// SPDX-License-Identifier: GPL-2.0 /* * Driver for ST MIPID02 CSI-2 to PARALLEL bridge * * Copyright (C) STMicroelectronics SA 2019 * Authors: Mickael Guene * for STMicroelectronics. * * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MIPID02_CLK_LANE_WR_REG1 CCI_REG8(0x01) #define MIPID02_CLK_LANE_REG1 CCI_REG8(0x02) #define MIPID02_CLK_LANE_REG3 CCI_REG8(0x04) #define MIPID02_DATA_LANE0_REG1 CCI_REG8(0x05) #define MIPID02_DATA_LANE0_REG2 CCI_REG8(0x06) #define MIPID02_DATA_LANE1_REG1 CCI_REG8(0x09) #define MIPID02_DATA_LANE1_REG2 CCI_REG8(0x0a) #define MIPID02_MODE_REG1 CCI_REG8(0x14) #define MIPID02_MODE_REG2 CCI_REG8(0x15) #define MIPID02_DATA_ID_RREG CCI_REG8(0x17) #define MIPID02_DATA_SELECTION_CTRL CCI_REG8(0x19) #define MIPID02_PIX_WIDTH_CTRL CCI_REG8(0x1e) #define MIPID02_PIX_WIDTH_CTRL_EMB CCI_REG8(0x1f) /* Bits definition for MIPID02_CLK_LANE_REG1 */ #define CLK_ENABLE BIT(0) /* Bits definition for MIPID02_CLK_LANE_REG3 */ #define CLK_MIPI_CSI BIT(1) /* Bits definition for MIPID02_DATA_LANE0_REG1 */ #define DATA_ENABLE BIT(0) /* Bits definition for MIPID02_DATA_LANEx_REG2 */ #define DATA_MIPI_CSI BIT(0) /* Bits definition for MIPID02_MODE_REG1 */ #define MODE_DATA_SWAP BIT(2) #define MODE_NO_BYPASS BIT(6) /* Bits definition for MIPID02_MODE_REG2 */ #define MODE_HSYNC_ACTIVE_HIGH BIT(1) #define MODE_VSYNC_ACTIVE_HIGH BIT(2) #define MODE_PCLK_SAMPLE_RISING BIT(3) /* Bits definition for MIPID02_DATA_SELECTION_CTRL */ #define SELECTION_MANUAL_DATA BIT(2) #define SELECTION_MANUAL_WIDTH BIT(3) static const u32 mipid02_supported_fmt_codes[] = { MEDIA_BUS_FMT_SBGGR8_1X8, MEDIA_BUS_FMT_SGBRG8_1X8, MEDIA_BUS_FMT_SGRBG8_1X8, MEDIA_BUS_FMT_SRGGB8_1X8, MEDIA_BUS_FMT_SBGGR10_1X10, MEDIA_BUS_FMT_SGBRG10_1X10, MEDIA_BUS_FMT_SGRBG10_1X10, MEDIA_BUS_FMT_SRGGB10_1X10, MEDIA_BUS_FMT_SBGGR12_1X12, MEDIA_BUS_FMT_SGBRG12_1X12, MEDIA_BUS_FMT_SGRBG12_1X12, MEDIA_BUS_FMT_SRGGB12_1X12, MEDIA_BUS_FMT_YUYV8_1X16, MEDIA_BUS_FMT_YVYU8_1X16, MEDIA_BUS_FMT_UYVY8_1X16, MEDIA_BUS_FMT_VYUY8_1X16, MEDIA_BUS_FMT_RGB565_1X16, MEDIA_BUS_FMT_BGR888_1X24, MEDIA_BUS_FMT_Y8_1X8, MEDIA_BUS_FMT_JPEG_1X8 }; /* regulator supplies */ static const char * const mipid02_supply_name[] = { "VDDE", /* 1.8V digital I/O supply */ "VDDIN", /* 1V8 voltage regulator supply */ }; #define MIPID02_NUM_SUPPLIES ARRAY_SIZE(mipid02_supply_name) #define MIPID02_SINK_0 0 #define MIPID02_SINK_1 1 #define MIPID02_SOURCE 2 #define MIPID02_PAD_NB 3 struct mipid02_dev { struct i2c_client *i2c_client; struct regulator_bulk_data supplies[MIPID02_NUM_SUPPLIES]; struct v4l2_subdev sd; struct regmap *regmap; struct media_pad pad[MIPID02_PAD_NB]; struct clk *xclk; struct gpio_desc *reset_gpio; /* endpoints info */ struct v4l2_fwnode_endpoint rx; struct v4l2_fwnode_endpoint tx; /* remote source */ struct v4l2_async_notifier notifier; struct v4l2_subdev *s_subdev; u16 s_subdev_pad_id; /* registers */ struct { u8 clk_lane_reg1; u8 data_lane0_reg1; u8 data_lane1_reg1; u8 mode_reg1; u8 mode_reg2; u8 data_selection_ctrl; u8 data_id_rreg; u8 pix_width_ctrl; u8 pix_width_ctrl_emb; } r; }; static int bpp_from_code(__u32 code) { switch (code) { case MEDIA_BUS_FMT_SBGGR8_1X8: case MEDIA_BUS_FMT_SGBRG8_1X8: case MEDIA_BUS_FMT_SGRBG8_1X8: case MEDIA_BUS_FMT_SRGGB8_1X8: case MEDIA_BUS_FMT_Y8_1X8: return 8; case MEDIA_BUS_FMT_SBGGR10_1X10: case MEDIA_BUS_FMT_SGBRG10_1X10: case MEDIA_BUS_FMT_SGRBG10_1X10: case MEDIA_BUS_FMT_SRGGB10_1X10: return 10; case MEDIA_BUS_FMT_SBGGR12_1X12: case MEDIA_BUS_FMT_SGBRG12_1X12: case MEDIA_BUS_FMT_SGRBG12_1X12: case MEDIA_BUS_FMT_SRGGB12_1X12: return 12; case MEDIA_BUS_FMT_YUYV8_1X16: case MEDIA_BUS_FMT_YVYU8_1X16: case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_VYUY8_1X16: case MEDIA_BUS_FMT_RGB565_1X16: return 16; case MEDIA_BUS_FMT_BGR888_1X24: return 24; default: return 0; } } static u8 data_type_from_code(__u32 code) { switch (code) { case MEDIA_BUS_FMT_SBGGR8_1X8: case MEDIA_BUS_FMT_SGBRG8_1X8: case MEDIA_BUS_FMT_SGRBG8_1X8: case MEDIA_BUS_FMT_SRGGB8_1X8: case MEDIA_BUS_FMT_Y8_1X8: return MIPI_CSI2_DT_RAW8; case MEDIA_BUS_FMT_SBGGR10_1X10: case MEDIA_BUS_FMT_SGBRG10_1X10: case MEDIA_BUS_FMT_SGRBG10_1X10: case MEDIA_BUS_FMT_SRGGB10_1X10: return MIPI_CSI2_DT_RAW10; case MEDIA_BUS_FMT_SBGGR12_1X12: case MEDIA_BUS_FMT_SGBRG12_1X12: case MEDIA_BUS_FMT_SGRBG12_1X12: case MEDIA_BUS_FMT_SRGGB12_1X12: return MIPI_CSI2_DT_RAW12; case MEDIA_BUS_FMT_YUYV8_1X16: case MEDIA_BUS_FMT_YVYU8_1X16: case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_VYUY8_1X16: return MIPI_CSI2_DT_YUV422_8B; case MEDIA_BUS_FMT_BGR888_1X24: return MIPI_CSI2_DT_RGB888; case MEDIA_BUS_FMT_RGB565_1X16: return MIPI_CSI2_DT_RGB565; default: return 0; } } static __u32 get_fmt_code(__u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(mipid02_supported_fmt_codes); i++) { if (code == mipid02_supported_fmt_codes[i]) return code; } return mipid02_supported_fmt_codes[0]; } static __u32 serial_to_parallel_code(__u32 serial) { if (serial == MEDIA_BUS_FMT_RGB565_1X16) return MEDIA_BUS_FMT_RGB565_2X8_LE; if (serial == MEDIA_BUS_FMT_YUYV8_1X16) return MEDIA_BUS_FMT_YUYV8_2X8; if (serial == MEDIA_BUS_FMT_YVYU8_1X16) return MEDIA_BUS_FMT_YVYU8_2X8; if (serial == MEDIA_BUS_FMT_UYVY8_1X16) return MEDIA_BUS_FMT_UYVY8_2X8; if (serial == MEDIA_BUS_FMT_VYUY8_1X16) return MEDIA_BUS_FMT_VYUY8_2X8; if (serial == MEDIA_BUS_FMT_BGR888_1X24) return MEDIA_BUS_FMT_BGR888_3X8; return serial; } static inline struct mipid02_dev *to_mipid02_dev(struct v4l2_subdev *sd) { return container_of(sd, struct mipid02_dev, sd); } static int mipid02_get_regulators(struct mipid02_dev *bridge) { unsigned int i; for (i = 0; i < MIPID02_NUM_SUPPLIES; i++) bridge->supplies[i].supply = mipid02_supply_name[i]; return devm_regulator_bulk_get(&bridge->i2c_client->dev, MIPID02_NUM_SUPPLIES, bridge->supplies); } static void mipid02_apply_reset(struct mipid02_dev *bridge) { gpiod_set_value_cansleep(bridge->reset_gpio, 0); usleep_range(5000, 10000); gpiod_set_value_cansleep(bridge->reset_gpio, 1); usleep_range(5000, 10000); gpiod_set_value_cansleep(bridge->reset_gpio, 0); usleep_range(5000, 10000); } static int mipid02_set_power_on(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct mipid02_dev *bridge = to_mipid02_dev(sd); struct i2c_client *client = bridge->i2c_client; int ret; ret = clk_prepare_enable(bridge->xclk); if (ret) { dev_err(&client->dev, "%s: failed to enable clock\n", __func__); return ret; } ret = regulator_bulk_enable(MIPID02_NUM_SUPPLIES, bridge->supplies); if (ret) { dev_err(&client->dev, "%s: failed to enable regulators\n", __func__); goto xclk_off; } if (bridge->reset_gpio) { dev_dbg(&client->dev, "apply reset"); mipid02_apply_reset(bridge); } else { dev_dbg(&client->dev, "don't apply reset"); usleep_range(5000, 10000); } return 0; xclk_off: clk_disable_unprepare(bridge->xclk); return ret; } static int mipid02_set_power_off(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct mipid02_dev *bridge = to_mipid02_dev(sd); regulator_bulk_disable(MIPID02_NUM_SUPPLIES, bridge->supplies); clk_disable_unprepare(bridge->xclk); return 0; } static int mipid02_detect(struct mipid02_dev *bridge) { u64 reg; /* * There is no version registers. Just try to read register * MIPID02_CLK_LANE_WR_REG1. */ return cci_read(bridge->regmap, MIPID02_CLK_LANE_WR_REG1, ®, NULL); } /* * We need to know link frequency to setup clk_lane_reg1 timings. Link frequency * will be retrieve from connected device via v4l2_get_link_freq, bit per pixel * and number of lanes. */ static int mipid02_configure_from_rx_speed(struct mipid02_dev *bridge, struct v4l2_mbus_framefmt *fmt) { struct i2c_client *client = bridge->i2c_client; struct v4l2_subdev *subdev = bridge->s_subdev; struct v4l2_fwnode_endpoint *ep = &bridge->rx; u32 bpp = bpp_from_code(fmt->code); /* * clk_lane_reg1 requires 4 times the unit interval time, and bitrate * is twice the link frequency, hence ui_4 = 1000000000 * 4 / 2 */ u64 ui_4 = 2000000000; s64 link_freq; link_freq = v4l2_get_link_freq(subdev->ctrl_handler, bpp, 2 * ep->bus.mipi_csi2.num_data_lanes); if (link_freq < 0) { dev_err(&client->dev, "Failed to get link frequency"); return -EINVAL; } dev_dbg(&client->dev, "detect link_freq = %lld Hz", link_freq); ui_4 = div64_u64(ui_4, link_freq); bridge->r.clk_lane_reg1 |= ui_4 << 2; return 0; } static int mipid02_configure_clk_lane(struct mipid02_dev *bridge) { struct i2c_client *client = bridge->i2c_client; struct v4l2_fwnode_endpoint *ep = &bridge->rx; bool *polarities = ep->bus.mipi_csi2.lane_polarities; /* midid02 doesn't support clock lane remapping */ if (ep->bus.mipi_csi2.clock_lane != 0) { dev_err(&client->dev, "clk lane must be map to lane 0\n"); return -EINVAL; } bridge->r.clk_lane_reg1 |= (polarities[0] << 1) | CLK_ENABLE; return 0; } static int mipid02_configure_data0_lane(struct mipid02_dev *bridge, int nb, bool are_lanes_swap, bool *polarities) { bool are_pin_swap = are_lanes_swap ? polarities[2] : polarities[1]; if (nb == 1 && are_lanes_swap) return 0; /* * data lane 0 as pin swap polarity reversed compared to clock and * data lane 1 */ if (!are_pin_swap) bridge->r.data_lane0_reg1 = 1 << 1; bridge->r.data_lane0_reg1 |= DATA_ENABLE; return 0; } static int mipid02_configure_data1_lane(struct mipid02_dev *bridge, int nb, bool are_lanes_swap, bool *polarities) { bool are_pin_swap = are_lanes_swap ? polarities[1] : polarities[2]; if (nb == 1 && !are_lanes_swap) return 0; if (are_pin_swap) bridge->r.data_lane1_reg1 = 1 << 1; bridge->r.data_lane1_reg1 |= DATA_ENABLE; return 0; } static int mipid02_configure_from_rx(struct mipid02_dev *bridge, struct v4l2_mbus_framefmt *fmt) { struct v4l2_fwnode_endpoint *ep = &bridge->rx; bool are_lanes_swap = ep->bus.mipi_csi2.data_lanes[0] == 2; bool *polarities = ep->bus.mipi_csi2.lane_polarities; int nb = ep->bus.mipi_csi2.num_data_lanes; int ret; ret = mipid02_configure_clk_lane(bridge); if (ret) return ret; ret = mipid02_configure_data0_lane(bridge, nb, are_lanes_swap, polarities); if (ret) return ret; ret = mipid02_configure_data1_lane(bridge, nb, are_lanes_swap, polarities); if (ret) return ret; bridge->r.mode_reg1 |= are_lanes_swap ? MODE_DATA_SWAP : 0; bridge->r.mode_reg1 |= (nb - 1) << 1; return mipid02_configure_from_rx_speed(bridge, fmt); } static int mipid02_configure_from_tx(struct mipid02_dev *bridge) { struct v4l2_fwnode_endpoint *ep = &bridge->tx; bridge->r.data_selection_ctrl = SELECTION_MANUAL_WIDTH; bridge->r.pix_width_ctrl = ep->bus.parallel.bus_width; bridge->r.pix_width_ctrl_emb = ep->bus.parallel.bus_width; if (ep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) bridge->r.mode_reg2 |= MODE_HSYNC_ACTIVE_HIGH; if (ep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) bridge->r.mode_reg2 |= MODE_VSYNC_ACTIVE_HIGH; if (ep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_RISING) bridge->r.mode_reg2 |= MODE_PCLK_SAMPLE_RISING; return 0; } static int mipid02_configure_from_code(struct mipid02_dev *bridge, struct v4l2_mbus_framefmt *fmt) { u8 data_type; bridge->r.data_id_rreg = 0; if (fmt->code != MEDIA_BUS_FMT_JPEG_1X8) { bridge->r.data_selection_ctrl |= SELECTION_MANUAL_DATA; data_type = data_type_from_code(fmt->code); if (!data_type) return -EINVAL; bridge->r.data_id_rreg = data_type; } return 0; } static int mipid02_disable_streams(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, u32 pad, u64 streams_mask) { struct mipid02_dev *bridge = to_mipid02_dev(sd); struct i2c_client *client = bridge->i2c_client; int ret = -EINVAL; if (!bridge->s_subdev) goto error; ret = v4l2_subdev_disable_streams(bridge->s_subdev, bridge->s_subdev_pad_id, BIT(0)); if (ret) goto error; /* Disable all lanes */ cci_write(bridge->regmap, MIPID02_CLK_LANE_REG1, 0, &ret); cci_write(bridge->regmap, MIPID02_DATA_LANE0_REG1, 0, &ret); cci_write(bridge->regmap, MIPID02_DATA_LANE1_REG1, 0, &ret); if (ret) goto error; pm_runtime_mark_last_busy(&client->dev); pm_runtime_put_autosuspend(&client->dev); error: if (ret) dev_err(&client->dev, "failed to stream off %d", ret); return ret; } static int mipid02_enable_streams(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, u32 pad, u64 streams_mask) { struct mipid02_dev *bridge = to_mipid02_dev(sd); struct i2c_client *client = bridge->i2c_client; struct v4l2_mbus_framefmt *fmt; int ret = -EINVAL; if (!bridge->s_subdev) return ret; memset(&bridge->r, 0, sizeof(bridge->r)); fmt = v4l2_subdev_state_get_format(state, MIPID02_SINK_0); /* build registers content */ ret = mipid02_configure_from_rx(bridge, fmt); if (ret) return ret; ret = mipid02_configure_from_tx(bridge); if (ret) return ret; ret = mipid02_configure_from_code(bridge, fmt); if (ret) return ret; ret = pm_runtime_resume_and_get(&client->dev); if (ret < 0) return ret; /* write mipi registers */ cci_write(bridge->regmap, MIPID02_CLK_LANE_REG1, bridge->r.clk_lane_reg1, &ret); cci_write(bridge->regmap, MIPID02_CLK_LANE_REG3, CLK_MIPI_CSI, &ret); cci_write(bridge->regmap, MIPID02_DATA_LANE0_REG1, bridge->r.data_lane0_reg1, &ret); cci_write(bridge->regmap, MIPID02_DATA_LANE0_REG2, DATA_MIPI_CSI, &ret); cci_write(bridge->regmap, MIPID02_DATA_LANE1_REG1, bridge->r.data_lane1_reg1, &ret); cci_write(bridge->regmap, MIPID02_DATA_LANE1_REG2, DATA_MIPI_CSI, &ret); cci_write(bridge->regmap, MIPID02_MODE_REG1, MODE_NO_BYPASS | bridge->r.mode_reg1, &ret); cci_write(bridge->regmap, MIPID02_MODE_REG2, bridge->r.mode_reg2, &ret); cci_write(bridge->regmap, MIPID02_DATA_ID_RREG, bridge->r.data_id_rreg, &ret); cci_write(bridge->regmap, MIPID02_DATA_SELECTION_CTRL, bridge->r.data_selection_ctrl, &ret); cci_write(bridge->regmap, MIPID02_PIX_WIDTH_CTRL, bridge->r.pix_width_ctrl, &ret); cci_write(bridge->regmap, MIPID02_PIX_WIDTH_CTRL_EMB, bridge->r.pix_width_ctrl_emb, &ret); if (ret) goto error; ret = v4l2_subdev_enable_streams(bridge->s_subdev, bridge->s_subdev_pad_id, BIT(0)); if (ret) goto error; return 0; error: cci_write(bridge->regmap, MIPID02_CLK_LANE_REG1, 0, &ret); cci_write(bridge->regmap, MIPID02_DATA_LANE0_REG1, 0, &ret); cci_write(bridge->regmap, MIPID02_DATA_LANE1_REG1, 0, &ret); pm_runtime_mark_last_busy(&client->dev); pm_runtime_put_autosuspend(&client->dev); return ret; } static const struct v4l2_mbus_framefmt default_fmt = { .code = MEDIA_BUS_FMT_SBGGR8_1X8, .field = V4L2_FIELD_NONE, .colorspace = V4L2_COLORSPACE_SRGB, .ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT, .quantization = V4L2_QUANTIZATION_FULL_RANGE, .xfer_func = V4L2_XFER_FUNC_DEFAULT, .width = 640, .height = 480, }; static int mipid02_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *state) { *v4l2_subdev_state_get_format(state, MIPID02_SINK_0) = default_fmt; /* MIPID02_SINK_1 isn't supported yet */ *v4l2_subdev_state_get_format(state, MIPID02_SOURCE) = default_fmt; return 0; } static int mipid02_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct v4l2_mbus_framefmt *sink_fmt; int ret = 0; switch (code->pad) { case MIPID02_SINK_0: if (code->index >= ARRAY_SIZE(mipid02_supported_fmt_codes)) ret = -EINVAL; else code->code = mipid02_supported_fmt_codes[code->index]; break; case MIPID02_SOURCE: if (code->index == 0) { sink_fmt = v4l2_subdev_state_get_format(sd_state, MIPID02_SINK_0); code->code = serial_to_parallel_code(sink_fmt->code); } else { ret = -EINVAL; } break; default: ret = -EINVAL; } return ret; } static int mipid02_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct mipid02_dev *bridge = to_mipid02_dev(sd); struct i2c_client *client = bridge->i2c_client; struct v4l2_mbus_framefmt *pad_fmt; dev_dbg(&client->dev, "%s for %d", __func__, fmt->pad); /* second CSI-2 pad not yet supported */ if (fmt->pad == MIPID02_SINK_1) return -EINVAL; pad_fmt = v4l2_subdev_state_get_format(sd_state, fmt->pad); fmt->format.code = get_fmt_code(fmt->format.code); /* code may need to be converted */ if (fmt->pad == MIPID02_SOURCE) fmt->format.code = serial_to_parallel_code(fmt->format.code); *pad_fmt = fmt->format; /* Propagate the format to the source pad in case of sink pad update */ if (fmt->pad == MIPID02_SINK_0) { pad_fmt = v4l2_subdev_state_get_format(sd_state, MIPID02_SOURCE); *pad_fmt = fmt->format; pad_fmt->code = serial_to_parallel_code(fmt->format.code); } return 0; } static const struct v4l2_subdev_video_ops mipid02_video_ops = { .s_stream = v4l2_subdev_s_stream_helper, }; static const struct v4l2_subdev_pad_ops mipid02_pad_ops = { .enum_mbus_code = mipid02_enum_mbus_code, .get_fmt = v4l2_subdev_get_fmt, .set_fmt = mipid02_set_fmt, .enable_streams = mipid02_enable_streams, .disable_streams = mipid02_disable_streams, }; static const struct v4l2_subdev_ops mipid02_subdev_ops = { .video = &mipid02_video_ops, .pad = &mipid02_pad_ops, }; static const struct v4l2_subdev_internal_ops mipid02_subdev_internal_ops = { .init_state = mipid02_init_state, }; static const struct media_entity_operations mipid02_subdev_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static int mipid02_async_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *s_subdev, struct v4l2_async_connection *asd) { struct mipid02_dev *bridge = to_mipid02_dev(notifier->sd); struct i2c_client *client = bridge->i2c_client; int source_pad; int ret; dev_dbg(&client->dev, "sensor_async_bound call %p", s_subdev); source_pad = media_entity_get_fwnode_pad(&s_subdev->entity, s_subdev->fwnode, MEDIA_PAD_FL_SOURCE); if (source_pad < 0) { dev_err(&client->dev, "Couldn't find output pad for subdev %s\n", s_subdev->name); return source_pad; } ret = media_create_pad_link(&s_subdev->entity, source_pad, &bridge->sd.entity, 0, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (ret) { dev_err(&client->dev, "Couldn't create media link %d", ret); return ret; } bridge->s_subdev = s_subdev; bridge->s_subdev_pad_id = source_pad; return 0; } static void mipid02_async_unbind(struct v4l2_async_notifier *notifier, struct v4l2_subdev *s_subdev, struct v4l2_async_connection *asd) { struct mipid02_dev *bridge = to_mipid02_dev(notifier->sd); bridge->s_subdev = NULL; } static const struct v4l2_async_notifier_operations mipid02_notifier_ops = { .bound = mipid02_async_bound, .unbind = mipid02_async_unbind, }; static int mipid02_parse_rx_ep(struct mipid02_dev *bridge) { struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY }; struct i2c_client *client = bridge->i2c_client; struct v4l2_async_connection *asd; struct device_node *ep_node; int ret; /* parse rx (endpoint 0) */ ep_node = of_graph_get_endpoint_by_regs(bridge->i2c_client->dev.of_node, 0, 0); if (!ep_node) { dev_err(&client->dev, "unable to find port0 ep"); ret = -EINVAL; goto error; } ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep); if (ret) { dev_err(&client->dev, "Could not parse v4l2 endpoint %d\n", ret); goto error_of_node_put; } /* do some sanity checks */ if (ep.bus.mipi_csi2.num_data_lanes > 2) { dev_err(&client->dev, "max supported data lanes is 2 / got %d", ep.bus.mipi_csi2.num_data_lanes); ret = -EINVAL; goto error_of_node_put; } /* register it for later use */ bridge->rx = ep; /* register async notifier so we get noticed when sensor is connected */ v4l2_async_subdev_nf_init(&bridge->notifier, &bridge->sd); asd = v4l2_async_nf_add_fwnode_remote(&bridge->notifier, of_fwnode_handle(ep_node), struct v4l2_async_connection); of_node_put(ep_node); if (IS_ERR(asd)) { dev_err(&client->dev, "fail to register asd to notifier %ld", PTR_ERR(asd)); return PTR_ERR(asd); } bridge->notifier.ops = &mipid02_notifier_ops; ret = v4l2_async_nf_register(&bridge->notifier); if (ret) v4l2_async_nf_cleanup(&bridge->notifier); return ret; error_of_node_put: of_node_put(ep_node); error: return ret; } static int mipid02_parse_tx_ep(struct mipid02_dev *bridge) { struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_PARALLEL }; struct i2c_client *client = bridge->i2c_client; struct device_node *ep_node; int ret; /* parse tx (endpoint 2) */ ep_node = of_graph_get_endpoint_by_regs(bridge->i2c_client->dev.of_node, 2, 0); if (!ep_node) { dev_err(&client->dev, "unable to find port1 ep"); ret = -EINVAL; goto error; } ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep); if (ret) { dev_err(&client->dev, "Could not parse v4l2 endpoint\n"); goto error_of_node_put; } of_node_put(ep_node); bridge->tx = ep; return 0; error_of_node_put: of_node_put(ep_node); error: return -EINVAL; } static int mipid02_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct mipid02_dev *bridge; u32 clk_freq; int ret; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -ENOMEM; bridge->i2c_client = client; v4l2_i2c_subdev_init(&bridge->sd, client, &mipid02_subdev_ops); /* got and check clock */ bridge->xclk = devm_clk_get(dev, "xclk"); if (IS_ERR(bridge->xclk)) { dev_err(dev, "failed to get xclk\n"); return PTR_ERR(bridge->xclk); } clk_freq = clk_get_rate(bridge->xclk); if (clk_freq < 6000000 || clk_freq > 27000000) { dev_err(dev, "xclk freq must be in 6-27 Mhz range. got %d Hz\n", clk_freq); return -EINVAL; } bridge->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(bridge->reset_gpio)) { dev_err(dev, "failed to get reset GPIO\n"); return PTR_ERR(bridge->reset_gpio); } ret = mipid02_get_regulators(bridge); if (ret) { dev_err(dev, "failed to get regulators %d", ret); return ret; } /* Initialise the regmap for further cci access */ bridge->regmap = devm_cci_regmap_init_i2c(client, 16); if (IS_ERR(bridge->regmap)) return dev_err_probe(dev, PTR_ERR(bridge->regmap), "failed to get cci regmap\n"); bridge->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; bridge->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; bridge->sd.internal_ops = &mipid02_subdev_internal_ops; bridge->sd.entity.ops = &mipid02_subdev_entity_ops; bridge->pad[0].flags = MEDIA_PAD_FL_SINK; bridge->pad[1].flags = MEDIA_PAD_FL_SINK; bridge->pad[2].flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&bridge->sd.entity, MIPID02_PAD_NB, bridge->pad); if (ret) { dev_err(&client->dev, "pads init failed %d", ret); return ret; } ret = v4l2_subdev_init_finalize(&bridge->sd); if (ret < 0) { dev_err(dev, "subdev init error: %d\n", ret); goto entity_cleanup; } /* enable clock, power and reset device if available */ ret = mipid02_set_power_on(&client->dev); if (ret) goto entity_cleanup; ret = mipid02_detect(bridge); if (ret) { dev_err(&client->dev, "failed to detect mipid02 %d", ret); goto power_off; } ret = mipid02_parse_tx_ep(bridge); if (ret) { dev_err(&client->dev, "failed to parse tx %d", ret); goto power_off; } ret = mipid02_parse_rx_ep(bridge); if (ret) { dev_err(&client->dev, "failed to parse rx %d", ret); goto power_off; } /* Enable runtime PM and turn off the device */ pm_runtime_set_active(dev); pm_runtime_get_noresume(&client->dev); pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(&client->dev, 1000); pm_runtime_use_autosuspend(&client->dev); pm_runtime_put_autosuspend(&client->dev); ret = v4l2_async_register_subdev(&bridge->sd); if (ret < 0) { dev_err(&client->dev, "v4l2_async_register_subdev failed %d", ret); goto unregister_notifier; } dev_info(&client->dev, "mipid02 device probe successfully"); return 0; unregister_notifier: v4l2_async_nf_unregister(&bridge->notifier); v4l2_async_nf_cleanup(&bridge->notifier); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); power_off: mipid02_set_power_off(&client->dev); entity_cleanup: media_entity_cleanup(&bridge->sd.entity); return ret; } static void mipid02_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct mipid02_dev *bridge = to_mipid02_dev(sd); v4l2_async_nf_unregister(&bridge->notifier); v4l2_async_nf_cleanup(&bridge->notifier); v4l2_async_unregister_subdev(&bridge->sd); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) mipid02_set_power_off(&client->dev); pm_runtime_set_suspended(&client->dev); media_entity_cleanup(&bridge->sd.entity); } static const struct of_device_id mipid02_dt_ids[] = { { .compatible = "st,st-mipid02" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mipid02_dt_ids); static const struct dev_pm_ops mipid02_pm_ops = { RUNTIME_PM_OPS(mipid02_set_power_off, mipid02_set_power_on, NULL) }; static struct i2c_driver mipid02_i2c_driver = { .driver = { .name = "st-mipid02", .of_match_table = mipid02_dt_ids, .pm = pm_ptr(&mipid02_pm_ops), }, .probe = mipid02_probe, .remove = mipid02_remove, }; module_i2c_driver(mipid02_i2c_driver); MODULE_AUTHOR("Mickael Guene "); MODULE_DESCRIPTION("STMicroelectronics MIPID02 CSI-2 bridge driver"); MODULE_LICENSE("GPL v2");