// SPDX-License-Identifier: GPL-2.0 /* * Driver for Renesas R-Car MIPI CSI-2 Receiver * * Copyright (C) 2018 Renesas Electronics Corp. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct rcar_csi2; /* Register offsets and bits */ /* Control Timing Select */ #define TREF_REG 0x00 #define TREF_TREF BIT(0) /* Software Reset */ #define SRST_REG 0x04 #define SRST_SRST BIT(0) /* PHY Operation Control */ #define PHYCNT_REG 0x08 #define PHYCNT_SHUTDOWNZ BIT(17) #define PHYCNT_RSTZ BIT(16) #define PHYCNT_ENABLECLK BIT(4) #define PHYCNT_ENABLE_3 BIT(3) #define PHYCNT_ENABLE_2 BIT(2) #define PHYCNT_ENABLE_1 BIT(1) #define PHYCNT_ENABLE_0 BIT(0) /* Checksum Control */ #define CHKSUM_REG 0x0c #define CHKSUM_ECC_EN BIT(1) #define CHKSUM_CRC_EN BIT(0) /* * Channel Data Type Select * VCDT[0-15]: Channel 0 VCDT[16-31]: Channel 1 * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3 */ #define VCDT_REG 0x10 #define VCDT2_REG 0x14 #define VCDT_VCDTN_EN BIT(15) #define VCDT_SEL_VC(n) (((n) & 0x3) << 8) #define VCDT_SEL_DTN_ON BIT(6) #define VCDT_SEL_DT(n) (((n) & 0x3f) << 0) /* Frame Data Type Select */ #define FRDT_REG 0x18 /* Field Detection Control */ #define FLD_REG 0x1c #define FLD_FLD_NUM(n) (((n) & 0xff) << 16) #define FLD_DET_SEL(n) (((n) & 0x3) << 4) #define FLD_FLD_EN4 BIT(3) #define FLD_FLD_EN3 BIT(2) #define FLD_FLD_EN2 BIT(1) #define FLD_FLD_EN BIT(0) /* Automatic Standby Control */ #define ASTBY_REG 0x20 /* Long Data Type Setting 0 */ #define LNGDT0_REG 0x28 /* Long Data Type Setting 1 */ #define LNGDT1_REG 0x2c /* Interrupt Enable */ #define INTEN_REG 0x30 #define INTEN_INT_AFIFO_OF BIT(27) #define INTEN_INT_ERRSOTHS BIT(4) #define INTEN_INT_ERRSOTSYNCHS BIT(3) /* Interrupt Source Mask */ #define INTCLOSE_REG 0x34 /* Interrupt Status Monitor */ #define INTSTATE_REG 0x38 #define INTSTATE_INT_ULPS_START BIT(7) #define INTSTATE_INT_ULPS_END BIT(6) /* Interrupt Error Status Monitor */ #define INTERRSTATE_REG 0x3c /* Short Packet Data */ #define SHPDAT_REG 0x40 /* Short Packet Count */ #define SHPCNT_REG 0x44 /* LINK Operation Control */ #define LINKCNT_REG 0x48 #define LINKCNT_MONITOR_EN BIT(31) #define LINKCNT_REG_MONI_PACT_EN BIT(25) #define LINKCNT_ICLK_NONSTOP BIT(24) /* Lane Swap */ #define LSWAP_REG 0x4c #define LSWAP_L3SEL(n) (((n) & 0x3) << 6) #define LSWAP_L2SEL(n) (((n) & 0x3) << 4) #define LSWAP_L1SEL(n) (((n) & 0x3) << 2) #define LSWAP_L0SEL(n) (((n) & 0x3) << 0) /* PHY Test Interface Write Register */ #define PHTW_REG 0x50 #define PHTW_DWEN BIT(24) #define PHTW_TESTDIN_DATA(n) (((n & 0xff)) << 16) #define PHTW_CWEN BIT(8) #define PHTW_TESTDIN_CODE(n) ((n & 0xff)) #define PHYFRX_REG 0x64 #define PHYFRX_FORCERX_MODE_3 BIT(3) #define PHYFRX_FORCERX_MODE_2 BIT(2) #define PHYFRX_FORCERX_MODE_1 BIT(1) #define PHYFRX_FORCERX_MODE_0 BIT(0) /* V4H BASE registers */ #define V4H_N_LANES_REG 0x0004 #define V4H_CSI2_RESETN_REG 0x0008 #define V4H_PHY_MODE_REG 0x001c #define V4H_PHY_MODE_DPHY 0 #define V4H_PHY_MODE_CPHY 1 #define V4H_PHY_SHUTDOWNZ_REG 0x0040 #define V4H_DPHY_RSTZ_REG 0x0044 #define V4H_FLDC_REG 0x0804 #define V4H_FLDD_REG 0x0808 #define V4H_IDIC_REG 0x0810 #define V4H_PHY_EN_REG 0x2000 #define V4H_PHY_EN_ENABLE_3 BIT(7) #define V4H_PHY_EN_ENABLE_2 BIT(6) #define V4H_PHY_EN_ENABLE_1 BIT(5) #define V4H_PHY_EN_ENABLE_0 BIT(4) #define V4H_PHY_EN_ENABLE_CLK BIT(0) #define V4H_ST_PHYST_REG 0x2814 #define V4H_ST_PHYST_ST_PHY_READY BIT(31) #define V4H_ST_PHYST_ST_STOPSTATE_3 BIT(3) #define V4H_ST_PHYST_ST_STOPSTATE_2 BIT(2) #define V4H_ST_PHYST_ST_STOPSTATE_1 BIT(1) #define V4H_ST_PHYST_ST_STOPSTATE_0 BIT(0) /* V4H PPI registers */ #define V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(n) (0x21800 + ((n) * 2)) /* n = 0 - 9 */ #define V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG 0x21822 #define V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG 0x2184c #define V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG 0x21c02 #define V4H_PPI_RW_LPDCOCAL_NREF_REG 0x21c04 #define V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG 0x21c06 #define V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG 0x21c0a #define V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG 0x21c0c #define V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG 0x21c10 #define V4H_PPI_RW_COMMON_CFG_REG 0x21c6c #define V4H_PPI_RW_TERMCAL_CFG_0_REG 0x21c80 #define V4H_PPI_RW_OFFSETCAL_CFG_0_REG 0x21ca0 /* V4H CORE registers */ #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(n) (0x22040 + ((n) * 2)) /* n = 0 - 15 */ #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(n) (0x22440 + ((n) * 2)) /* n = 0 - 15 */ #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(n) (0x22840 + ((n) * 2)) /* n = 0 - 15 */ #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(n) (0x22c40 + ((n) * 2)) /* n = 0 - 15 */ #define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(n) (0x23040 + ((n) * 2)) /* n = 0 - 15 */ #define V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(n) (0x23840 + ((n) * 2)) /* n = 0 - 11 */ #define V4H_CORE_DIG_RW_COMMON_REG(n) (0x23880 + ((n) * 2)) /* n = 0 - 15 */ #define V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(n) (0x239e0 + ((n) * 2)) /* n = 0 - 3 */ #define V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG 0x2a400 #define V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG 0x2a60c /* V4H C-PHY */ #define V4H_CORE_DIG_RW_TRIO0_REG(n) (0x22100 + ((n) * 2)) /* n = 0 - 3 */ #define V4H_CORE_DIG_RW_TRIO1_REG(n) (0x22500 + ((n) * 2)) /* n = 0 - 3 */ #define V4H_CORE_DIG_RW_TRIO2_REG(n) (0x22900 + ((n) * 2)) /* n = 0 - 3 */ #define V4H_CORE_DIG_CLANE_0_RW_LP_0_REG 0x2a080 #define V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(n) (0x2a100 + ((n) * 2)) /* n = 0 - 6 */ #define V4H_CORE_DIG_CLANE_1_RW_LP_0_REG 0x2a480 #define V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(n) (0x2a500 + ((n) * 2)) /* n = 0 - 6 */ #define V4H_CORE_DIG_CLANE_2_RW_LP_0_REG 0x2a880 #define V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(n) (0x2a900 + ((n) * 2)) /* n = 0 - 6 */ struct rcsi2_cphy_setting { u16 msps; u16 rx2; u16 trio0; u16 trio1; u16 trio2; u16 lane27; u16 lane29; }; static const struct rcsi2_cphy_setting cphy_setting_table_r8a779g0[] = { { .msps = 80, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0134, .trio2 = 0x6a, .lane27 = 0x0000, .lane29 = 0x0a24 }, { .msps = 100, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x00f5, .trio2 = 0x55, .lane27 = 0x0000, .lane29 = 0x0a24 }, { .msps = 200, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0077, .trio2 = 0x2b, .lane27 = 0x0000, .lane29 = 0x0a44 }, { .msps = 300, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x004d, .trio2 = 0x1d, .lane27 = 0x0000, .lane29 = 0x0a44 }, { .msps = 400, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0038, .trio2 = 0x16, .lane27 = 0x0000, .lane29 = 0x0a64 }, { .msps = 500, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x002b, .trio2 = 0x12, .lane27 = 0x0000, .lane29 = 0x0a64 }, { .msps = 600, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0023, .trio2 = 0x0f, .lane27 = 0x0000, .lane29 = 0x0a64 }, { .msps = 700, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x001d, .trio2 = 0x0d, .lane27 = 0x0000, .lane29 = 0x0a84 }, { .msps = 800, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0018, .trio2 = 0x0c, .lane27 = 0x0000, .lane29 = 0x0a84 }, { .msps = 900, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0015, .trio2 = 0x0b, .lane27 = 0x0000, .lane29 = 0x0a84 }, { .msps = 1000, .rx2 = 0x3e, .trio0 = 0x024a, .trio1 = 0x0012, .trio2 = 0x0a, .lane27 = 0x0400, .lane29 = 0x0a84 }, { .msps = 1100, .rx2 = 0x44, .trio0 = 0x024a, .trio1 = 0x000f, .trio2 = 0x09, .lane27 = 0x0800, .lane29 = 0x0a84 }, { .msps = 1200, .rx2 = 0x4a, .trio0 = 0x024a, .trio1 = 0x000e, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0a84 }, { .msps = 1300, .rx2 = 0x51, .trio0 = 0x024a, .trio1 = 0x000c, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0aa4 }, { .msps = 1400, .rx2 = 0x57, .trio0 = 0x024a, .trio1 = 0x000b, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 }, { .msps = 1500, .rx2 = 0x5d, .trio0 = 0x044a, .trio1 = 0x0009, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 }, { .msps = 1600, .rx2 = 0x63, .trio0 = 0x044a, .trio1 = 0x0008, .trio2 = 0x07, .lane27 = 0x1400, .lane29 = 0x0aa4 }, { .msps = 1700, .rx2 = 0x6a, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 }, { .msps = 1800, .rx2 = 0x70, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 }, { .msps = 1900, .rx2 = 0x76, .trio0 = 0x044a, .trio1 = 0x0006, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 }, { .msps = 2000, .rx2 = 0x7c, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x06, .lane27 = 0x1800, .lane29 = 0x0aa4 }, { .msps = 2100, .rx2 = 0x83, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 }, { .msps = 2200, .rx2 = 0x89, .trio0 = 0x064a, .trio1 = 0x0004, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 }, { .msps = 2300, .rx2 = 0x8f, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 }, { .msps = 2400, .rx2 = 0x95, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 }, { .msps = 2500, .rx2 = 0x9c, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0aa4 }, { .msps = 2600, .rx2 = 0xa2, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 2700, .rx2 = 0xa8, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 2800, .rx2 = 0xae, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 2900, .rx2 = 0xb5, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 3000, .rx2 = 0xbb, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 3100, .rx2 = 0xc1, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 3200, .rx2 = 0xc7, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 3300, .rx2 = 0xce, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 3400, .rx2 = 0xd4, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { .msps = 3500, .rx2 = 0xda, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 }, { /* sentinel */ }, }; /* V4M registers */ #define V4M_OVR1_REG 0x0848 #define V4M_OVR1_FORCERXMODE_3 BIT(12) #define V4M_OVR1_FORCERXMODE_2 BIT(11) #define V4M_OVR1_FORCERXMODE_1 BIT(10) #define V4M_OVR1_FORCERXMODE_0 BIT(9) #define V4M_FRXM_REG 0x2004 #define V4M_FRXM_FORCERXMODE_3 BIT(3) #define V4M_FRXM_FORCERXMODE_2 BIT(2) #define V4M_FRXM_FORCERXMODE_1 BIT(1) #define V4M_FRXM_FORCERXMODE_0 BIT(0) #define V4M_PHYPLL_REG 0x02050 #define V4M_CSI0CLKFCPR_REG 0x02054 #define V4M_PHTW_REG 0x02060 #define V4M_PHTR_REG 0x02064 #define V4M_PHTC_REG 0x02068 struct phtw_value { u8 data; u8 code; }; struct rcsi2_mbps_info { u16 mbps; u8 reg; u16 osc_freq; /* V4M */ }; static const struct rcsi2_mbps_info phtw_mbps_v3u[] = { { .mbps = 1500, .reg = 0xcc }, { .mbps = 1550, .reg = 0x1d }, { .mbps = 1600, .reg = 0x27 }, { .mbps = 1650, .reg = 0x30 }, { .mbps = 1700, .reg = 0x39 }, { .mbps = 1750, .reg = 0x42 }, { .mbps = 1800, .reg = 0x4b }, { .mbps = 1850, .reg = 0x55 }, { .mbps = 1900, .reg = 0x5e }, { .mbps = 1950, .reg = 0x67 }, { .mbps = 2000, .reg = 0x71 }, { .mbps = 2050, .reg = 0x79 }, { .mbps = 2100, .reg = 0x83 }, { .mbps = 2150, .reg = 0x8c }, { .mbps = 2200, .reg = 0x95 }, { .mbps = 2250, .reg = 0x9e }, { .mbps = 2300, .reg = 0xa7 }, { .mbps = 2350, .reg = 0xb0 }, { .mbps = 2400, .reg = 0xba }, { .mbps = 2450, .reg = 0xc3 }, { .mbps = 2500, .reg = 0xcc }, { /* sentinel */ }, }; static const struct rcsi2_mbps_info phtw_mbps_h3_v3h_m3n[] = { { .mbps = 80, .reg = 0x86 }, { .mbps = 90, .reg = 0x86 }, { .mbps = 100, .reg = 0x87 }, { .mbps = 110, .reg = 0x87 }, { .mbps = 120, .reg = 0x88 }, { .mbps = 130, .reg = 0x88 }, { .mbps = 140, .reg = 0x89 }, { .mbps = 150, .reg = 0x89 }, { .mbps = 160, .reg = 0x8a }, { .mbps = 170, .reg = 0x8a }, { .mbps = 180, .reg = 0x8b }, { .mbps = 190, .reg = 0x8b }, { .mbps = 205, .reg = 0x8c }, { .mbps = 220, .reg = 0x8d }, { .mbps = 235, .reg = 0x8e }, { .mbps = 250, .reg = 0x8e }, { /* sentinel */ }, }; static const struct rcsi2_mbps_info phtw_mbps_v3m_e3[] = { { .mbps = 80, .reg = 0x00 }, { .mbps = 90, .reg = 0x20 }, { .mbps = 100, .reg = 0x40 }, { .mbps = 110, .reg = 0x02 }, { .mbps = 130, .reg = 0x22 }, { .mbps = 140, .reg = 0x42 }, { .mbps = 150, .reg = 0x04 }, { .mbps = 170, .reg = 0x24 }, { .mbps = 180, .reg = 0x44 }, { .mbps = 200, .reg = 0x06 }, { .mbps = 220, .reg = 0x26 }, { .mbps = 240, .reg = 0x46 }, { .mbps = 250, .reg = 0x08 }, { .mbps = 270, .reg = 0x28 }, { .mbps = 300, .reg = 0x0a }, { .mbps = 330, .reg = 0x2a }, { .mbps = 360, .reg = 0x4a }, { .mbps = 400, .reg = 0x0c }, { .mbps = 450, .reg = 0x2c }, { .mbps = 500, .reg = 0x0e }, { .mbps = 550, .reg = 0x2e }, { .mbps = 600, .reg = 0x10 }, { .mbps = 650, .reg = 0x30 }, { .mbps = 700, .reg = 0x12 }, { .mbps = 750, .reg = 0x32 }, { .mbps = 800, .reg = 0x52 }, { .mbps = 850, .reg = 0x72 }, { .mbps = 900, .reg = 0x14 }, { .mbps = 950, .reg = 0x34 }, { .mbps = 1000, .reg = 0x54 }, { .mbps = 1050, .reg = 0x74 }, { .mbps = 1125, .reg = 0x16 }, { /* sentinel */ }, }; /* PHY Test Interface Clear */ #define PHTC_REG 0x58 #define PHTC_TESTCLR BIT(0) /* PHY Frequency Control */ #define PHYPLL_REG 0x68 #define PHYPLL_HSFREQRANGE(n) ((n) << 16) static const struct rcsi2_mbps_info hsfreqrange_v3u[] = { { .mbps = 80, .reg = 0x00 }, { .mbps = 90, .reg = 0x10 }, { .mbps = 100, .reg = 0x20 }, { .mbps = 110, .reg = 0x30 }, { .mbps = 120, .reg = 0x01 }, { .mbps = 130, .reg = 0x11 }, { .mbps = 140, .reg = 0x21 }, { .mbps = 150, .reg = 0x31 }, { .mbps = 160, .reg = 0x02 }, { .mbps = 170, .reg = 0x12 }, { .mbps = 180, .reg = 0x22 }, { .mbps = 190, .reg = 0x32 }, { .mbps = 205, .reg = 0x03 }, { .mbps = 220, .reg = 0x13 }, { .mbps = 235, .reg = 0x23 }, { .mbps = 250, .reg = 0x33 }, { .mbps = 275, .reg = 0x04 }, { .mbps = 300, .reg = 0x14 }, { .mbps = 325, .reg = 0x25 }, { .mbps = 350, .reg = 0x35 }, { .mbps = 400, .reg = 0x05 }, { .mbps = 450, .reg = 0x16 }, { .mbps = 500, .reg = 0x26 }, { .mbps = 550, .reg = 0x37 }, { .mbps = 600, .reg = 0x07 }, { .mbps = 650, .reg = 0x18 }, { .mbps = 700, .reg = 0x28 }, { .mbps = 750, .reg = 0x39 }, { .mbps = 800, .reg = 0x09 }, { .mbps = 850, .reg = 0x19 }, { .mbps = 900, .reg = 0x29 }, { .mbps = 950, .reg = 0x3a }, { .mbps = 1000, .reg = 0x0a }, { .mbps = 1050, .reg = 0x1a }, { .mbps = 1100, .reg = 0x2a }, { .mbps = 1150, .reg = 0x3b }, { .mbps = 1200, .reg = 0x0b }, { .mbps = 1250, .reg = 0x1b }, { .mbps = 1300, .reg = 0x2b }, { .mbps = 1350, .reg = 0x3c }, { .mbps = 1400, .reg = 0x0c }, { .mbps = 1450, .reg = 0x1c }, { .mbps = 1500, .reg = 0x2c }, { .mbps = 1550, .reg = 0x3d }, { .mbps = 1600, .reg = 0x0d }, { .mbps = 1650, .reg = 0x1d }, { .mbps = 1700, .reg = 0x2e }, { .mbps = 1750, .reg = 0x3e }, { .mbps = 1800, .reg = 0x0e }, { .mbps = 1850, .reg = 0x1e }, { .mbps = 1900, .reg = 0x2f }, { .mbps = 1950, .reg = 0x3f }, { .mbps = 2000, .reg = 0x0f }, { .mbps = 2050, .reg = 0x40 }, { .mbps = 2100, .reg = 0x41 }, { .mbps = 2150, .reg = 0x42 }, { .mbps = 2200, .reg = 0x43 }, { .mbps = 2300, .reg = 0x45 }, { .mbps = 2350, .reg = 0x46 }, { .mbps = 2400, .reg = 0x47 }, { .mbps = 2450, .reg = 0x48 }, { .mbps = 2500, .reg = 0x49 }, { /* sentinel */ }, }; static const struct rcsi2_mbps_info hsfreqrange_h3_v3h_m3n[] = { { .mbps = 80, .reg = 0x00 }, { .mbps = 90, .reg = 0x10 }, { .mbps = 100, .reg = 0x20 }, { .mbps = 110, .reg = 0x30 }, { .mbps = 120, .reg = 0x01 }, { .mbps = 130, .reg = 0x11 }, { .mbps = 140, .reg = 0x21 }, { .mbps = 150, .reg = 0x31 }, { .mbps = 160, .reg = 0x02 }, { .mbps = 170, .reg = 0x12 }, { .mbps = 180, .reg = 0x22 }, { .mbps = 190, .reg = 0x32 }, { .mbps = 205, .reg = 0x03 }, { .mbps = 220, .reg = 0x13 }, { .mbps = 235, .reg = 0x23 }, { .mbps = 250, .reg = 0x33 }, { .mbps = 275, .reg = 0x04 }, { .mbps = 300, .reg = 0x14 }, { .mbps = 325, .reg = 0x25 }, { .mbps = 350, .reg = 0x35 }, { .mbps = 400, .reg = 0x05 }, { .mbps = 450, .reg = 0x16 }, { .mbps = 500, .reg = 0x26 }, { .mbps = 550, .reg = 0x37 }, { .mbps = 600, .reg = 0x07 }, { .mbps = 650, .reg = 0x18 }, { .mbps = 700, .reg = 0x28 }, { .mbps = 750, .reg = 0x39 }, { .mbps = 800, .reg = 0x09 }, { .mbps = 850, .reg = 0x19 }, { .mbps = 900, .reg = 0x29 }, { .mbps = 950, .reg = 0x3a }, { .mbps = 1000, .reg = 0x0a }, { .mbps = 1050, .reg = 0x1a }, { .mbps = 1100, .reg = 0x2a }, { .mbps = 1150, .reg = 0x3b }, { .mbps = 1200, .reg = 0x0b }, { .mbps = 1250, .reg = 0x1b }, { .mbps = 1300, .reg = 0x2b }, { .mbps = 1350, .reg = 0x3c }, { .mbps = 1400, .reg = 0x0c }, { .mbps = 1450, .reg = 0x1c }, { .mbps = 1500, .reg = 0x2c }, { /* sentinel */ }, }; static const struct rcsi2_mbps_info hsfreqrange_m3w[] = { { .mbps = 80, .reg = 0x00 }, { .mbps = 90, .reg = 0x10 }, { .mbps = 100, .reg = 0x20 }, { .mbps = 110, .reg = 0x30 }, { .mbps = 120, .reg = 0x01 }, { .mbps = 130, .reg = 0x11 }, { .mbps = 140, .reg = 0x21 }, { .mbps = 150, .reg = 0x31 }, { .mbps = 160, .reg = 0x02 }, { .mbps = 170, .reg = 0x12 }, { .mbps = 180, .reg = 0x22 }, { .mbps = 190, .reg = 0x32 }, { .mbps = 205, .reg = 0x03 }, { .mbps = 220, .reg = 0x13 }, { .mbps = 235, .reg = 0x23 }, { .mbps = 250, .reg = 0x33 }, { .mbps = 275, .reg = 0x04 }, { .mbps = 300, .reg = 0x14 }, { .mbps = 325, .reg = 0x05 }, { .mbps = 350, .reg = 0x15 }, { .mbps = 400, .reg = 0x25 }, { .mbps = 450, .reg = 0x06 }, { .mbps = 500, .reg = 0x16 }, { .mbps = 550, .reg = 0x07 }, { .mbps = 600, .reg = 0x17 }, { .mbps = 650, .reg = 0x08 }, { .mbps = 700, .reg = 0x18 }, { .mbps = 750, .reg = 0x09 }, { .mbps = 800, .reg = 0x19 }, { .mbps = 850, .reg = 0x29 }, { .mbps = 900, .reg = 0x39 }, { .mbps = 950, .reg = 0x0a }, { .mbps = 1000, .reg = 0x1a }, { .mbps = 1050, .reg = 0x2a }, { .mbps = 1100, .reg = 0x3a }, { .mbps = 1150, .reg = 0x0b }, { .mbps = 1200, .reg = 0x1b }, { .mbps = 1250, .reg = 0x2b }, { .mbps = 1300, .reg = 0x3b }, { .mbps = 1350, .reg = 0x0c }, { .mbps = 1400, .reg = 0x1c }, { .mbps = 1450, .reg = 0x2c }, { .mbps = 1500, .reg = 0x3c }, { /* sentinel */ }, }; static const struct rcsi2_mbps_info hsfreqrange_v4m[] = { { .mbps = 80, .reg = 0x00, .osc_freq = 0x01a9 }, { .mbps = 90, .reg = 0x10, .osc_freq = 0x01a9 }, { .mbps = 100, .reg = 0x20, .osc_freq = 0x01a9 }, { .mbps = 110, .reg = 0x30, .osc_freq = 0x01a9 }, { .mbps = 120, .reg = 0x01, .osc_freq = 0x01a9 }, { .mbps = 130, .reg = 0x11, .osc_freq = 0x01a9 }, { .mbps = 140, .reg = 0x21, .osc_freq = 0x01a9 }, { .mbps = 150, .reg = 0x31, .osc_freq = 0x01a9 }, { .mbps = 160, .reg = 0x02, .osc_freq = 0x01a9 }, { .mbps = 170, .reg = 0x12, .osc_freq = 0x01a9 }, { .mbps = 180, .reg = 0x22, .osc_freq = 0x01a9 }, { .mbps = 190, .reg = 0x32, .osc_freq = 0x01a9 }, { .mbps = 205, .reg = 0x03, .osc_freq = 0x01a9 }, { .mbps = 220, .reg = 0x13, .osc_freq = 0x01a9 }, { .mbps = 235, .reg = 0x23, .osc_freq = 0x01a9 }, { .mbps = 250, .reg = 0x33, .osc_freq = 0x01a9 }, { .mbps = 275, .reg = 0x04, .osc_freq = 0x01a9 }, { .mbps = 300, .reg = 0x14, .osc_freq = 0x01a9 }, { .mbps = 325, .reg = 0x25, .osc_freq = 0x01a9 }, { .mbps = 350, .reg = 0x35, .osc_freq = 0x01a9 }, { .mbps = 400, .reg = 0x05, .osc_freq = 0x01a9 }, { .mbps = 450, .reg = 0x16, .osc_freq = 0x01a9 }, { .mbps = 500, .reg = 0x26, .osc_freq = 0x01a9 }, { .mbps = 550, .reg = 0x37, .osc_freq = 0x01a9 }, { .mbps = 600, .reg = 0x07, .osc_freq = 0x01a9 }, { .mbps = 650, .reg = 0x18, .osc_freq = 0x01a9 }, { .mbps = 700, .reg = 0x28, .osc_freq = 0x01a9 }, { .mbps = 750, .reg = 0x39, .osc_freq = 0x01a9 }, { .mbps = 800, .reg = 0x09, .osc_freq = 0x01a9 }, { .mbps = 850, .reg = 0x19, .osc_freq = 0x01a9 }, { .mbps = 900, .reg = 0x29, .osc_freq = 0x01a9 }, { .mbps = 950, .reg = 0x3a, .osc_freq = 0x01a9 }, { .mbps = 1000, .reg = 0x0a, .osc_freq = 0x01a9 }, { .mbps = 1050, .reg = 0x1a, .osc_freq = 0x01a9 }, { .mbps = 1100, .reg = 0x2a, .osc_freq = 0x01a9 }, { .mbps = 1150, .reg = 0x3b, .osc_freq = 0x01a9 }, { .mbps = 1200, .reg = 0x0b, .osc_freq = 0x01a9 }, { .mbps = 1250, .reg = 0x1b, .osc_freq = 0x01a9 }, { .mbps = 1300, .reg = 0x2b, .osc_freq = 0x01a9 }, { .mbps = 1350, .reg = 0x3c, .osc_freq = 0x01a9 }, { .mbps = 1400, .reg = 0x0c, .osc_freq = 0x01a9 }, { .mbps = 1450, .reg = 0x1c, .osc_freq = 0x01a9 }, { .mbps = 1500, .reg = 0x2c, .osc_freq = 0x01a9 }, { .mbps = 1550, .reg = 0x3d, .osc_freq = 0x0108 }, { .mbps = 1600, .reg = 0x0d, .osc_freq = 0x0110 }, { .mbps = 1650, .reg = 0x1d, .osc_freq = 0x0119 }, { .mbps = 1700, .reg = 0x2e, .osc_freq = 0x0121 }, { .mbps = 1750, .reg = 0x3e, .osc_freq = 0x012a }, { .mbps = 1800, .reg = 0x0e, .osc_freq = 0x0132 }, { .mbps = 1850, .reg = 0x1e, .osc_freq = 0x013b }, { .mbps = 1900, .reg = 0x2f, .osc_freq = 0x0143 }, { .mbps = 1950, .reg = 0x3f, .osc_freq = 0x014c }, { .mbps = 2000, .reg = 0x0f, .osc_freq = 0x0154 }, { .mbps = 2050, .reg = 0x40, .osc_freq = 0x015d }, { .mbps = 2100, .reg = 0x41, .osc_freq = 0x0165 }, { .mbps = 2150, .reg = 0x42, .osc_freq = 0x016e }, { .mbps = 2200, .reg = 0x43, .osc_freq = 0x0176 }, { .mbps = 2250, .reg = 0x44, .osc_freq = 0x017f }, { .mbps = 2300, .reg = 0x45, .osc_freq = 0x0187 }, { .mbps = 2350, .reg = 0x46, .osc_freq = 0x0190 }, { .mbps = 2400, .reg = 0x47, .osc_freq = 0x0198 }, { .mbps = 2450, .reg = 0x48, .osc_freq = 0x01a1 }, { .mbps = 2500, .reg = 0x49, .osc_freq = 0x01a9 }, { /* sentinel */ }, }; /* PHY ESC Error Monitor */ #define PHEERM_REG 0x74 /* PHY Clock Lane Monitor */ #define PHCLM_REG 0x78 #define PHCLM_STOPSTATECKL BIT(0) /* PHY Data Lane Monitor */ #define PHDLM_REG 0x7c /* CSI0CLK Frequency Configuration Preset Register */ #define CSI0CLKFCPR_REG 0x260 #define CSI0CLKFREQRANGE(n) ((n & 0x3f) << 16) struct rcar_csi2_format { u32 code; unsigned int datatype; unsigned int bpp; }; static const struct rcar_csi2_format rcar_csi2_formats[] = { { .code = MEDIA_BUS_FMT_RGB888_1X24, .datatype = MIPI_CSI2_DT_RGB888, .bpp = 24, }, { .code = MEDIA_BUS_FMT_UYVY8_1X16, .datatype = MIPI_CSI2_DT_YUV422_8B, .bpp = 16, }, { .code = MEDIA_BUS_FMT_YUYV8_1X16, .datatype = MIPI_CSI2_DT_YUV422_8B, .bpp = 16, }, { .code = MEDIA_BUS_FMT_UYVY8_2X8, .datatype = MIPI_CSI2_DT_YUV422_8B, .bpp = 16, }, { .code = MEDIA_BUS_FMT_YUYV10_2X10, .datatype = MIPI_CSI2_DT_YUV422_8B, .bpp = 20, }, { .code = MEDIA_BUS_FMT_Y10_1X10, .datatype = MIPI_CSI2_DT_RAW10, .bpp = 10, }, { .code = MEDIA_BUS_FMT_SBGGR8_1X8, .datatype = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .code = MEDIA_BUS_FMT_SGBRG8_1X8, .datatype = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .code = MEDIA_BUS_FMT_SGRBG8_1X8, .datatype = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .code = MEDIA_BUS_FMT_SRGGB8_1X8, .datatype = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .code = MEDIA_BUS_FMT_Y8_1X8, .datatype = MIPI_CSI2_DT_RAW8, .bpp = 8, }, }; static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++) if (rcar_csi2_formats[i].code == code) return &rcar_csi2_formats[i]; return NULL; } enum rcar_csi2_pads { RCAR_CSI2_SINK, RCAR_CSI2_SOURCE_VC0, RCAR_CSI2_SOURCE_VC1, RCAR_CSI2_SOURCE_VC2, RCAR_CSI2_SOURCE_VC3, NR_OF_RCAR_CSI2_PAD, }; struct rcsi2_register_layout { unsigned int phtw; unsigned int phypll; }; struct rcar_csi2_info { const struct rcsi2_register_layout *regs; int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps); int (*phy_post_init)(struct rcar_csi2 *priv); int (*start_receiver)(struct rcar_csi2 *priv, struct v4l2_subdev_state *state); void (*enter_standby)(struct rcar_csi2 *priv); const struct rcsi2_mbps_info *hsfreqrange; unsigned int csi0clkfreqrange; unsigned int num_channels; bool clear_ulps; bool use_isp; bool support_dphy; bool support_cphy; }; struct rcar_csi2 { struct device *dev; void __iomem *base; const struct rcar_csi2_info *info; struct reset_control *rstc; struct v4l2_subdev subdev; struct media_pad pads[NR_OF_RCAR_CSI2_PAD]; struct v4l2_async_notifier notifier; struct v4l2_subdev *remote; unsigned int remote_pad; int channel_vc[4]; int stream_count; bool cphy; unsigned short lanes; unsigned char lane_swap[4]; }; static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd) { return container_of(sd, struct rcar_csi2, subdev); } static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n) { return container_of(n, struct rcar_csi2, notifier); } static unsigned int rcsi2_num_pads(const struct rcar_csi2 *priv) { /* Used together with R-Car ISP: one sink and one source pad. */ if (priv->info->use_isp) return 2; /* Used together with R-Car VIN: one sink and four source pads. */ return 5; } static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg) { return ioread32(priv->base + reg); } static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data) { iowrite32(data, priv->base + reg); } static void rcsi2_write16(struct rcar_csi2 *priv, unsigned int reg, u16 data) { iowrite16(data, priv->base + reg); } static int rcsi2_phtw_write(struct rcar_csi2 *priv, u8 data, u8 code) { unsigned int timeout; rcsi2_write(priv, priv->info->regs->phtw, PHTW_DWEN | PHTW_TESTDIN_DATA(data) | PHTW_CWEN | PHTW_TESTDIN_CODE(code)); /* Wait for DWEN and CWEN to be cleared by hardware. */ for (timeout = 0; timeout <= 20; timeout++) { if (!(rcsi2_read(priv, priv->info->regs->phtw) & (PHTW_DWEN | PHTW_CWEN))) return 0; usleep_range(1000, 2000); } dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n"); return -ETIMEDOUT; } static int rcsi2_phtw_write_array(struct rcar_csi2 *priv, const struct phtw_value *values, unsigned int size) { int ret; for (unsigned int i = 0; i < size; i++) { ret = rcsi2_phtw_write(priv, values[i].data, values[i].code); if (ret) return ret; } return 0; } static const struct rcsi2_mbps_info * rcsi2_mbps_to_info(struct rcar_csi2 *priv, const struct rcsi2_mbps_info *infotable, unsigned int mbps) { const struct rcsi2_mbps_info *info; const struct rcsi2_mbps_info *prev = NULL; if (mbps < infotable->mbps) dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps", mbps, infotable->mbps); for (info = infotable; info->mbps != 0; info++) { if (info->mbps >= mbps) break; prev = info; } if (!info->mbps) { dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps); return NULL; } if (prev && ((mbps - prev->mbps) <= (info->mbps - mbps))) info = prev; return info; } static void rcsi2_enter_standby_gen3(struct rcar_csi2 *priv) { rcsi2_write(priv, PHYCNT_REG, 0); rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR); } static void rcsi2_enter_standby(struct rcar_csi2 *priv) { if (priv->info->enter_standby) priv->info->enter_standby(priv); reset_control_assert(priv->rstc); usleep_range(100, 150); pm_runtime_put(priv->dev); } static int rcsi2_exit_standby(struct rcar_csi2 *priv) { int ret; ret = pm_runtime_resume_and_get(priv->dev); if (ret < 0) return ret; reset_control_deassert(priv->rstc); return 0; } static int rcsi2_wait_phy_start(struct rcar_csi2 *priv, unsigned int lanes) { unsigned int timeout; /* Wait for the clock and data lanes to enter LP-11 state. */ for (timeout = 0; timeout <= 20; timeout++) { const u32 lane_mask = (1 << lanes) - 1; if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL) && (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask) return 0; usleep_range(1000, 2000); } dev_err(priv->dev, "Timeout waiting for LP-11 state\n"); return -ETIMEDOUT; } static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps) { const struct rcsi2_mbps_info *info; info = rcsi2_mbps_to_info(priv, priv->info->hsfreqrange, mbps); if (!info) return -ERANGE; rcsi2_write(priv, priv->info->regs->phypll, PHYPLL_HSFREQRANGE(info->reg)); return 0; } static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp, unsigned int lanes) { struct v4l2_subdev *source; struct v4l2_ctrl *ctrl; u64 mbps; if (!priv->remote) return -ENODEV; source = priv->remote; /* Read the pixel rate control from remote. */ ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE); if (!ctrl) { dev_err(priv->dev, "no pixel rate control in subdev %s\n", source->name); return -EINVAL; } /* * Calculate the phypll in mbps. * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes) * bps = link_freq * 2 */ mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp; do_div(mbps, lanes * 1000000); /* Adjust for C-PHY, divide by 2.8. */ if (priv->cphy) mbps = div_u64(mbps * 5, 14); return mbps; } static int rcsi2_get_active_lanes(struct rcar_csi2 *priv, unsigned int *lanes) { struct v4l2_mbus_config mbus_config = { 0 }; int ret; *lanes = priv->lanes; ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config, priv->remote_pad, &mbus_config); if (ret == -ENOIOCTLCMD) { dev_dbg(priv->dev, "No remote mbus configuration available\n"); return 0; } if (ret) { dev_err(priv->dev, "Failed to get remote mbus configuration\n"); return ret; } switch (mbus_config.type) { case V4L2_MBUS_CSI2_CPHY: if (!priv->cphy) return -EINVAL; break; case V4L2_MBUS_CSI2_DPHY: if (priv->cphy) return -EINVAL; break; default: dev_err(priv->dev, "Unsupported media bus type %u\n", mbus_config.type); return -EINVAL; } if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) { dev_err(priv->dev, "Unsupported mbus config: too many data lanes %u\n", mbus_config.bus.mipi_csi2.num_data_lanes); return -EINVAL; } *lanes = mbus_config.bus.mipi_csi2.num_data_lanes; return 0; } static int rcsi2_start_receiver_gen3(struct rcar_csi2 *priv, struct v4l2_subdev_state *state) { const struct rcar_csi2_format *format; u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0; const struct v4l2_mbus_framefmt *fmt; unsigned int lanes; unsigned int i; int mbps, ret; /* Use the format on the sink pad to compute the receiver config. */ fmt = v4l2_subdev_state_get_format(state, RCAR_CSI2_SINK); dev_dbg(priv->dev, "Input size (%ux%u%c)\n", fmt->width, fmt->height, fmt->field == V4L2_FIELD_NONE ? 'p' : 'i'); /* Code is validated in set_fmt. */ format = rcsi2_code_to_fmt(fmt->code); if (!format) return -EINVAL; /* * Enable all supported CSI-2 channels with virtual channel and * data type matching. * * NOTE: It's not possible to get individual datatype for each * source virtual channel. Once this is possible in V4L2 * it should be used here. */ for (i = 0; i < priv->info->num_channels; i++) { u32 vcdt_part; if (priv->channel_vc[i] < 0) continue; vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN | VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype); /* Store in correct reg and offset. */ if (i < 2) vcdt |= vcdt_part << ((i % 2) * 16); else vcdt2 |= vcdt_part << ((i % 2) * 16); } if (fmt->field == V4L2_FIELD_ALTERNATE) { fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2 | FLD_FLD_EN; if (fmt->height == 240) fld |= FLD_FLD_NUM(0); else fld |= FLD_FLD_NUM(1); } /* * Get the number of active data lanes inspecting the remote mbus * configuration. */ ret = rcsi2_get_active_lanes(priv, &lanes); if (ret) return ret; phycnt = PHYCNT_ENABLECLK; phycnt |= (1 << lanes) - 1; mbps = rcsi2_calc_mbps(priv, format->bpp, lanes); if (mbps < 0) return mbps; /* Enable interrupts. */ rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS | INTEN_INT_ERRSOTSYNCHS); /* Init */ rcsi2_write(priv, TREF_REG, TREF_TREF); rcsi2_write(priv, PHTC_REG, 0); /* Configure */ if (!priv->info->use_isp) { rcsi2_write(priv, VCDT_REG, vcdt); if (vcdt2) rcsi2_write(priv, VCDT2_REG, vcdt2); } /* Lanes are zero indexed. */ rcsi2_write(priv, LSWAP_REG, LSWAP_L0SEL(priv->lane_swap[0] - 1) | LSWAP_L1SEL(priv->lane_swap[1] - 1) | LSWAP_L2SEL(priv->lane_swap[2] - 1) | LSWAP_L3SEL(priv->lane_swap[3] - 1)); /* Start */ if (priv->info->init_phtw) { ret = priv->info->init_phtw(priv, mbps); if (ret) return ret; } if (priv->info->hsfreqrange) { ret = rcsi2_set_phypll(priv, mbps); if (ret) return ret; } if (priv->info->csi0clkfreqrange) rcsi2_write(priv, CSI0CLKFCPR_REG, CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange)); if (priv->info->use_isp) rcsi2_write(priv, PHYFRX_REG, PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 | PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0); rcsi2_write(priv, PHYCNT_REG, phycnt); rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN | LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP); rcsi2_write(priv, FLD_REG, fld); rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ); rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ); ret = rcsi2_wait_phy_start(priv, lanes); if (ret) return ret; if (priv->info->use_isp) rcsi2_write(priv, PHYFRX_REG, 0); /* Run post PHY start initialization, if needed. */ if (priv->info->phy_post_init) { ret = priv->info->phy_post_init(priv); if (ret) return ret; } /* Clear Ultra Low Power interrupt. */ if (priv->info->clear_ulps) rcsi2_write(priv, INTSTATE_REG, INTSTATE_INT_ULPS_START | INTSTATE_INT_ULPS_END); return 0; } static int rcsi2_wait_phy_start_v4h(struct rcar_csi2 *priv, u32 match) { unsigned int timeout; u32 status; for (timeout = 0; timeout <= 10; timeout++) { status = rcsi2_read(priv, V4H_ST_PHYST_REG); if ((status & match) == match) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } static int rcsi2_c_phy_setting_v4h(struct rcar_csi2 *priv, int msps) { const struct rcsi2_cphy_setting *conf; for (conf = cphy_setting_table_r8a779g0; conf->msps != 0; conf++) { if (conf->msps > msps) break; } if (!conf->msps) { dev_err(priv->dev, "Unsupported PHY speed for msps setting (%u Msps)", msps); return -ERANGE; } /* C-PHY specific */ rcsi2_write16(priv, V4H_CORE_DIG_RW_COMMON_REG(7), 0x0155); rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(7), 0x0068); rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(8), 0x0010); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_LP_0_REG, 0x463c); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_LP_0_REG, 0x463c); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_LP_0_REG, 0x463c); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(0), 0x00d5); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(0), 0x00d5); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(0), 0x00d5); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(1), 0x0013); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(1), 0x0013); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(1), 0x0013); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(5), 0x0013); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(5), 0x0013); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(5), 0x0013); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(6), 0x000a); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(6), 0x000a); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(6), 0x000a); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(2), conf->rx2); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(2), conf->rx2); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(2), conf->rx2); rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(2), 0x0001); rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(2), 0); rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(2), 0x0001); rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(2), 0x0001); rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(2), 0); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(0), conf->trio0); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(0), conf->trio0); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(0), conf->trio0); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(2), conf->trio2); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(2), conf->trio2); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(2), conf->trio2); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(1), conf->trio1); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(1), conf->trio1); rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(1), conf->trio1); /* * Configure pin-swap. * TODO: This registers is not documented yet, the values should depend * on the 'clock-lanes' and 'data-lanes' devicetree properties. */ rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG, 0xf5); rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG, 0x5000); /* Leave Shutdown mode */ rcsi2_write(priv, V4H_DPHY_RSTZ_REG, BIT(0)); rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, BIT(0)); /* Wait for calibration */ if (rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_PHY_READY)) { dev_err(priv->dev, "PHY calibration failed\n"); return -ETIMEDOUT; } /* C-PHY setting - analog programing*/ rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(9), conf->lane29); rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(7), conf->lane27); return 0; } static int rcsi2_start_receiver_v4h(struct rcar_csi2 *priv, struct v4l2_subdev_state *state) { const struct rcar_csi2_format *format; const struct v4l2_mbus_framefmt *fmt; unsigned int lanes; int msps; int ret; /* Use the format on the sink pad to compute the receiver config. */ fmt = v4l2_subdev_state_get_format(state, RCAR_CSI2_SINK); format = rcsi2_code_to_fmt(fmt->code); if (!format) return -EINVAL; ret = rcsi2_get_active_lanes(priv, &lanes); if (ret) return ret; msps = rcsi2_calc_mbps(priv, format->bpp, lanes); if (msps < 0) return msps; /* Reset LINK and PHY*/ rcsi2_write(priv, V4H_CSI2_RESETN_REG, 0); rcsi2_write(priv, V4H_DPHY_RSTZ_REG, 0); rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, 0); /* PHY static setting */ rcsi2_write(priv, V4H_PHY_EN_REG, V4H_PHY_EN_ENABLE_CLK); rcsi2_write(priv, V4H_FLDC_REG, 0); rcsi2_write(priv, V4H_FLDD_REG, 0); rcsi2_write(priv, V4H_IDIC_REG, 0); rcsi2_write(priv, V4H_PHY_MODE_REG, V4H_PHY_MODE_CPHY); rcsi2_write(priv, V4H_N_LANES_REG, lanes - 1); /* Reset CSI2 */ rcsi2_write(priv, V4H_CSI2_RESETN_REG, BIT(0)); /* Registers static setting through APB */ /* Common setting */ rcsi2_write16(priv, V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(0), 0x1bfd); rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG, 0x0233); rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(6), 0x0027); rcsi2_write16(priv, V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG, 0x01f4); rcsi2_write16(priv, V4H_PPI_RW_TERMCAL_CFG_0_REG, 0x0013); rcsi2_write16(priv, V4H_PPI_RW_OFFSETCAL_CFG_0_REG, 0x0003); rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG, 0x004f); rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_REG, 0x0320); rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG, 0x000f); rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG, 0xfe18); rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG, 0x0c3c); rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG, 0x0105); rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(6), 0x1000); rcsi2_write16(priv, V4H_PPI_RW_COMMON_CFG_REG, 0x0003); /* C-PHY settings */ ret = rcsi2_c_phy_setting_v4h(priv, msps); if (ret) return ret; rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_STOPSTATE_0 | V4H_ST_PHYST_ST_STOPSTATE_1 | V4H_ST_PHYST_ST_STOPSTATE_2); return 0; } static int rcsi2_d_phy_setting_v4m(struct rcar_csi2 *priv, int data_rate) { unsigned int timeout; int ret; static const struct phtw_value step1[] = { { .data = 0x00, .code = 0x00 }, { .data = 0x00, .code = 0x1e }, }; /* Shutdown and reset PHY. */ rcsi2_write(priv, V4H_DPHY_RSTZ_REG, BIT(0)); rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, BIT(0)); /* Start internal calibration (POR). */ ret = rcsi2_phtw_write_array(priv, step1, ARRAY_SIZE(step1)); if (ret) return ret; /* Wait for POR to complete. */ for (timeout = 10; timeout > 0; timeout--) { if ((rcsi2_read(priv, V4M_PHTR_REG) & 0xf0000) == 0x70000) break; usleep_range(1000, 2000); } if (!timeout) { dev_err(priv->dev, "D-PHY calibration failed\n"); return -ETIMEDOUT; } return 0; } static int rcsi2_set_osc_freq(struct rcar_csi2 *priv, unsigned int mbps) { const struct rcsi2_mbps_info *info; struct phtw_value steps[] = { { .data = 0x00, .code = 0x00 }, { .code = 0xe2 }, /* Data filled in below. */ { .code = 0xe3 }, /* Data filled in below. */ { .data = 0x01, .code = 0xe4 }, }; info = rcsi2_mbps_to_info(priv, priv->info->hsfreqrange, mbps); if (!info) return -ERANGE; /* Fill in data for command. */ steps[1].data = (info->osc_freq & 0x00ff) >> 0; steps[2].data = (info->osc_freq & 0x0f00) >> 8; return rcsi2_phtw_write_array(priv, steps, ARRAY_SIZE(steps)); } static int rcsi2_init_common_v4m(struct rcar_csi2 *priv, unsigned int mbps) { int ret; static const struct phtw_value step1[] = { { .data = 0x00, .code = 0x00 }, { .data = 0x3c, .code = 0x08 }, }; static const struct phtw_value step2[] = { { .data = 0x00, .code = 0x00 }, { .data = 0x80, .code = 0xe0 }, { .data = 0x01, .code = 0xe1 }, { .data = 0x06, .code = 0x00 }, { .data = 0x0f, .code = 0x11 }, { .data = 0x08, .code = 0x00 }, { .data = 0x0f, .code = 0x11 }, { .data = 0x0a, .code = 0x00 }, { .data = 0x0f, .code = 0x11 }, { .data = 0x0c, .code = 0x00 }, { .data = 0x0f, .code = 0x11 }, { .data = 0x01, .code = 0x00 }, { .data = 0x31, .code = 0xaa }, { .data = 0x05, .code = 0x00 }, { .data = 0x05, .code = 0x09 }, { .data = 0x07, .code = 0x00 }, { .data = 0x05, .code = 0x09 }, { .data = 0x09, .code = 0x00 }, { .data = 0x05, .code = 0x09 }, { .data = 0x0b, .code = 0x00 }, { .data = 0x05, .code = 0x09 }, }; if (priv->info->hsfreqrange) { ret = rcsi2_set_phypll(priv, mbps); if (ret) return ret; ret = rcsi2_set_osc_freq(priv, mbps); if (ret) return ret; } if (mbps <= 1500) { ret = rcsi2_phtw_write_array(priv, step1, ARRAY_SIZE(step1)); if (ret) return ret; } if (priv->info->csi0clkfreqrange) rcsi2_write(priv, V4M_CSI0CLKFCPR_REG, CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange)); rcsi2_write(priv, V4H_PHY_EN_REG, V4H_PHY_EN_ENABLE_CLK | V4H_PHY_EN_ENABLE_0 | V4H_PHY_EN_ENABLE_1 | V4H_PHY_EN_ENABLE_2 | V4H_PHY_EN_ENABLE_3); if (mbps > 1500) { ret = rcsi2_phtw_write_array(priv, step2, ARRAY_SIZE(step2)); if (ret) return ret; } return ret; } static int rcsi2_start_receiver_v4m(struct rcar_csi2 *priv, struct v4l2_subdev_state *state) { const struct rcar_csi2_format *format; const struct v4l2_mbus_framefmt *fmt; unsigned int lanes; int mbps; int ret; /* Calculate parameters */ fmt = v4l2_subdev_state_get_format(state, RCAR_CSI2_SINK); format = rcsi2_code_to_fmt(fmt->code); if (!format) return -EINVAL; ret = rcsi2_get_active_lanes(priv, &lanes); if (ret) return ret; mbps = rcsi2_calc_mbps(priv, format->bpp, lanes); if (mbps < 0) return mbps; /* Reset LINK and PHY */ rcsi2_write(priv, V4H_CSI2_RESETN_REG, 0); rcsi2_write(priv, V4H_DPHY_RSTZ_REG, 0); rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, 0); rcsi2_write(priv, V4M_PHTC_REG, PHTC_TESTCLR); /* PHY static setting */ rcsi2_write(priv, V4H_PHY_EN_REG, V4H_PHY_EN_ENABLE_CLK); rcsi2_write(priv, V4H_FLDC_REG, 0); rcsi2_write(priv, V4H_FLDD_REG, 0); rcsi2_write(priv, V4H_IDIC_REG, 0); rcsi2_write(priv, V4H_PHY_MODE_REG, V4H_PHY_MODE_DPHY); rcsi2_write(priv, V4H_N_LANES_REG, lanes - 1); rcsi2_write(priv, V4M_FRXM_REG, V4M_FRXM_FORCERXMODE_0 | V4M_FRXM_FORCERXMODE_1 | V4M_FRXM_FORCERXMODE_2 | V4M_FRXM_FORCERXMODE_3); rcsi2_write(priv, V4M_OVR1_REG, V4M_OVR1_FORCERXMODE_0 | V4M_OVR1_FORCERXMODE_1 | V4M_OVR1_FORCERXMODE_2 | V4M_OVR1_FORCERXMODE_3); /* Reset CSI2 */ rcsi2_write(priv, V4M_PHTC_REG, 0); rcsi2_write(priv, V4H_CSI2_RESETN_REG, BIT(0)); /* Common settings */ ret = rcsi2_init_common_v4m(priv, mbps); if (ret) return ret; /* D-PHY settings */ ret = rcsi2_d_phy_setting_v4m(priv, mbps); if (ret) return ret; rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_STOPSTATE_0 | V4H_ST_PHYST_ST_STOPSTATE_1 | V4H_ST_PHYST_ST_STOPSTATE_2 | V4H_ST_PHYST_ST_STOPSTATE_3); rcsi2_write(priv, V4M_FRXM_REG, 0); return 0; } static int rcsi2_start(struct rcar_csi2 *priv, struct v4l2_subdev_state *state) { int ret; ret = rcsi2_exit_standby(priv); if (ret < 0) return ret; ret = priv->info->start_receiver(priv, state); if (ret) { rcsi2_enter_standby(priv); return ret; } ret = v4l2_subdev_call(priv->remote, video, s_stream, 1); if (ret) { rcsi2_enter_standby(priv); return ret; } return 0; } static void rcsi2_stop(struct rcar_csi2 *priv) { rcsi2_enter_standby(priv); v4l2_subdev_call(priv->remote, video, s_stream, 0); } static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable) { struct rcar_csi2 *priv = sd_to_csi2(sd); struct v4l2_subdev_state *state; int ret = 0; if (!priv->remote) return -ENODEV; state = v4l2_subdev_lock_and_get_active_state(&priv->subdev); if (enable && priv->stream_count == 0) { ret = rcsi2_start(priv, state); if (ret) goto out; } else if (!enable && priv->stream_count == 1) { rcsi2_stop(priv); } priv->stream_count += enable ? 1 : -1; out: v4l2_subdev_unlock_state(state); return ret; } static int rcsi2_set_pad_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_format *format) { struct rcar_csi2 *priv = sd_to_csi2(sd); unsigned int num_pads = rcsi2_num_pads(priv); if (format->pad > RCAR_CSI2_SINK) return v4l2_subdev_get_fmt(sd, state, format); if (!rcsi2_code_to_fmt(format->format.code)) format->format.code = rcar_csi2_formats[0].code; *v4l2_subdev_state_get_format(state, format->pad) = format->format; /* Propagate the format to the source pads. */ for (unsigned int i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++) *v4l2_subdev_state_get_format(state, i) = format->format; return 0; } static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = { .s_stream = rcsi2_s_stream, }; static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = { .set_fmt = rcsi2_set_pad_format, .get_fmt = v4l2_subdev_get_fmt, }; static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = { .video = &rcar_csi2_video_ops, .pad = &rcar_csi2_pad_ops, }; static int rcsi2_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *state) { struct rcar_csi2 *priv = sd_to_csi2(sd); unsigned int num_pads = rcsi2_num_pads(priv); static const struct v4l2_mbus_framefmt rcar_csi2_default_fmt = { .width = 1920, .height = 1080, .code = MEDIA_BUS_FMT_RGB888_1X24, .colorspace = V4L2_COLORSPACE_SRGB, .field = V4L2_FIELD_NONE, .ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT, .quantization = V4L2_QUANTIZATION_DEFAULT, .xfer_func = V4L2_XFER_FUNC_DEFAULT, }; for (unsigned int i = RCAR_CSI2_SINK; i < num_pads; i++) *v4l2_subdev_state_get_format(state, i) = rcar_csi2_default_fmt; return 0; } static const struct v4l2_subdev_internal_ops rcar_csi2_internal_ops = { .init_state = rcsi2_init_state, }; static irqreturn_t rcsi2_irq(int irq, void *data) { struct rcar_csi2 *priv = data; u32 status, err_status; status = rcsi2_read(priv, INTSTATE_REG); err_status = rcsi2_read(priv, INTERRSTATE_REG); if (!status) return IRQ_HANDLED; rcsi2_write(priv, INTSTATE_REG, status); if (!err_status) return IRQ_HANDLED; rcsi2_write(priv, INTERRSTATE_REG, err_status); dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n"); return IRQ_WAKE_THREAD; } static irqreturn_t rcsi2_irq_thread(int irq, void *data) { struct v4l2_subdev_state *state; struct rcar_csi2 *priv = data; state = v4l2_subdev_lock_and_get_active_state(&priv->subdev); rcsi2_stop(priv); usleep_range(1000, 2000); if (rcsi2_start(priv, state)) dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n"); v4l2_subdev_unlock_state(state); return IRQ_HANDLED; } /* ----------------------------------------------------------------------------- * Async handling and registration of subdevices and links. */ static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_connection *asc) { struct rcar_csi2 *priv = notifier_to_csi2(notifier); int pad; pad = media_entity_get_fwnode_pad(&subdev->entity, asc->match.fwnode, MEDIA_PAD_FL_SOURCE); if (pad < 0) { dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name); return pad; } priv->remote = subdev; priv->remote_pad = pad; dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad); return media_create_pad_link(&subdev->entity, pad, &priv->subdev.entity, 0, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); } static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_connection *asc) { struct rcar_csi2 *priv = notifier_to_csi2(notifier); priv->remote = NULL; dev_dbg(priv->dev, "Unbind %s\n", subdev->name); } static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = { .bound = rcsi2_notify_bound, .unbind = rcsi2_notify_unbind, }; static int rcsi2_parse_v4l2(struct rcar_csi2 *priv, struct v4l2_fwnode_endpoint *vep) { unsigned int i; /* Only port 0 endpoint 0 is valid. */ if (vep->base.port || vep->base.id) return -ENOTCONN; priv->lanes = vep->bus.mipi_csi2.num_data_lanes; switch (vep->bus_type) { case V4L2_MBUS_CSI2_DPHY: if (!priv->info->support_dphy) { dev_err(priv->dev, "D-PHY not supported\n"); return -EINVAL; } if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) { dev_err(priv->dev, "Unsupported number of data-lanes for D-PHY: %u\n", priv->lanes); return -EINVAL; } priv->cphy = false; break; case V4L2_MBUS_CSI2_CPHY: if (!priv->info->support_cphy) { dev_err(priv->dev, "C-PHY not supported\n"); return -EINVAL; } if (priv->lanes != 3) { dev_err(priv->dev, "Unsupported number of data-lanes for C-PHY: %u\n", priv->lanes); return -EINVAL; } priv->cphy = true; break; default: dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) { priv->lane_swap[i] = i < priv->lanes ? vep->bus.mipi_csi2.data_lanes[i] : i; /* Check for valid lane number. */ if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) { dev_err(priv->dev, "data-lanes must be in 1-4 range\n"); return -EINVAL; } } return 0; } static int rcsi2_parse_dt(struct rcar_csi2 *priv) { struct v4l2_async_connection *asc; struct fwnode_handle *fwnode; struct fwnode_handle *ep; struct v4l2_fwnode_endpoint v4l2_ep = { .bus_type = V4L2_MBUS_UNKNOWN, }; int ret; ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0); if (!ep) { dev_err(priv->dev, "Not connected to subdevice\n"); return -EINVAL; } ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep); if (ret) { dev_err(priv->dev, "Could not parse v4l2 endpoint\n"); fwnode_handle_put(ep); return -EINVAL; } ret = rcsi2_parse_v4l2(priv, &v4l2_ep); if (ret) { fwnode_handle_put(ep); return ret; } fwnode = fwnode_graph_get_remote_endpoint(ep); fwnode_handle_put(ep); dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode)); v4l2_async_subdev_nf_init(&priv->notifier, &priv->subdev); priv->notifier.ops = &rcar_csi2_notify_ops; asc = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode, struct v4l2_async_connection); fwnode_handle_put(fwnode); if (IS_ERR(asc)) return PTR_ERR(asc); ret = v4l2_async_nf_register(&priv->notifier); if (ret) v4l2_async_nf_cleanup(&priv->notifier); return ret; } /* ----------------------------------------------------------------------------- * PHTW initialization sequences. * * NOTE: Magic values are from the datasheet and lack documentation. */ static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps, const struct rcsi2_mbps_info *values, u8 code) { const struct rcsi2_mbps_info *info; info = rcsi2_mbps_to_info(priv, values, mbps); if (!info) return -ERANGE; return rcsi2_phtw_write(priv, info->reg, code); } static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps) { static const struct phtw_value step1[] = { { .data = 0xcc, .code = 0xe2 }, { .data = 0x01, .code = 0xe3 }, { .data = 0x11, .code = 0xe4 }, { .data = 0x01, .code = 0xe5 }, { .data = 0x10, .code = 0x04 }, }; static const struct phtw_value step2[] = { { .data = 0x38, .code = 0x08 }, { .data = 0x01, .code = 0x00 }, { .data = 0x4b, .code = 0xac }, { .data = 0x03, .code = 0x00 }, { .data = 0x80, .code = 0x07 }, }; int ret; ret = rcsi2_phtw_write_array(priv, step1, ARRAY_SIZE(step1)); if (ret) return ret; if (mbps != 0 && mbps <= 250) { ret = rcsi2_phtw_write(priv, 0x39, 0x05); if (ret) return ret; ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n, 0xf1); if (ret) return ret; } return rcsi2_phtw_write_array(priv, step2, ARRAY_SIZE(step2)); } static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps) { return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps); } static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps) { return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0); } static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps) { return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44); } static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv) { static const struct phtw_value step1[] = { { .data = 0xee, .code = 0x34 }, { .data = 0xee, .code = 0x44 }, { .data = 0xee, .code = 0x54 }, { .data = 0xee, .code = 0x84 }, { .data = 0xee, .code = 0x94 }, }; return rcsi2_phtw_write_array(priv, step1, ARRAY_SIZE(step1)); } static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv, unsigned int mbps) { /* In case of 1500Mbps or less */ static const struct phtw_value step1[] = { { .data = 0xcc, .code = 0xe2 }, }; static const struct phtw_value step2[] = { { .data = 0x01, .code = 0xe3 }, { .data = 0x11, .code = 0xe4 }, { .data = 0x01, .code = 0xe5 }, }; /* In case of 1500Mbps or less */ static const struct phtw_value step3[] = { { .data = 0x38, .code = 0x08 }, }; static const struct phtw_value step4[] = { { .data = 0x01, .code = 0x00 }, { .data = 0x4b, .code = 0xac }, { .data = 0x03, .code = 0x00 }, { .data = 0x80, .code = 0x07 }, }; int ret; if (mbps != 0 && mbps <= 1500) ret = rcsi2_phtw_write_array(priv, step1, ARRAY_SIZE(step1)); else ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3u, 0xe2); if (ret) return ret; ret = rcsi2_phtw_write_array(priv, step2, ARRAY_SIZE(step2)); if (ret) return ret; if (mbps != 0 && mbps <= 1500) { ret = rcsi2_phtw_write_array(priv, step3, ARRAY_SIZE(step3)); if (ret) return ret; } ret = rcsi2_phtw_write_array(priv, step4, ARRAY_SIZE(step4)); if (ret) return ret; return ret; } /* ----------------------------------------------------------------------------- * Platform Device Driver. */ static int rcsi2_link_setup(struct media_entity *entity, const struct media_pad *local, const struct media_pad *remote, u32 flags) { struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity); struct rcar_csi2 *priv = sd_to_csi2(sd); struct video_device *vdev; int channel, vc; u32 id; if (!is_media_entity_v4l2_video_device(remote->entity)) { dev_err(priv->dev, "Remote is not a video device\n"); return -EINVAL; } vdev = media_entity_to_video_device(remote->entity); if (of_property_read_u32(vdev->dev_parent->of_node, "renesas,id", &id)) { dev_err(priv->dev, "No renesas,id, can't configure routing\n"); return -EINVAL; } channel = id % 4; if (flags & MEDIA_LNK_FL_ENABLED) { if (media_pad_remote_pad_first(local)) { dev_dbg(priv->dev, "Each VC can only be routed to one output channel\n"); return -EINVAL; } vc = local->index - 1; dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n", vc, id, channel); } else { vc = -1; } priv->channel_vc[channel] = vc; return 0; } static const struct media_entity_operations rcar_csi2_entity_ops = { .link_setup = rcsi2_link_setup, .link_validate = v4l2_subdev_link_validate, }; static int rcsi2_probe_resources(struct rcar_csi2 *priv, struct platform_device *pdev) { int irq, ret; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq, rcsi2_irq_thread, IRQF_SHARED, KBUILD_MODNAME, priv); if (ret) return ret; priv->rstc = devm_reset_control_get(&pdev->dev, NULL); return PTR_ERR_OR_ZERO(priv->rstc); } static const struct rcsi2_register_layout rcsi2_registers_gen3 = { .phtw = PHTW_REG, .phypll = PHYPLL_REG, }; static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = { .regs = &rcsi2_registers_gen3, .init_phtw = rcsi2_init_phtw_h3_v3h_m3n, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .hsfreqrange = hsfreqrange_h3_v3h_m3n, .csi0clkfreqrange = 0x20, .num_channels = 4, .clear_ulps = true, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = { .regs = &rcsi2_registers_gen3, .init_phtw = rcsi2_init_phtw_h3es2, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .hsfreqrange = hsfreqrange_h3_v3h_m3n, .csi0clkfreqrange = 0x20, .num_channels = 4, .clear_ulps = true, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = { .regs = &rcsi2_registers_gen3, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .hsfreqrange = hsfreqrange_m3w, .num_channels = 4, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = { .regs = &rcsi2_registers_gen3, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .hsfreqrange = hsfreqrange_m3w, .num_channels = 4, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = { .regs = &rcsi2_registers_gen3, .init_phtw = rcsi2_init_phtw_h3_v3h_m3n, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .hsfreqrange = hsfreqrange_h3_v3h_m3n, .csi0clkfreqrange = 0x20, .num_channels = 4, .clear_ulps = true, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = { .regs = &rcsi2_registers_gen3, .init_phtw = rcsi2_init_phtw_v3m_e3, .phy_post_init = rcsi2_phy_post_init_v3m_e3, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .num_channels = 4, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = { .regs = &rcsi2_registers_gen3, .init_phtw = rcsi2_init_phtw_h3_v3h_m3n, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .hsfreqrange = hsfreqrange_h3_v3h_m3n, .csi0clkfreqrange = 0x20, .clear_ulps = true, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = { .regs = &rcsi2_registers_gen3, .init_phtw = rcsi2_init_phtw_v3m_e3, .phy_post_init = rcsi2_phy_post_init_v3m_e3, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .num_channels = 2, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = { .regs = &rcsi2_registers_gen3, .init_phtw = rcsi2_init_phtw_v3u, .start_receiver = rcsi2_start_receiver_gen3, .enter_standby = rcsi2_enter_standby_gen3, .hsfreqrange = hsfreqrange_v3u, .csi0clkfreqrange = 0x20, .clear_ulps = true, .use_isp = true, .support_dphy = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a779g0 = { .regs = &rcsi2_registers_gen3, .start_receiver = rcsi2_start_receiver_v4h, .use_isp = true, .support_cphy = true, }; static const struct rcsi2_register_layout rcsi2_registers_v4m = { .phtw = V4M_PHTW_REG, .phypll = V4M_PHYPLL_REG, }; static const struct rcar_csi2_info rcar_csi2_info_r8a779h0 = { .regs = &rcsi2_registers_v4m, .start_receiver = rcsi2_start_receiver_v4m, .hsfreqrange = hsfreqrange_v4m, .csi0clkfreqrange = 0x0c, .use_isp = true, .support_dphy = true, }; static const struct of_device_id rcar_csi2_of_table[] = { { .compatible = "renesas,r8a774a1-csi2", .data = &rcar_csi2_info_r8a7796, }, { .compatible = "renesas,r8a774b1-csi2", .data = &rcar_csi2_info_r8a77965, }, { .compatible = "renesas,r8a774c0-csi2", .data = &rcar_csi2_info_r8a77990, }, { .compatible = "renesas,r8a774e1-csi2", .data = &rcar_csi2_info_r8a7795, }, { .compatible = "renesas,r8a7795-csi2", .data = &rcar_csi2_info_r8a7795, }, { .compatible = "renesas,r8a7796-csi2", .data = &rcar_csi2_info_r8a7796, }, { .compatible = "renesas,r8a77961-csi2", .data = &rcar_csi2_info_r8a77961, }, { .compatible = "renesas,r8a77965-csi2", .data = &rcar_csi2_info_r8a77965, }, { .compatible = "renesas,r8a77970-csi2", .data = &rcar_csi2_info_r8a77970, }, { .compatible = "renesas,r8a77980-csi2", .data = &rcar_csi2_info_r8a77980, }, { .compatible = "renesas,r8a77990-csi2", .data = &rcar_csi2_info_r8a77990, }, { .compatible = "renesas,r8a779a0-csi2", .data = &rcar_csi2_info_r8a779a0, }, { .compatible = "renesas,r8a779g0-csi2", .data = &rcar_csi2_info_r8a779g0, }, { .compatible = "renesas,r8a779h0-csi2", .data = &rcar_csi2_info_r8a779h0, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, rcar_csi2_of_table); static const struct soc_device_attribute r8a7795[] = { { .soc_id = "r8a7795", .revision = "ES2.*", .data = &rcar_csi2_info_r8a7795es2, }, { /* sentinel */ } }; static int rcsi2_probe(struct platform_device *pdev) { const struct soc_device_attribute *attr; struct rcar_csi2 *priv; unsigned int i, num_pads; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->info = of_device_get_match_data(&pdev->dev); /* * The different ES versions of r8a7795 (H3) behave differently but * share the same compatible string. */ attr = soc_device_match(r8a7795); if (attr) priv->info = attr->data; priv->dev = &pdev->dev; priv->stream_count = 0; ret = rcsi2_probe_resources(priv, pdev); if (ret) { dev_err(priv->dev, "Failed to get resources\n"); return ret; } platform_set_drvdata(pdev, priv); ret = rcsi2_parse_dt(priv); if (ret) return ret; priv->subdev.owner = THIS_MODULE; priv->subdev.dev = &pdev->dev; priv->subdev.internal_ops = &rcar_csi2_internal_ops; v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops); v4l2_set_subdevdata(&priv->subdev, &pdev->dev); snprintf(priv->subdev.name, sizeof(priv->subdev.name), "%s %s", KBUILD_MODNAME, dev_name(&pdev->dev)); priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE; priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER; priv->subdev.entity.ops = &rcar_csi2_entity_ops; num_pads = rcsi2_num_pads(priv); priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK; for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++) priv->pads[i].flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&priv->subdev.entity, num_pads, priv->pads); if (ret) goto error_async; for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++) priv->channel_vc[i] = -1; pm_runtime_enable(&pdev->dev); ret = v4l2_subdev_init_finalize(&priv->subdev); if (ret) goto error_pm_runtime; ret = v4l2_async_register_subdev(&priv->subdev); if (ret < 0) goto error_subdev; dev_info(priv->dev, "%d lanes found\n", priv->lanes); return 0; error_subdev: v4l2_subdev_cleanup(&priv->subdev); error_pm_runtime: pm_runtime_disable(&pdev->dev); error_async: v4l2_async_nf_unregister(&priv->notifier); v4l2_async_nf_cleanup(&priv->notifier); return ret; } static void rcsi2_remove(struct platform_device *pdev) { struct rcar_csi2 *priv = platform_get_drvdata(pdev); v4l2_async_nf_unregister(&priv->notifier); v4l2_async_nf_cleanup(&priv->notifier); v4l2_async_unregister_subdev(&priv->subdev); v4l2_subdev_cleanup(&priv->subdev); pm_runtime_disable(&pdev->dev); } static struct platform_driver rcar_csi2_pdrv = { .remove = rcsi2_remove, .probe = rcsi2_probe, .driver = { .name = "rcar-csi2", .suppress_bind_attrs = true, .of_match_table = rcar_csi2_of_table, }, }; module_platform_driver(rcar_csi2_pdrv); MODULE_AUTHOR("Niklas Söderlund "); MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver"); MODULE_LICENSE("GPL");