; /* First disable interrupts */ xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0); /* Get the indication levels and ack the master unit */ val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR); if (unlikely(!val)) return 0; xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val); return val; } static void dg1_intr_enable(struct xe_device *xe, bool stall) { struct xe_mmio *mmio = xe_root_tile_mmio(xe); xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ); if (stall) xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR); } /* * Top-level interrupt handler for Xe_LP+ and beyond. These platforms have * a "master tile" interrupt register which must be consulted before the * "graphics master" interrupt register. */ static irqreturn_t dg1_irq_handler(int irq, void *arg) { struct xe_device *xe = arg; struct xe_tile *tile; u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0; unsigned long intr_dw[2]; u32 identity[32]; u8 id; /* TODO: This really shouldn't be copied+pasted */ spin_lock(&xe->irq.lock); if (!xe->irq.enabled) { spin_unlock(&xe->irq.lock); return IRQ_NONE; } spin_unlock(&xe->irq.lock); master_tile_ctl = dg1_intr_disable(xe); if (!master_tile_ctl) { dg1_intr_enable(xe, false); return IRQ_NONE; } for_each_tile(tile, xe, id) { struct xe_mmio *mmio = &tile->mmio; if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0) continue; master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ); /* * We might be in irq handler just when PCIe DPC is initiated * and all MMIO reads will be returned with all 1's. Ignore this * irq as device is inaccessible. */ if (master_ctl == REG_GENMASK(31, 0)) { drm_dbg(&tile_to_xe(tile)->drm, "Ignore this IRQ as device might be in DPC containment.\n"); return IRQ_HANDLED; } xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl); gt_irq_handler(tile, master_ctl, intr_dw, identity); /* * Display interrupts (including display backlight operations * that get reported as Gunit GSE) would only be hooked up to * the primary tile. */ if (id == 0) { if (HAS_HECI_CSCFI(xe)) xe_heci_csc_irq_handler(xe, master_ctl); xe_display_irq_handler(xe, master_ctl); gu_misc_iir = gu_misc_irq_ack(xe, master_ctl); } } dg1_intr_enable(xe, false); xe_display_irq_enable(xe, gu_misc_iir); return IRQ_HANDLED; } static void gt_irq_reset(struct xe_tile *tile) { struct xe_mmio *mmio = &tile->mmio; u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt, XE_ENGINE_CLASS_COMPUTE); u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt, XE_ENGINE_CLASS_COPY); /* Disable RCS, BCS, VCS and VECS class engines. */ xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0); xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0); if (ccs_mask) xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0); /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~0); xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~0); if (bcs_mask & (BIT(1)|BIT(2))) xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0); if (bcs_mask & (BIT(3)|BIT(4))) xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0); if (bcs_mask & (BIT(5)|BIT(6))) xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0); if (bcs_mask & (BIT(7)|BIT(8))) xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0); xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~0); xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~0); xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~0); if (ccs_mask & (BIT(0)|BIT(1))) xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0); if (ccs_mask & (BIT(2)|BIT(3))) xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~0); if ((tile->media_gt && xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) || HAS_HECI_GSCFI(tile_to_xe(tile))) { xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0); xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0); xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0); } xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0); xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK, ~0); xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE, 0); xe_mmio_write32(mmio, GUC_SG_INTR_MASK, ~0); } static void xelp_irq_reset(struct xe_tile *tile) { xelp_intr_disable(tile_to_xe(tile)); gt_irq_reset(tile); if (IS_SRIOV_VF(tile_to_xe(tile))) return; mask_and_disable(tile, PCU_IRQ_OFFSET); } static void dg1_irq_reset(struct xe_tile *tile) { if (tile->id == 0) dg1_intr_disable(tile_to_xe(tile)); gt_irq_reset(tile); if (IS_SRIOV_VF(tile_to_xe(tile))) return; mask_and_disable(tile, PCU_IRQ_OFFSET); } static void dg1_irq_reset_mstr(struct xe_tile *tile) { struct xe_mmio *mmio = &tile->mmio; xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0); } static void vf_irq_reset(struct xe_device *xe) { struct xe_tile *tile; unsigned int id; xe_assert(xe, IS_SRIOV_VF(xe)); if (GRAPHICS_VERx100(xe) < 1210) xelp_intr_disable(xe); else xe_assert(xe, xe_device_has_memirq(xe)); for_each_tile(tile, xe, id) { if (xe_device_has_memirq(xe)) xe_memirq_reset(&tile->memirq); else gt_irq_reset(tile); } } static void xe_irq_reset(struct xe_device *xe) { struct xe_tile *tile; u8 id; if (IS_SRIOV_VF(xe)) return vf_irq_reset(xe); for_each_tile(tile, xe, id) { if (GRAPHICS_VERx100(xe) >= 1210) dg1_irq_reset(tile); else xelp_irq_reset(tile); } tile = xe_device_get_root_tile(xe); mask_and_disable(tile, GU_MISC_IRQ_OFFSET); xe_display_irq_reset(xe); /* * The tile's top-level status register should be the last one * to be reset to avoid possible bit re-latching from lower * level interrupts. */ if (GRAPHICS_VERx100(xe) >= 1210) { for_each_tile(tile, xe, id) dg1_irq_reset_mstr(tile); } } static void vf_irq_postinstall(struct xe_device *xe) { struct xe_tile *tile; unsigned int id; for_each_tile(tile, xe, id) if (xe_device_has_memirq(xe)) xe_memirq_postinstall(&tile->memirq); if (GRAPHICS_VERx100(xe) < 1210) xelp_intr_enable(xe, true); else xe_assert(xe, xe_device_has_memirq(xe)); } static void xe_irq_postinstall(struct xe_device *xe) { if (IS_SRIOV_VF(xe)) return vf_irq_postinstall(xe); xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe)); /* * ASLE backlight operations are reported via GUnit GSE interrupts * on the root tile. */ unmask_and_enable(xe_device_get_root_tile(xe), GU_MISC_IRQ_OFFSET, GU_MISC_GSE); /* Enable top-level interrupts */ if (GRAPHICS_VERx100(xe) >= 1210) dg1_intr_enable(xe, true); else xelp_intr_enable(xe, true); } static irqreturn_t vf_mem_irq_handler(int irq, void *arg) { struct xe_device *xe = arg; struct xe_tile *tile; unsigned int id; spin_lock(&xe->irq.lock); if (!xe->irq.enabled) { spin_unlock(&xe->irq.lock); return IRQ_NONE; } spin_unlock(&xe->irq.lock); for_each_tile(tile, xe, id) xe_memirq_handler(&tile->memirq); return IRQ_HANDLED; } static irq_handler_t xe_irq_handler(struct xe_device *xe) { if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) return vf_mem_irq_handler; if (GRAPHICS_VERx100(xe) >= 1210) return dg1_irq_handler; else return xelp_irq_handler; } static void irq_uninstall(void *arg) { struct xe_device *xe = arg; struct pci_dev *pdev = to_pci_dev(xe->drm.dev); int irq; if (!xe->irq.enabled) return; xe->irq.enabled = false; xe_irq_reset(xe); irq = pci_irq_vector(pdev, 0); free_irq(irq, xe); } int xe_irq_install(struct xe_device *xe) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); unsigned int irq_flags = PCI_IRQ_MSIX; irq_handler_t irq_handler; int err, irq, nvec; irq_handler = xe_irq_handler(xe); if (!irq_handler) { drm_err(&xe->drm, "No supported interrupt handler"); return -EINVAL; } xe_irq_reset(xe); nvec = pci_msix_vec_count(pdev); if (nvec <= 0) { if (nvec == -EINVAL) { /* MSIX capability is not supported in the device, using MSI */ irq_flags = PCI_IRQ_MSI; nvec = 1; } else { drm_err(&xe->drm, "MSIX: Failed getting count\n"); return nvec; } } err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags); if (err < 0) { drm_err(&xe->drm, "MSI/MSIX: Failed to enable support %d\n", err); return err; } irq = pci_irq_vector(pdev, 0); err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe); if (err < 0) { drm_err(&xe->drm, "Failed to request MSI/MSIX IRQ %d\n", err); return err; } xe->irq.enabled = true; xe_irq_postinstall(xe); err = devm_add_action_or_reset(xe->drm.dev, irq_uninstall, xe); if (err) goto free_irq_handler; return 0; free_irq_handler: free_irq(irq, xe); return err; } void xe_irq_suspend(struct xe_device *xe) { int irq = to_pci_dev(xe->drm.dev)->irq; spin_lock_irq(&xe->irq.lock); xe->irq.enabled = false; /* no new irqs */ spin_unlock_irq(&xe->irq.lock); synchronize_irq(irq); /* flush irqs */ xe_irq_reset(xe); /* turn irqs off */ } void xe_irq_resume(struct xe_device *xe) { struct xe_gt *gt; int id; /* * lock not needed: * 1. no irq will arrive before the postinstall * 2. display is not yet resumed */ xe->irq.enabled = true; xe_irq_reset(xe); xe_irq_postinstall(xe); /* turn irqs on */ for_each_gt(gt, xe, id) xe_irq_enable_hwe(gt); }