// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2022, 2024 Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include /* registers definitions */ #define FLASH_REVISION_REG 0x00 #define FLASH_4CH_REVISION_V0P1 0x01 #define FLASH_TYPE_REG 0x04 #define FLASH_TYPE_VAL 0x18 #define FLASH_SUBTYPE_REG 0x05 #define FLASH_SUBTYPE_3CH_PM8150_VAL 0x04 #define FLASH_SUBTYPE_3CH_PMI8998_VAL 0x03 #define FLASH_SUBTYPE_4CH_VAL 0x07 #define FLASH_STS_3CH_OTST1 BIT(0) #define FLASH_STS_3CH_OTST2 BIT(1) #define FLASH_STS_3CH_OTST3 BIT(2) #define FLASH_STS_3CH_BOB_THM_OVERLOAD BIT(3) #define FLASH_STS_3CH_VPH_DROOP BIT(4) #define FLASH_STS_3CH_BOB_ILIM_S1 BIT(5) #define FLASH_STS_3CH_BOB_ILIM_S2 BIT(6) #define FLASH_STS_3CH_BCL_IBAT BIT(7) #define FLASH_STS_4CH_VPH_LOW BIT(0) #define FLASH_STS_4CH_BCL_IBAT BIT(1) #define FLASH_STS_4CH_BOB_ILIM_S1 BIT(2) #define FLASH_STS_4CH_BOB_ILIM_S2 BIT(3) #define FLASH_STS_4CH_OTST2 BIT(4) #define FLASH_STS_4CH_OTST1 BIT(5) #define FLASH_STS_4CHG_BOB_THM_OVERLOAD BIT(6) #define FLASH_TIMER_EN_BIT BIT(7) #define FLASH_TIMER_VAL_MASK GENMASK(6, 0) #define FLASH_TIMER_STEP_MS 10 #define FLASH_STROBE_HW_SW_SEL_BIT BIT(2) #define SW_STROBE_VAL 0 #define HW_STROBE_VAL 1 #define FLASH_HW_STROBE_TRIGGER_SEL_BIT BIT(1) #define STROBE_LEVEL_TRIGGER_VAL 0 #define STROBE_EDGE_TRIGGER_VAL 1 #define FLASH_STROBE_POLARITY_BIT BIT(0) #define STROBE_ACTIVE_HIGH_VAL 1 #define FLASH_IRES_MASK_4CH BIT(0) #define FLASH_IRES_MASK_3CH GENMASK(1, 0) #define FLASH_IRES_12P5MA_VAL 0 #define FLASH_IRES_5MA_VAL_4CH 1 #define FLASH_IRES_5MA_VAL_3CH 3 /* constants */ #define FLASH_CURRENT_MAX_UA 1500000 #define TORCH_CURRENT_MAX_UA 500000 #define FLASH_TOTAL_CURRENT_MAX_UA 2000000 #define FLASH_CURRENT_DEFAULT_UA 1000000 #define TORCH_CURRENT_DEFAULT_UA 200000 #define TORCH_IRES_UA 5000 #define FLASH_IRES_UA 12500 #define FLASH_TIMEOUT_MAX_US 1280000 #define FLASH_TIMEOUT_STEP_US 10000 #define UA_PER_MA 1000 /* thermal threshold constants */ #define OTST_3CH_MIN_VAL 3 #define OTST1_4CH_MIN_VAL 0 #define OTST1_4CH_V0P1_MIN_VAL 3 #define OTST2_4CH_MIN_VAL 0 #define OTST1_MAX_CURRENT_MA 1000 #define OTST2_MAX_CURRENT_MA 500 #define OTST3_MAX_CURRENT_MA 200 enum hw_type { QCOM_MVFLASH_3CH, QCOM_MVFLASH_4CH, }; enum led_mode { FLASH_MODE, TORCH_MODE, }; enum led_strobe { SW_STROBE, HW_STROBE, }; enum { REG_STATUS1, REG_STATUS2, REG_STATUS3, REG_CHAN_TIMER, REG_ITARGET, REG_MODULE_EN, REG_IRESOLUTION, REG_CHAN_STROBE, REG_CHAN_EN, REG_THERM_THRSH1, REG_THERM_THRSH2, REG_THERM_THRSH3, REG_MAX_COUNT, }; static struct reg_field mvflash_3ch_regs[REG_MAX_COUNT] = { REG_FIELD(0x08, 0, 7), /* status1 */ REG_FIELD(0x09, 0, 7), /* status2 */ REG_FIELD(0x0a, 0, 7), /* status3 */ REG_FIELD_ID(0x40, 0, 7, 3, 1), /* chan_timer */ REG_FIELD_ID(0x43, 0, 6, 3, 1), /* itarget */ REG_FIELD(0x46, 7, 7), /* module_en */ REG_FIELD(0x47, 0, 5), /* iresolution */ REG_FIELD_ID(0x49, 0, 2, 3, 1), /* chan_strobe */ REG_FIELD(0x4c, 0, 2), /* chan_en */ REG_FIELD(0x56, 0, 2), /* therm_thrsh1 */ REG_FIELD(0x57, 0, 2), /* therm_thrsh2 */ REG_FIELD(0x58, 0, 2), /* therm_thrsh3 */ }; static struct reg_field mvflash_4ch_regs[REG_MAX_COUNT] = { REG_FIELD(0x06, 0, 7), /* status1 */ REG_FIELD(0x07, 0, 6), /* status2 */ REG_FIELD(0x09, 0, 7), /* status3 */ REG_FIELD_ID(0x3e, 0, 7, 4, 1), /* chan_timer */ REG_FIELD_ID(0x42, 0, 6, 4, 1), /* itarget */ REG_FIELD(0x46, 7, 7), /* module_en */ REG_FIELD(0x49, 0, 3), /* iresolution */ REG_FIELD_ID(0x4a, 0, 6, 4, 1), /* chan_strobe */ REG_FIELD(0x4e, 0, 3), /* chan_en */ REG_FIELD(0x7a, 0, 2), /* therm_thrsh1 */ REG_FIELD(0x78, 0, 2), /* therm_thrsh2 */ }; struct qcom_flash_data { struct v4l2_flash **v4l2_flash; struct regmap_field *r_fields[REG_MAX_COUNT]; struct mutex lock; enum hw_type hw_type; u32 total_ma; u8 leds_count; u8 max_channels; u8 chan_en_bits; u8 revision; }; struct qcom_flash_led { struct qcom_flash_data *flash_data; struct led_classdev_flash flash; u32 max_flash_current_ma; u32 max_torch_current_ma; u32 max_timeout_ms; u32 flash_current_ma; u32 flash_timeout_ms; u32 current_in_use_ma; u8 *chan_id; u8 chan_count; bool enabled; }; static int set_flash_module_en(struct qcom_flash_led *led, bool en) { struct qcom_flash_data *flash_data = led->flash_data; u8 led_mask = 0, enable; int i, rc; for (i = 0; i < led->chan_count; i++) led_mask |= BIT(led->chan_id[i]); mutex_lock(&flash_data->lock); if (en) flash_data->chan_en_bits |= led_mask; else flash_data->chan_en_bits &= ~led_mask; enable = !!flash_data->chan_en_bits; rc = regmap_field_write(flash_data->r_fields[REG_MODULE_EN], enable); if (rc) dev_err(led->flash.led_cdev.dev, "write module_en failed, rc=%d\n", rc); mutex_unlock(&flash_data->lock); return rc; } static int update_allowed_flash_current(struct qcom_flash_led *led, u32 *current_ma, bool strobe) { struct qcom_flash_data *flash_data = led->flash_data; u32 therm_ma, avail_ma, thrsh[3], min_thrsh, sts; int rc = 0; mutex_lock(&flash_data->lock); /* * Put previously allocated current into allowed budget in either of these two cases: * 1) LED is disabled; * 2) LED is enabled repeatedly */ if (!strobe || led->current_in_use_ma != 0) { if (flash_data->total_ma >= led->current_in_use_ma) flash_data->total_ma -= led->current_in_use_ma; else flash_data->total_ma = 0; led->current_in_use_ma = 0; if (!strobe) goto unlock; } /* * Cache the default thermal threshold settings, and set them to the lowest levels before * reading over-temp real time status. If over-temp has been triggered at the lowest * threshold, it's very likely that it would be triggered at a higher (default) threshold * when more flash current is requested. Prevent device from triggering over-temp condition * by limiting the flash current for the new request. */ rc = regmap_field_read(flash_data->r_fields[REG_THERM_THRSH1], &thrsh[0]); if (rc < 0) goto unlock; rc = regmap_field_read(flash_data->r_fields[REG_THERM_THRSH2], &thrsh[1]); if (rc < 0) goto unlock; if (flash_data->hw_type == QCOM_MVFLASH_3CH) { rc = regmap_field_read(flash_data->r_fields[REG_THERM_THRSH3], &thrsh[2]); if (rc < 0) goto unlock; } min_thrsh = OTST_3CH_MIN_VAL; if (flash_data->hw_type == QCOM_MVFLASH_4CH) min_thrsh = (flash_data->revision == FLASH_4CH_REVISION_V0P1) ? OTST1_4CH_V0P1_MIN_VAL : OTST1_4CH_MIN_VAL; rc = regmap_field_write(flash_data->r_fields[REG_THERM_THRSH1], min_thrsh); if (rc < 0) goto unlock; if (flash_data->hw_type == QCOM_MVFLASH_4CH) min_thrsh = OTST2_4CH_MIN_VAL; /* * The default thermal threshold settings have been updated hence * restore them if any fault happens starting from here. */ rc = regmap_field_write(flash_data->r_fields[REG_THERM_THRSH2], min_thrsh); if (rc < 0) goto restore; if (flash_data->hw_type == QCOM_MVFLASH_3CH) { rc = regmap_field_write(flash_data->r_fields[REG_THERM_THRSH3], min_thrsh); if (rc < 0) goto restore; } /* Read thermal level status to get corresponding derating flash current */ rc = regmap_field_read(flash_data->r_fields[REG_STATUS2], &sts); if (rc) goto restore; therm_ma = FLASH_TOTAL_CURRENT_MAX_UA / 1000; if (flash_data->hw_type == QCOM_MVFLASH_3CH) { if (sts & FLASH_STS_3CH_OTST3) therm_ma = OTST3_MAX_CURRENT_MA; else if (sts & FLASH_STS_3CH_OTST2) therm_ma = OTST2_MAX_CURRENT_MA; else if (sts & FLASH_STS_3CH_OTST1) therm_ma = OTST1_MAX_CURRENT_MA; } else { if (sts & FLASH_STS_4CH_OTST2) therm_ma = OTST2_MAX_CURRENT_MA; else if (sts & FLASH_STS_4CH_OTST1) therm_ma = OTST1_MAX_CURRENT_MA; } /* Calculate the allowed flash current for the request */ if (therm_ma <= flash_data->total_ma) avail_ma = 0; else avail_ma = therm_ma - flash_data->total_ma; *current_ma = min_t(u32, *current_ma, avail_ma); led->current_in_use_ma = *current_ma; flash_data->total_ma += led->current_in_use_ma; dev_dbg(led->flash.led_cdev.dev, "allowed flash current: %dmA, total current: %dmA\n", led->current_in_use_ma, flash_data->total_ma); restore: /* Restore to default thermal threshold settings */ rc = regmap_field_write(flash_data->r_fields[REG_THERM_THRSH1], thrsh[0]); if (rc < 0) goto unlock; rc = regmap_field_write(flash_data->r_fields[REG_THERM_THRSH2], thrsh[1]); if (rc < 0) goto unlock; if (flash_data->hw_type == QCOM_MVFLASH_3CH) rc = regmap_field_write(flash_data->r_fields[REG_THERM_THRSH3], thrsh[2]); unlock: mutex_unlock(&flash_data->lock); return rc; } static int set_flash_current(struct qcom_flash_led *led, u32 current_ma, enum led_mode mode) { struct qcom_flash_data *flash_data = led->flash_data; u32 itarg_ua, ires_ua; u8 shift, ires_mask = 0, ires_val = 0, chan_id; int i, rc; /* * Split the current across the channels and set the * IRESOLUTION and ITARGET registers accordingly. */ itarg_ua = (current_ma * UA_PER_MA) / led->chan_count + 1; ires_ua = (mode == FLASH_MODE) ? FLASH_IRES_UA : TORCH_IRES_UA; for (i = 0; i < led->chan_count; i++) { u8 itarget = 0; if (itarg_ua > ires_ua) itarget = itarg_ua / ires_ua - 1; chan_id = led->chan_id[i]; rc = regmap_fields_write(flash_data->r_fields[REG_ITARGET], chan_id, itarget); if (rc) return rc; if (flash_data->hw_type == QCOM_MVFLASH_3CH) { shift = chan_id * 2; ires_mask |= FLASH_IRES_MASK_3CH << shift; ires_val |= ((mode == FLASH_MODE) ? (FLASH_IRES_12P5MA_VAL << shift) : (FLASH_IRES_5MA_VAL_3CH << shift)); } else if (flash_data->hw_type == QCOM_MVFLASH_4CH) { shift = chan_id; ires_mask |= FLASH_IRES_MASK_4CH << shift; ires_val |= ((mode == FLASH_MODE) ? (FLASH_IRES_12P5MA_VAL << shift) : (FLASH_IRES_5MA_VAL_4CH << shift)); } else { dev_err(led->flash.led_cdev.dev, "HW type %d is not supported\n", flash_data->hw_type); return -EOPNOTSUPP; } } return regmap_field_update_bits(flash_data->r_fields[REG_IRESOLUTION], ires_mask, ires_val); } static int set_flash_timeout(struct qcom_flash_led *led, u32 timeout_ms) { struct qcom_flash_data *flash_data = led->flash_data; u8 timer, chan_id; int rc, i; /* set SAFETY_TIMER for all the channels connected to the same LED */ timeout_ms = min_t(u32, timeout_ms, led->max_timeout_ms); for (i = 0; i < led->chan_count; i++) { chan_id = led->chan_id[i]; timer = timeout_ms / FLASH_TIMER_STEP_MS; timer = clamp_t(u8, timer, 0, FLASH_TIMER_VAL_MASK); if (timeout_ms) timer |= FLASH_TIMER_EN_BIT; rc = regmap_fields_write(flash_data->r_fields[REG_CHAN_TIMER], chan_id, timer); if (rc) return rc; } return 0; } static int set_flash_strobe(struct qcom_flash_led *led, enum led_strobe strobe, bool state) { struct qcom_flash_data *flash_data = led->flash_data; u8 strobe_sel, chan_en, chan_id, chan_mask = 0; int rc, i; /* Set SW strobe config for all channels connected to the LED */ for (i = 0; i < led->chan_count; i++) { chan_id = led->chan_id[i]; if (strobe == SW_STROBE) strobe_sel = FIELD_PREP(FLASH_STROBE_HW_SW_SEL_BIT, SW_STROBE_VAL); else strobe_sel = FIELD_PREP(FLASH_STROBE_HW_SW_SEL_BIT, HW_STROBE_VAL); strobe_sel |= FIELD_PREP(FLASH_HW_STROBE_TRIGGER_SEL_BIT, STROBE_LEVEL_TRIGGER_VAL) | FIELD_PREP(FLASH_STROBE_POLARITY_BIT, STROBE_ACTIVE_HIGH_VAL); rc = regmap_fields_write( flash_data->r_fields[REG_CHAN_STROBE], chan_id, strobe_sel); if (rc) return rc; chan_mask |= BIT(chan_id); } /* Enable/disable flash channels */ chan_en = state ? chan_mask : 0; rc = regmap_field_update_bits(flash_data->r_fields[REG_CHAN_EN], chan_mask, chan_en); if (rc) return rc; led->enabled = state; return 0; } static inline struct qcom_flash_led *flcdev_to_qcom_fled(struct led_classdev_flash *flcdev) { return container_of(flcdev, struct qcom_flash_led, flash); } static int qcom_flash_brightness_set(struct led_classdev_flash *fled_cdev, u32 brightness) { struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); led->flash_current_ma = min_t(u32, led->max_flash_current_ma, brightness / UA_PER_MA); return 0; } static int qcom_flash_timeout_set(struct led_classdev_flash *fled_cdev, u32 timeout) { struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); led->flash_timeout_ms = timeout / USEC_PER_MSEC; return 0; } static int qcom_flash_strobe_set(struct led_classdev_flash *fled_cdev, bool state) { struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); int rc; rc = set_flash_strobe(led, SW_STROBE, false); if (rc) return rc; rc = update_allowed_flash_current(led, &led->flash_current_ma, state); if (rc < 0) return rc; rc = set_flash_current(led, led->flash_current_ma, FLASH_MODE); if (rc) return rc; rc = set_flash_timeout(led, led->flash_timeout_ms); if (rc) return rc; rc = set_flash_module_en(led, state); if (rc) return rc; return set_flash_strobe(led, SW_STROBE, state); } static int qcom_flash_strobe_get(struct led_classdev_flash *fled_cdev, bool *state) { struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); *state = led->enabled; return 0; } static int qcom_flash_fault_get(struct led_classdev_flash *fled_cdev, u32 *fault) { struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); struct qcom_flash_data *flash_data = led->flash_data; u8 shift, chan_id, chan_mask = 0; u8 ot_mask = 0, oc_mask = 0, uv_mask = 0; u32 val, fault_sts = 0; int i, rc; rc = regmap_field_read(flash_data->r_fields[REG_STATUS1], &val); if (rc) return rc; for (i = 0; i < led->chan_count; i++) { chan_id = led->chan_id[i]; shift = chan_id * 2; if (val & BIT(shift)) fault_sts |= LED_FAULT_SHORT_CIRCUIT; chan_mask |= BIT(chan_id); } rc = regmap_field_read(flash_data->r_fields[REG_STATUS2], &val); if (rc) return rc; if (flash_data->hw_type == QCOM_MVFLASH_3CH) { ot_mask = FLASH_STS_3CH_OTST1 | FLASH_STS_3CH_OTST2 | FLASH_STS_3CH_OTST3 | FLASH_STS_3CH_BOB_THM_OVERLOAD; oc_mask = FLASH_STS_3CH_BOB_ILIM_S1 | FLASH_STS_3CH_BOB_ILIM_S2 | FLASH_STS_3CH_BCL_IBAT; uv_mask = FLASH_STS_3CH_VPH_DROOP; } else if (flash_data->hw_type == QCOM_MVFLASH_4CH) { ot_mask = FLASH_STS_4CH_OTST2 | FLASH_STS_4CH_OTST1 | FLASH_STS_4CHG_BOB_THM_OVERLOAD; oc_mask = FLASH_STS_4CH_BCL_IBAT | FLASH_STS_4CH_BOB_ILIM_S1 | FLASH_STS_4CH_BOB_ILIM_S2; uv_mask = FLASH_STS_4CH_VPH_LOW; } if (val & ot_mask) fault_sts |= LED_FAULT_OVER_TEMPERATURE; if (val & oc_mask) fault_sts |= LED_FAULT_OVER_CURRENT; if (val & uv_mask) fault_sts |= LED_FAULT_INPUT_VOLTAGE; rc = regmap_field_read(flash_data->r_fields[REG_STATUS3], &val); if (rc) return rc; if (flash_data->hw_type == QCOM_MVFLASH_3CH) { if (val & chan_mask) fault_sts |= LED_FAULT_TIMEOUT; } else if (flash_data->hw_type == QCOM_MVFLASH_4CH) { for (i = 0; i < led->chan_count; i++) { chan_id = led->chan_id[i]; shift = chan_id * 2; if (val & BIT(shift)) fault_sts |= LED_FAULT_TIMEOUT; } } *fault = fault_sts; return 0; } static int qcom_flash_led_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct led_classdev_flash *fled_cdev = lcdev_to_flcdev(led_cdev); struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); u32 current_ma = brightness * led->max_torch_current_ma / LED_FULL; bool enable = !!brightness; int rc; rc = set_flash_strobe(led, SW_STROBE, false); if (rc) return rc; rc = set_flash_module_en(led, false); if (rc) return rc; rc = update_allowed_flash_current(led, ¤t_ma, enable); if (rc < 0) return rc; rc = set_flash_current(led, current_ma, TORCH_MODE); if (rc) return rc; /* Disable flash timeout for torch LED */ rc = set_flash_timeout(led, 0); if (rc) return rc; rc = set_flash_module_en(led, enable); if (rc) return rc; return set_flash_strobe(led, SW_STROBE, enable); } static const struct led_flash_ops qcom_flash_ops = { .flash_brightness_set = qcom_flash_brightness_set, .strobe_set = qcom_flash_strobe_set, .strobe_get = qcom_flash_strobe_get, .timeout_set = qcom_flash_timeout_set, .fault_get = qcom_flash_fault_get, }; #if IS_ENABLED(CONFIG_V4L2_FLASH_LED_CLASS) static int qcom_flash_external_strobe_set(struct v4l2_flash *v4l2_flash, bool enable) { struct led_classdev_flash *fled_cdev = v4l2_flash->fled_cdev; struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); int rc; rc = set_flash_module_en(led, enable); if (rc) return rc; if (enable) return set_flash_strobe(led, HW_STROBE, true); else return set_flash_strobe(led, SW_STROBE, false); } static enum led_brightness qcom_flash_intensity_to_led_brightness(struct v4l2_flash *v4l2_flash, s32 intensity) { struct led_classdev_flash *fled_cdev = v4l2_flash->fled_cdev; struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); u32 current_ma = intensity / UA_PER_MA; current_ma = min_t(u32, current_ma, led->max_torch_current_ma); if (!current_ma) return LED_OFF; return (current_ma * LED_FULL) / led->max_torch_current_ma; } static s32 qcom_flash_brightness_to_led_intensity(struct v4l2_flash *v4l2_flash, enum led_brightness brightness) { struct led_classdev_flash *fled_cdev = v4l2_flash->fled_cdev; struct qcom_flash_led *led = flcdev_to_qcom_fled(fled_cdev); return (brightness * led->max_torch_current_ma * UA_PER_MA) / LED_FULL; } static const struct v4l2_flash_ops qcom_v4l2_flash_ops = { .external_strobe_set = qcom_flash_external_strobe_set, .intensity_to_led_brightness = qcom_flash_intensity_to_led_brightness, .led_brightness_to_intensity = qcom_flash_brightness_to_led_intensity, }; static int qcom_flash_v4l2_init(struct device *dev, struct qcom_flash_led *led, struct fwnode_handle *fwnode) { struct qcom_flash_data *flash_data = led->flash_data; struct v4l2_flash_config v4l2_cfg = { 0 }; struct led_flash_setting *intensity = &v4l2_cfg.intensity; struct v4l2_flash *v4l2_flash; if (!(led->flash.led_cdev.flags & LED_DEV_CAP_FLASH)) return 0; intensity->min = intensity->step = TORCH_IRES_UA * led->chan_count; intensity->max = led->max_torch_current_ma * UA_PER_MA; intensity->val = min_t(u32, intensity->max, TORCH_CURRENT_DEFAULT_UA); strscpy(v4l2_cfg.dev_name, led->flash.led_cdev.dev->kobj.name, sizeof(v4l2_cfg.dev_name)); v4l2_cfg.has_external_strobe = true; v4l2_cfg.flash_faults = LED_FAULT_INPUT_VOLTAGE | LED_FAULT_OVER_CURRENT | LED_FAULT_SHORT_CIRCUIT | LED_FAULT_OVER_TEMPERATURE | LED_FAULT_TIMEOUT; v4l2_flash = v4l2_flash_init(dev, fwnode, &led->flash, &qcom_v4l2_flash_ops, &v4l2_cfg); if (IS_ERR(v4l2_flash)) return PTR_ERR(v4l2_flash); flash_data->v4l2_flash[flash_data->leds_count] = v4l2_flash; return 0; } # else static int qcom_flash_v4l2_init(struct device *dev, struct qcom_flash_led *led, struct fwnode_handle *fwnode) { return 0; } #endif static int qcom_flash_register_led_device(struct device *dev, struct fwnode_handle *node, struct qcom_flash_led *led) { struct qcom_flash_data *flash_data = led->flash_data; struct led_init_data init_data; struct led_classdev_flash *flash = &led->flash; struct led_flash_setting *brightness, *timeout; u32 current_ua, timeout_us; u32 channels[4]; int i, rc, count; count = fwnode_property_count_u32(node, "led-sources"); if (count <= 0) { dev_err(dev, "No led-sources specified\n"); return -ENODEV; } if (count > flash_data->max_channels) { dev_err(dev, "led-sources count %u exceeds maximum channel count %u\n", count, flash_data->max_channels); return -EINVAL; } rc = fwnode_property_read_u32_array(node, "led-sources", channels, count); if (rc < 0) { dev_err(dev, "Failed to read led-sources property, rc=%d\n", rc); return rc; } led->chan_count = count; led->chan_id = devm_kcalloc(dev, count, sizeof(u8), GFP_KERNEL); if (!led->chan_id) return -ENOMEM; for (i = 0; i < count; i++) { if ((channels[i] == 0) || (channels[i] > flash_data->max_channels)) { dev_err(dev, "led-source out of HW support range [1-%u]\n", flash_data->max_channels); return -EINVAL; } /* Make chan_id indexing from 0 */ led->chan_id[i] = channels[i] - 1; } rc = fwnode_property_read_u32(node, "led-max-microamp", ¤t_ua); if (rc < 0) { dev_err(dev, "Failed to read led-max-microamp property, rc=%d\n", rc); return rc; } if (current_ua == 0) { dev_err(dev, "led-max-microamp shouldn't be 0\n"); return -EINVAL; } current_ua = min_t(u32, current_ua, TORCH_CURRENT_MAX_UA * led->chan_count); led->max_torch_current_ma = current_ua / UA_PER_MA; if (fwnode_property_present(node, "flash-max-microamp")) { flash->led_cdev.flags |= LED_DEV_CAP_FLASH; rc = fwnode_property_read_u32(node, "flash-max-microamp", ¤t_ua); if (rc < 0) { dev_err(dev, "Failed to read flash-max-microamp property, rc=%d\n", rc); return rc; } current_ua = min_t(u32, current_ua, FLASH_CURRENT_MAX_UA * led->chan_count); current_ua = min_t(u32, current_ua, FLASH_TOTAL_CURRENT_MAX_UA); /* Initialize flash class LED device brightness settings */ brightness = &flash->brightness; brightness->min = brightness->step = FLASH_IRES_UA * led->chan_count; brightness->max = current_ua; brightness->val = min_t(u32, current_ua, FLASH_CURRENT_DEFAULT_UA); led->max_flash_current_ma = current_ua / UA_PER_MA; led->flash_current_ma = brightness->val / UA_PER_MA; rc = fwnode_property_read_u32(node, "flash-max-timeout-us", &timeout_us); if (rc < 0) { dev_err(dev, "Failed to read flash-max-timeout-us property, rc=%d\n", rc); return rc; } timeout_us = min_t(u32, timeout_us, FLASH_TIMEOUT_MAX_US); /* Initialize flash class LED device timeout settings */ timeout = &flash->timeout; timeout->min = timeout->step = FLASH_TIMEOUT_STEP_US; timeout->val = timeout->max = timeout_us; led->max_timeout_ms = led->flash_timeout_ms = timeout_us / USEC_PER_MSEC; flash->ops = &qcom_flash_ops; } flash->led_cdev.brightness_set_blocking = qcom_flash_led_brightness_set; init_data.fwnode = node; init_data.devicename = NULL; init_data.default_label = NULL; init_data.devname_mandatory = false; rc = devm_led_classdev_flash_register_ext(dev, flash, &init_data); if (rc < 0) { dev_err(dev, "Register flash LED classdev failed, rc=%d\n", rc); return rc; } return qcom_flash_v4l2_init(dev, led, node); } static int qcom_flash_led_probe(struct platform_device *pdev) { struct qcom_flash_data *flash_data; struct qcom_flash_led *led; struct device *dev = &pdev->dev; struct regmap *regmap; struct reg_field *regs; int count, i, rc; u32 val, reg_base; flash_data = devm_kzalloc(dev, sizeof(*flash_data), GFP_KERNEL); if (!flash_data) return -ENOMEM; regmap = dev_get_regmap(dev->parent, NULL); if (!regmap) { dev_err(dev, "Failed to get parent regmap\n"); return -EINVAL; } rc = fwnode_property_read_u32(dev->fwnode, "reg", ®_base); if (rc < 0) { dev_err(dev, "Failed to get register base address, rc=%d\n", rc); return rc; } rc = regmap_read(regmap, reg_base + FLASH_TYPE_REG, &val); if (rc < 0) { dev_err(dev, "Read flash LED module type failed, rc=%d\n", rc); return rc; } if (val != FLASH_TYPE_VAL) { dev_err(dev, "type %#x is not a flash LED module\n", val); return -ENODEV; } rc = regmap_read(regmap, reg_base + FLASH_SUBTYPE_REG, &val); if (rc < 0) { dev_err(dev, "Read flash LED module subtype failed, rc=%d\n", rc); return rc; } if (val == FLASH_SUBTYPE_3CH_PM8150_VAL || val == FLASH_SUBTYPE_3CH_PMI8998_VAL) { flash_data->hw_type = QCOM_MVFLASH_3CH; flash_data->max_channels = 3; regs = mvflash_3ch_regs; } else if (val == FLASH_SUBTYPE_4CH_VAL) { flash_data->hw_type = QCOM_MVFLASH_4CH; flash_data->max_channels = 4; regs = mvflash_4ch_regs; rc = regmap_read(regmap, reg_base + FLASH_REVISION_REG, &val); if (rc < 0) { dev_err(dev, "Failed to read flash LED module revision, rc=%d\n", rc); return rc; } flash_data->revision = val; } else { dev_err(dev, "flash LED subtype %#x is not yet supported\n", val); return -ENODEV; } for (i = 0; i < REG_MAX_COUNT; i++) regs[i].reg += reg_base; rc = devm_regmap_field_bulk_alloc(dev, regmap, flash_data->r_fields, regs, REG_MAX_COUNT); if (rc < 0) { dev_err(dev, "Failed to allocate regmap field, rc=%d\n", rc); return rc; } platform_set_drvdata(pdev, flash_data); mutex_init(&flash_data->lock); count = device_get_child_node_count(dev); if (count == 0 || count > flash_data->max_channels) { dev_err(dev, "No child or child count exceeds %d\n", flash_data->max_channels); return -EINVAL; } flash_data->v4l2_flash = devm_kcalloc(dev, count, sizeof(*flash_data->v4l2_flash), GFP_KERNEL); if (!flash_data->v4l2_flash) return -ENOMEM; device_for_each_child_node_scoped(dev, child) { led = devm_kzalloc(dev, sizeof(*led), GFP_KERNEL); if (!led) { rc = -ENOMEM; goto release; } led->flash_data = flash_data; rc = qcom_flash_register_led_device(dev, child, led); if (rc < 0) goto release; flash_data->leds_count++; } return 0; release: while (flash_data->v4l2_flash[flash_data->leds_count] && flash_data->leds_count) v4l2_flash_release(flash_data->v4l2_flash[flash_data->leds_count--]); return rc; } static void qcom_flash_led_remove(struct platform_device *pdev) { struct qcom_flash_data *flash_data = platform_get_drvdata(pdev); while (flash_data->v4l2_flash[flash_data->leds_count] && flash_data->leds_count) v4l2_flash_release(flash_data->v4l2_flash[flash_data->leds_count--]); mutex_destroy(&flash_data->lock); } static const struct of_device_id qcom_flash_led_match_table[] = { { .compatible = "qcom,spmi-flash-led" }, { } }; MODULE_DEVICE_TABLE(of, qcom_flash_led_match_table); static struct platform_driver qcom_flash_led_driver = { .driver = { .name = "leds-qcom-flash", .of_match_table = qcom_flash_led_match_table, }, .probe = qcom_flash_led_probe, .remove = qcom_flash_led_remove, }; module_platform_driver(qcom_flash_led_driver); MODULE_DESCRIPTION("QCOM Flash LED driver"); MODULE_LICENSE("GPL");