// SPDX-License-Identifier: GPL-2.0 /* * PiSP Front End Driver * * Copyright (c) 2021-2024 Raspberry Pi Ltd. */ #include #include #include #include #include #include #include "cfe.h" #include "pisp-fe.h" #include "cfe-trace.h" #define FE_VERSION 0x000 #define FE_CONTROL 0x004 #define FE_STATUS 0x008 #define FE_FRAME_STATUS 0x00c #define FE_ERROR_STATUS 0x010 #define FE_OUTPUT_STATUS 0x014 #define FE_INT_EN 0x018 #define FE_INT_STATUS 0x01c /* CONTROL */ #define FE_CONTROL_QUEUE BIT(0) #define FE_CONTROL_ABORT BIT(1) #define FE_CONTROL_RESET BIT(2) #define FE_CONTROL_LATCH_REGS BIT(3) /* INT_EN / INT_STATUS */ #define FE_INT_EOF BIT(0) #define FE_INT_SOF BIT(1) #define FE_INT_LINES0 BIT(8) #define FE_INT_LINES1 BIT(9) #define FE_INT_STATS BIT(16) #define FE_INT_QREADY BIT(24) /* STATUS */ #define FE_STATUS_QUEUED BIT(0) #define FE_STATUS_WAITING BIT(1) #define FE_STATUS_ACTIVE BIT(2) #define PISP_FE_CONFIG_BASE_OFFSET 0x0040 #define PISP_FE_ENABLE_STATS_CLUSTER \ (PISP_FE_ENABLE_STATS_CROP | PISP_FE_ENABLE_DECIMATE | \ PISP_FE_ENABLE_BLC | PISP_FE_ENABLE_CDAF_STATS | \ PISP_FE_ENABLE_AWB_STATS | PISP_FE_ENABLE_RGBY | \ PISP_FE_ENABLE_LSC | PISP_FE_ENABLE_AGC_STATS) #define PISP_FE_ENABLE_OUTPUT_CLUSTER(i) \ ((PISP_FE_ENABLE_CROP0 | PISP_FE_ENABLE_DOWNSCALE0 | \ PISP_FE_ENABLE_COMPRESS0 | PISP_FE_ENABLE_OUTPUT0) << (4 * (i))) struct pisp_fe_config_param { u32 dirty_flags; u32 dirty_flags_extra; size_t offset; size_t size; }; static const struct pisp_fe_config_param pisp_fe_config_map[] = { /* *_dirty_flag_extra types */ { 0, PISP_FE_DIRTY_GLOBAL, offsetof(struct pisp_fe_config, global), sizeof(struct pisp_fe_global_config) }, { 0, PISP_FE_DIRTY_FLOATING, offsetof(struct pisp_fe_config, floating_stats), sizeof(struct pisp_fe_floating_stats_config) }, { 0, PISP_FE_DIRTY_OUTPUT_AXI, offsetof(struct pisp_fe_config, output_axi), sizeof(struct pisp_fe_output_axi_config) }, /* *_dirty_flag types */ { PISP_FE_ENABLE_INPUT, 0, offsetof(struct pisp_fe_config, input), sizeof(struct pisp_fe_input_config) }, { PISP_FE_ENABLE_DECOMPRESS, 0, offsetof(struct pisp_fe_config, decompress), sizeof(struct pisp_decompress_config) }, { PISP_FE_ENABLE_DECOMPAND, 0, offsetof(struct pisp_fe_config, decompand), sizeof(struct pisp_fe_decompand_config) }, { PISP_FE_ENABLE_BLA, 0, offsetof(struct pisp_fe_config, bla), sizeof(struct pisp_bla_config) }, { PISP_FE_ENABLE_DPC, 0, offsetof(struct pisp_fe_config, dpc), sizeof(struct pisp_fe_dpc_config) }, { PISP_FE_ENABLE_STATS_CROP, 0, offsetof(struct pisp_fe_config, stats_crop), sizeof(struct pisp_fe_crop_config) }, { PISP_FE_ENABLE_BLC, 0, offsetof(struct pisp_fe_config, blc), sizeof(struct pisp_bla_config) }, { PISP_FE_ENABLE_CDAF_STATS, 0, offsetof(struct pisp_fe_config, cdaf_stats), sizeof(struct pisp_fe_cdaf_stats_config) }, { PISP_FE_ENABLE_AWB_STATS, 0, offsetof(struct pisp_fe_config, awb_stats), sizeof(struct pisp_fe_awb_stats_config) }, { PISP_FE_ENABLE_RGBY, 0, offsetof(struct pisp_fe_config, rgby), sizeof(struct pisp_fe_rgby_config) }, { PISP_FE_ENABLE_LSC, 0, offsetof(struct pisp_fe_config, lsc), sizeof(struct pisp_fe_lsc_config) }, { PISP_FE_ENABLE_AGC_STATS, 0, offsetof(struct pisp_fe_config, agc_stats), sizeof(struct pisp_agc_statistics) }, { PISP_FE_ENABLE_CROP0, 0, offsetof(struct pisp_fe_config, ch[0].crop), sizeof(struct pisp_fe_crop_config) }, { PISP_FE_ENABLE_DOWNSCALE0, 0, offsetof(struct pisp_fe_config, ch[0].downscale), sizeof(struct pisp_fe_downscale_config) }, { PISP_FE_ENABLE_COMPRESS0, 0, offsetof(struct pisp_fe_config, ch[0].compress), sizeof(struct pisp_compress_config) }, { PISP_FE_ENABLE_OUTPUT0, 0, offsetof(struct pisp_fe_config, ch[0].output), sizeof(struct pisp_fe_output_config) }, { PISP_FE_ENABLE_CROP1, 0, offsetof(struct pisp_fe_config, ch[1].crop), sizeof(struct pisp_fe_crop_config) }, { PISP_FE_ENABLE_DOWNSCALE1, 0, offsetof(struct pisp_fe_config, ch[1].downscale), sizeof(struct pisp_fe_downscale_config) }, { PISP_FE_ENABLE_COMPRESS1, 0, offsetof(struct pisp_fe_config, ch[1].compress), sizeof(struct pisp_compress_config) }, { PISP_FE_ENABLE_OUTPUT1, 0, offsetof(struct pisp_fe_config, ch[1].output), sizeof(struct pisp_fe_output_config) }, }; #define pisp_fe_dbg(fe, fmt, arg...) dev_dbg((fe)->v4l2_dev->dev, fmt, ##arg) #define pisp_fe_info(fe, fmt, arg...) dev_info((fe)->v4l2_dev->dev, fmt, ##arg) #define pisp_fe_err(fe, fmt, arg...) dev_err((fe)->v4l2_dev->dev, fmt, ##arg) static inline u32 pisp_fe_reg_read(struct pisp_fe_device *fe, u32 offset) { return readl(fe->base + offset); } static inline void pisp_fe_reg_write(struct pisp_fe_device *fe, u32 offset, u32 val) { writel(val, fe->base + offset); } static inline void pisp_fe_reg_write_relaxed(struct pisp_fe_device *fe, u32 offset, u32 val) { writel_relaxed(val, fe->base + offset); } static int pisp_fe_regs_show(struct seq_file *s, void *data) { struct pisp_fe_device *fe = s->private; int ret; ret = pm_runtime_resume_and_get(fe->v4l2_dev->dev); if (ret) return ret; pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_LATCH_REGS); #define DUMP(reg) seq_printf(s, #reg " \t0x%08x\n", pisp_fe_reg_read(fe, reg)) DUMP(FE_VERSION); DUMP(FE_CONTROL); DUMP(FE_STATUS); DUMP(FE_FRAME_STATUS); DUMP(FE_ERROR_STATUS); DUMP(FE_OUTPUT_STATUS); DUMP(FE_INT_EN); DUMP(FE_INT_STATUS); #undef DUMP pm_runtime_put(fe->v4l2_dev->dev); return 0; } DEFINE_SHOW_ATTRIBUTE(pisp_fe_regs); static void pisp_fe_config_write(struct pisp_fe_device *fe, struct pisp_fe_config *config, unsigned int start_offset, unsigned int size) { const unsigned int max_offset = offsetof(struct pisp_fe_config, ch[PISP_FE_NUM_OUTPUTS]); unsigned int end_offset; u32 *cfg = (u32 *)config; start_offset = min(start_offset, max_offset); end_offset = min(start_offset + size, max_offset); cfg += start_offset >> 2; for (unsigned int i = start_offset; i < end_offset; i += 4, cfg++) pisp_fe_reg_write_relaxed(fe, PISP_FE_CONFIG_BASE_OFFSET + i, *cfg); } void pisp_fe_isr(struct pisp_fe_device *fe, bool *sof, bool *eof) { u32 status, int_status, out_status, frame_status, error_status; pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_LATCH_REGS); status = pisp_fe_reg_read(fe, FE_STATUS); out_status = pisp_fe_reg_read(fe, FE_OUTPUT_STATUS); frame_status = pisp_fe_reg_read(fe, FE_FRAME_STATUS); error_status = pisp_fe_reg_read(fe, FE_ERROR_STATUS); int_status = pisp_fe_reg_read(fe, FE_INT_STATUS); pisp_fe_reg_write(fe, FE_INT_STATUS, int_status); trace_fe_irq(status, out_status, frame_status, error_status, int_status); /* We do not report interrupts for the input/stream pad. */ for (unsigned int i = 0; i < FE_NUM_PADS - 1; i++) { sof[i] = !!(int_status & FE_INT_SOF); eof[i] = !!(int_status & FE_INT_EOF); } } static bool pisp_fe_validate_output(struct pisp_fe_config const *cfg, unsigned int c, struct v4l2_format const *f) { unsigned int wbytes; wbytes = cfg->ch[c].output.format.width; if (cfg->ch[c].output.format.format & PISP_IMAGE_FORMAT_BPS_MASK) wbytes *= 2; /* Check output image dimensions are nonzero and not too big */ if (cfg->ch[c].output.format.width < 2 || cfg->ch[c].output.format.height < 2 || cfg->ch[c].output.format.height > f->fmt.pix.height || cfg->ch[c].output.format.stride > f->fmt.pix.bytesperline || wbytes > f->fmt.pix.bytesperline) return false; /* Check for zero-sized crops, which could cause lockup */ if ((cfg->global.enables & PISP_FE_ENABLE_CROP(c)) && ((cfg->ch[c].crop.offset_x >= (cfg->input.format.width & ~1) || cfg->ch[c].crop.offset_y >= cfg->input.format.height || cfg->ch[c].crop.width < 2 || cfg->ch[c].crop.height < 2))) return false; if ((cfg->global.enables & PISP_FE_ENABLE_DOWNSCALE(c)) && (cfg->ch[c].downscale.output_width < 2 || cfg->ch[c].downscale.output_height < 2)) return false; return true; } static bool pisp_fe_validate_stats(struct pisp_fe_config const *cfg) { /* Check for zero-sized crop, which could cause lockup */ return (!(cfg->global.enables & PISP_FE_ENABLE_STATS_CROP) || (cfg->stats_crop.offset_x < (cfg->input.format.width & ~1) && cfg->stats_crop.offset_y < cfg->input.format.height && cfg->stats_crop.width >= 2 && cfg->stats_crop.height >= 2)); } int pisp_fe_validate_config(struct pisp_fe_device *fe, struct pisp_fe_config *cfg, struct v4l2_format const *f0, struct v4l2_format const *f1) { /* * Check the input is enabled, streaming and has nonzero size; * to avoid cases where the hardware might lock up or try to * read inputs from memory (which this driver doesn't support). */ if (!(cfg->global.enables & PISP_FE_ENABLE_INPUT) || cfg->input.streaming != 1 || cfg->input.format.width < 2 || cfg->input.format.height < 2) { pisp_fe_err(fe, "%s: Input config not valid", __func__); return -EINVAL; } for (unsigned int i = 0; i < PISP_FE_NUM_OUTPUTS; i++) { if (!(cfg->global.enables & PISP_FE_ENABLE_OUTPUT(i))) { if (cfg->global.enables & PISP_FE_ENABLE_OUTPUT_CLUSTER(i)) { pisp_fe_err(fe, "%s: Output %u not valid", __func__, i); return -EINVAL; } continue; } if (!pisp_fe_validate_output(cfg, i, i ? f1 : f0)) return -EINVAL; } if ((cfg->global.enables & PISP_FE_ENABLE_STATS_CLUSTER) && !pisp_fe_validate_stats(cfg)) { pisp_fe_err(fe, "%s: Stats config not valid", __func__); return -EINVAL; } return 0; } void pisp_fe_submit_job(struct pisp_fe_device *fe, struct vb2_buffer **vb2_bufs, struct pisp_fe_config *cfg) { u64 addr; u32 status; /* * Check output buffers exist and outputs are correctly configured. * If valid, set the buffer's DMA address; otherwise disable. */ for (unsigned int i = 0; i < PISP_FE_NUM_OUTPUTS; i++) { struct vb2_buffer *buf = vb2_bufs[FE_OUTPUT0_PAD + i]; if (!(cfg->global.enables & PISP_FE_ENABLE_OUTPUT(i))) continue; addr = vb2_dma_contig_plane_dma_addr(buf, 0); cfg->output_buffer[i].addr_lo = addr & 0xffffffff; cfg->output_buffer[i].addr_hi = addr >> 32; } if (vb2_bufs[FE_STATS_PAD]) { addr = vb2_dma_contig_plane_dma_addr(vb2_bufs[FE_STATS_PAD], 0); cfg->stats_buffer.addr_lo = addr & 0xffffffff; cfg->stats_buffer.addr_hi = addr >> 32; } /* Set up ILINES interrupts 3/4 of the way down each output */ cfg->ch[0].output.ilines = max(0x80u, (3u * cfg->ch[0].output.format.height) >> 2); cfg->ch[1].output.ilines = max(0x80u, (3u * cfg->ch[1].output.format.height) >> 2); /* * The hardware must have consumed the previous config by now. * This read of status also serves as a memory barrier before the * sequence of relaxed writes which follow. */ status = pisp_fe_reg_read(fe, FE_STATUS); if (WARN_ON(status & FE_STATUS_QUEUED)) return; /* * Unconditionally write buffers, global and input parameters. * Write cropping and output parameters whenever they are enabled. * Selectively write other parameters that have been marked as * changed through the dirty flags. */ pisp_fe_config_write(fe, cfg, 0, offsetof(struct pisp_fe_config, decompress)); cfg->dirty_flags_extra &= ~PISP_FE_DIRTY_GLOBAL; cfg->dirty_flags &= ~PISP_FE_ENABLE_INPUT; cfg->dirty_flags |= (cfg->global.enables & (PISP_FE_ENABLE_STATS_CROP | PISP_FE_ENABLE_OUTPUT_CLUSTER(0) | PISP_FE_ENABLE_OUTPUT_CLUSTER(1))); for (unsigned int i = 0; i < ARRAY_SIZE(pisp_fe_config_map); i++) { const struct pisp_fe_config_param *p = &pisp_fe_config_map[i]; if (cfg->dirty_flags & p->dirty_flags || cfg->dirty_flags_extra & p->dirty_flags_extra) pisp_fe_config_write(fe, cfg, p->offset, p->size); } /* This final non-relaxed write serves as a memory barrier */ pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_QUEUE); } void pisp_fe_start(struct pisp_fe_device *fe) { pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_RESET); pisp_fe_reg_write(fe, FE_INT_STATUS, ~0); pisp_fe_reg_write(fe, FE_INT_EN, FE_INT_EOF | FE_INT_SOF | FE_INT_LINES0 | FE_INT_LINES1); fe->inframe_count = 0; } void pisp_fe_stop(struct pisp_fe_device *fe) { pisp_fe_reg_write(fe, FE_INT_EN, 0); pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_ABORT); usleep_range(1000, 2000); WARN_ON(pisp_fe_reg_read(fe, FE_STATUS)); pisp_fe_reg_write(fe, FE_INT_STATUS, ~0); } static int pisp_fe_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *state) { struct v4l2_mbus_framefmt *fmt; fmt = v4l2_subdev_state_get_format(state, FE_STREAM_PAD); *fmt = cfe_default_format; fmt->code = MEDIA_BUS_FMT_SRGGB16_1X16; fmt = v4l2_subdev_state_get_format(state, FE_CONFIG_PAD); fmt->code = MEDIA_BUS_FMT_FIXED; fmt->width = sizeof(struct pisp_fe_config); fmt->height = 1; fmt = v4l2_subdev_state_get_format(state, FE_OUTPUT0_PAD); *fmt = cfe_default_format; fmt->code = MEDIA_BUS_FMT_SRGGB16_1X16; fmt = v4l2_subdev_state_get_format(state, FE_OUTPUT1_PAD); *fmt = cfe_default_format; fmt->code = MEDIA_BUS_FMT_SRGGB16_1X16; fmt = v4l2_subdev_state_get_format(state, FE_STATS_PAD); fmt->code = MEDIA_BUS_FMT_FIXED; fmt->width = sizeof(struct pisp_statistics); fmt->height = 1; return 0; } static int pisp_fe_pad_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *fmt; const struct cfe_fmt *cfe_fmt; /* TODO: format propagation to source pads */ /* TODO: format validation */ switch (format->pad) { case FE_STREAM_PAD: cfe_fmt = find_format_by_code(format->format.code); if (!cfe_fmt || !(cfe_fmt->flags & CFE_FORMAT_FLAG_FE_OUT)) cfe_fmt = find_format_by_code(MEDIA_BUS_FMT_SRGGB16_1X16); format->format.code = cfe_fmt->code; format->format.field = V4L2_FIELD_NONE; fmt = v4l2_subdev_state_get_format(state, FE_STREAM_PAD); *fmt = format->format; fmt = v4l2_subdev_state_get_format(state, FE_OUTPUT0_PAD); *fmt = format->format; fmt = v4l2_subdev_state_get_format(state, FE_OUTPUT1_PAD); *fmt = format->format; return 0; case FE_OUTPUT0_PAD: case FE_OUTPUT1_PAD: { /* * TODO: we should allow scaling and cropping by allowing the * user to set the size here. */ struct v4l2_mbus_framefmt *sink_fmt, *source_fmt; u32 sink_code; u32 code; cfe_fmt = find_format_by_code(format->format.code); if (!cfe_fmt || !(cfe_fmt->flags & CFE_FORMAT_FLAG_FE_OUT)) cfe_fmt = find_format_by_code(MEDIA_BUS_FMT_SRGGB16_1X16); format->format.code = cfe_fmt->code; sink_fmt = v4l2_subdev_state_get_format(state, FE_STREAM_PAD); if (!sink_fmt) return -EINVAL; source_fmt = v4l2_subdev_state_get_format(state, format->pad); if (!source_fmt) return -EINVAL; sink_code = sink_fmt->code; code = format->format.code; /* * If the source code from the user does not match the code in * the sink pad, check that the source code matches the * compressed version of the sink code. */ if (code != sink_code && code == cfe_find_compressed_code(sink_code)) source_fmt->code = code; return 0; } case FE_CONFIG_PAD: case FE_STATS_PAD: default: return v4l2_subdev_get_fmt(sd, state, format); } } static const struct v4l2_subdev_pad_ops pisp_fe_subdev_pad_ops = { .get_fmt = v4l2_subdev_get_fmt, .set_fmt = pisp_fe_pad_set_fmt, .link_validate = v4l2_subdev_link_validate_default, }; static int pisp_fe_link_validate(struct media_link *link) { struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(link->sink->entity); struct pisp_fe_device *fe = container_of(sd, struct pisp_fe_device, sd); pisp_fe_dbg(fe, "%s: link \"%s\":%u -> \"%s\":%u\n", __func__, link->source->entity->name, link->source->index, link->sink->entity->name, link->sink->index); if (link->sink->index == FE_STREAM_PAD) return v4l2_subdev_link_validate(link); if (link->sink->index == FE_CONFIG_PAD) return 0; return -EINVAL; } static const struct media_entity_operations pisp_fe_entity_ops = { .link_validate = pisp_fe_link_validate, }; static const struct v4l2_subdev_ops pisp_fe_subdev_ops = { .pad = &pisp_fe_subdev_pad_ops, }; static const struct v4l2_subdev_internal_ops pisp_fe_internal_ops = { .init_state = pisp_fe_init_state, }; int pisp_fe_init(struct pisp_fe_device *fe, struct dentry *debugfs) { int ret; debugfs_create_file("fe_regs", 0440, debugfs, fe, &pisp_fe_regs_fops); fe->hw_revision = pisp_fe_reg_read(fe, FE_VERSION); pisp_fe_info(fe, "PiSP FE HW v%u.%u\n", (fe->hw_revision >> 24) & 0xff, (fe->hw_revision >> 20) & 0x0f); fe->pad[FE_STREAM_PAD].flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT; fe->pad[FE_CONFIG_PAD].flags = MEDIA_PAD_FL_SINK; fe->pad[FE_OUTPUT0_PAD].flags = MEDIA_PAD_FL_SOURCE; fe->pad[FE_OUTPUT1_PAD].flags = MEDIA_PAD_FL_SOURCE; fe->pad[FE_STATS_PAD].flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&fe->sd.entity, ARRAY_SIZE(fe->pad), fe->pad); if (ret) return ret; /* Initialize subdev */ v4l2_subdev_init(&fe->sd, &pisp_fe_subdev_ops); fe->sd.internal_ops = &pisp_fe_internal_ops; fe->sd.entity.function = MEDIA_ENT_F_PROC_VIDEO_SCALER; fe->sd.entity.ops = &pisp_fe_entity_ops; fe->sd.entity.name = "pisp-fe"; fe->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE; fe->sd.owner = THIS_MODULE; snprintf(fe->sd.name, sizeof(fe->sd.name), "pisp-fe"); ret = v4l2_subdev_init_finalize(&fe->sd); if (ret) goto err_entity_cleanup; ret = v4l2_device_register_subdev(fe->v4l2_dev, &fe->sd); if (ret) { pisp_fe_err(fe, "Failed register pisp fe subdev (%d)\n", ret); goto err_subdev_cleanup; } /* Must be in IDLE state (STATUS == 0) here. */ WARN_ON(pisp_fe_reg_read(fe, FE_STATUS)); return 0; err_subdev_cleanup: v4l2_subdev_cleanup(&fe->sd); err_entity_cleanup: media_entity_cleanup(&fe->sd.entity); return ret; } void pisp_fe_uninit(struct pisp_fe_device *fe) { v4l2_device_unregister_subdev(&fe->sd); v4l2_subdev_cleanup(&fe->sd); media_entity_cleanup(&fe->sd.entity); }