// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_sync.h" #include #include #include #include #include #include #include #include "xe_device_types.h" #include "xe_exec_queue.h" #include "xe_macros.h" #include "xe_sched_job_types.h" struct xe_user_fence { struct xe_device *xe; struct kref refcount; struct dma_fence_cb cb; struct work_struct worker; struct mm_struct *mm; u64 __user *addr; u64 value; int signalled; }; static void user_fence_destroy(struct kref *kref) { struct xe_user_fence *ufence = container_of(kref, struct xe_user_fence, refcount); mmdrop(ufence->mm); kfree(ufence); } static void user_fence_get(struct xe_user_fence *ufence) { kref_get(&ufence->refcount); } static void user_fence_put(struct xe_user_fence *ufence) { kref_put(&ufence->refcount, user_fence_destroy); } static struct xe_user_fence *user_fence_create(struct xe_device *xe, u64 addr, u64 value) { struct xe_user_fence *ufence; u64 __user *ptr = u64_to_user_ptr(addr); u64 __maybe_unused prefetch_val; if (get_user(prefetch_val, ptr)) return ERR_PTR(-EFAULT); ufence = kzalloc(sizeof(*ufence), GFP_KERNEL); if (!ufence) return ERR_PTR(-ENOMEM); ufence->xe = xe; kref_init(&ufence->refcount); ufence->addr = ptr; ufence->value = value; ufence->mm = current->mm; mmgrab(ufence->mm); return ufence; } static void user_fence_worker(struct work_struct *w) { struct xe_user_fence *ufence = container_of(w, struct xe_user_fence, worker); if (mmget_not_zero(ufence->mm)) { kthread_use_mm(ufence->mm); if (copy_to_user(ufence->addr, &ufence->value, sizeof(ufence->value))) XE_WARN_ON("Copy to user failed"); kthread_unuse_mm(ufence->mm); mmput(ufence->mm); } else { drm_dbg(&ufence->xe->drm, "mmget_not_zero() failed, ufence wasn't signaled\n"); } /* * Wake up waiters only after updating the ufence state, allowing the UMD * to safely reuse the same ufence without encountering -EBUSY errors. */ WRITE_ONCE(ufence->signalled, 1); wake_up_all(&ufence->xe->ufence_wq); user_fence_put(ufence); } static void kick_ufence(struct xe_user_fence *ufence, struct dma_fence *fence) { INIT_WORK(&ufence->worker, user_fence_worker); queue_work(ufence->xe->ordered_wq, &ufence->worker); dma_fence_put(fence); } static void user_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb) { struct xe_user_fence *ufence = container_of(cb, struct xe_user_fence, cb); kick_ufence(ufence, fence); } int xe_sync_entry_parse(struct xe_device *xe, struct xe_file *xef, struct xe_sync_entry *sync, struct drm_xe_sync __user *sync_user, unsigned int flags) { struct drm_xe_sync sync_in; int err; bool exec = flags & SYNC_PARSE_FLAG_EXEC; bool in_lr_mode = flags & SYNC_PARSE_FLAG_LR_MODE; bool disallow_user_fence = flags & SYNC_PARSE_FLAG_DISALLOW_USER_FENCE; bool signal; if (copy_from_user(&sync_in, sync_user, sizeof(*sync_user))) return -EFAULT; if (XE_IOCTL_DBG(xe, sync_in.flags & ~DRM_XE_SYNC_FLAG_SIGNAL) || XE_IOCTL_DBG(xe, sync_in.reserved[0] || sync_in.reserved[1])) return -EINVAL; signal = sync_in.flags & DRM_XE_SYNC_FLAG_SIGNAL; switch (sync_in.type) { case DRM_XE_SYNC_TYPE_SYNCOBJ: if (XE_IOCTL_DBG(xe, in_lr_mode && signal)) return -EOPNOTSUPP; if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr))) return -EINVAL; sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle); if (XE_IOCTL_DBG(xe, !sync->syncobj)) return -ENOENT; if (!signal) { sync->fence = drm_syncobj_fence_get(sync->syncobj); if (XE_IOCTL_DBG(xe, !sync->fence)) return -EINVAL; } break; case DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ: if (XE_IOCTL_DBG(xe, in_lr_mode && signal)) return -EOPNOTSUPP; if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr))) return -EINVAL; if (XE_IOCTL_DBG(xe, sync_in.timeline_value == 0)) return -EINVAL; sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle); if (XE_IOCTL_DBG(xe, !sync->syncobj)) return -ENOENT; if (signal) { sync->chain_fence = dma_fence_chain_alloc(); if (!sync->chain_fence) return -ENOMEM; } else { sync->fence = drm_syncobj_fence_get(sync->syncobj); if (XE_IOCTL_DBG(xe, !sync->fence)) return -EINVAL; err = dma_fence_chain_find_seqno(&sync->fence, sync_in.timeline_value); if (err) return err; } break; case DRM_XE_SYNC_TYPE_USER_FENCE: if (XE_IOCTL_DBG(xe, disallow_user_fence)) return -EOPNOTSUPP; if (XE_IOCTL_DBG(xe, !signal)) return -EOPNOTSUPP; if (XE_IOCTL_DBG(xe, sync_in.addr & 0x7)) return -EINVAL; if (exec) { sync->addr = sync_in.addr; } else { sync->ufence = user_fence_create(xe, sync_in.addr, sync_in.timeline_value); if (XE_IOCTL_DBG(xe, IS_ERR(sync->ufence))) return PTR_ERR(sync->ufence); } break; default: return -EINVAL; } sync->type = sync_in.type; sync->flags = sync_in.flags; sync->timeline_value = sync_in.timeline_value; return 0; } int xe_sync_entry_add_deps(struct xe_sync_entry *sync, struct xe_sched_job *job) { if (sync->fence) return drm_sched_job_add_dependency(&job->drm, dma_fence_get(sync->fence)); return 0; } void xe_sync_entry_signal(struct xe_sync_entry *sync, struct dma_fence *fence) { if (!(sync->flags & DRM_XE_SYNC_FLAG_SIGNAL)) return; if (sync->chain_fence) { drm_syncobj_add_point(sync->syncobj, sync->chain_fence, fence, sync->timeline_value); /* * The chain's ownership is transferred to the * timeline. */ sync->chain_fence = NULL; } else if (sync->syncobj) { drm_syncobj_replace_fence(sync->syncobj, fence); } else if (sync->ufence) { int err; dma_fence_get(fence); user_fence_get(sync->ufence); err = dma_fence_add_callback(fence, &sync->ufence->cb, user_fence_cb); if (err == -ENOENT) { kick_ufence(sync->ufence, fence); } else if (err) { XE_WARN_ON("failed to add user fence"); user_fence_put(sync->ufence); dma_fence_put(fence); } } } void xe_sync_entry_cleanup(struct xe_sync_entry *sync) { if (sync->syncobj) drm_syncobj_put(sync->syncobj); dma_fence_put(sync->fence); dma_fence_chain_free(sync->chain_fence); if (sync->ufence) user_fence_put(sync->ufence); } /** * xe_sync_in_fence_get() - Get a fence from syncs, exec queue, and VM * @sync: input syncs * @num_sync: number of syncs * @q: exec queue * @vm: VM * * Get a fence from syncs, exec queue, and VM. If syncs contain in-fences create * and return a composite fence of all in-fences + last fence. If no in-fences * return last fence on input exec queue. Caller must drop reference to * returned fence. * * Return: fence on success, ERR_PTR(-ENOMEM) on failure */ struct dma_fence * xe_sync_in_fence_get(struct xe_sync_entry *sync, int num_sync, struct xe_exec_queue *q, struct xe_vm *vm) { struct dma_fence **fences = NULL; struct dma_fence_array *cf = NULL; struct dma_fence *fence; int i, num_in_fence = 0, current_fence = 0; lockdep_assert_held(&vm->lock); /* Count in-fences */ for (i = 0; i < num_sync; ++i) { if (sync[i].fence) { ++num_in_fence; fence = sync[i].fence; } } /* Easy case... */ if (!num_in_fence) { fence = xe_exec_queue_last_fence_get(q, vm); return fence; } /* Create composite fence */ fences = kmalloc_array(num_in_fence + 1, sizeof(*fences), GFP_KERNEL); if (!fences) return ERR_PTR(-ENOMEM); for (i = 0; i < num_sync; ++i) { if (sync[i].fence) { dma_fence_get(sync[i].fence); fences[current_fence++] = sync[i].fence; } } fences[current_fence++] = xe_exec_queue_last_fence_get(q, vm); cf = dma_fence_array_create(num_in_fence, fences, vm->composite_fence_ctx, vm->composite_fence_seqno++, false); if (!cf) { --vm->composite_fence_seqno; goto err_out; } return &cf->base; err_out: while (current_fence) dma_fence_put(fences[--current_fence]); kfree(fences); kfree(cf); return ERR_PTR(-ENOMEM); } /** * __xe_sync_ufence_get() - Get user fence from user fence * @ufence: input user fence * * Get a user fence reference from user fence * * Return: xe_user_fence pointer with reference */ struct xe_user_fence *__xe_sync_ufence_get(struct xe_user_fence *ufence) { user_fence_get(ufence); return ufence; } /** * xe_sync_ufence_get() - Get user fence from sync * @sync: input sync * * Get a user fence reference from sync. * * Return: xe_user_fence pointer with reference */ struct xe_user_fence *xe_sync_ufence_get(struct xe_sync_entry *sync) { user_fence_get(sync->ufence); return sync->ufence; } /** * xe_sync_ufence_put() - Put user fence reference * @ufence: user fence reference * */ void xe_sync_ufence_put(struct xe_user_fence *ufence) { user_fence_put(ufence); } /** * xe_sync_ufence_get_status() - Get user fence status * @ufence: user fence * * Return: 1 if signalled, 0 not signalled, <0 on error */ int xe_sync_ufence_get_status(struct xe_user_fence *ufence) { return READ_ONCE(ufence->signalled); }