// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner" * * Copyright (c) 2006 Olivier DANET */ /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ #include #include #include #include #include #include #include "mt2060.h" #include "mt2060_priv.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0) // Reads a single register static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val) { struct i2c_msg msg[2] = { { .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 }, { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 }, }; int rc = 0; u8 *b; b = kmalloc(2, GFP_KERNEL); if (!b) return -ENOMEM; b[0] = reg; b[1] = 0; msg[0].buf = b; msg[1].buf = b + 1; if (i2c_transfer(priv->i2c, msg, 2) != 2) { printk(KERN_WARNING "mt2060 I2C read failed\n"); rc = -EREMOTEIO; } *val = b[1]; kfree(b); return rc; } // Writes a single register static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val) { struct i2c_msg msg = { .addr = priv->cfg->i2c_address, .flags = 0, .len = 2 }; u8 *buf; int rc = 0; buf = kmalloc(2, GFP_KERNEL); if (!buf) return -ENOMEM; buf[0] = reg; buf[1] = val; msg.buf = buf; if (i2c_transfer(priv->i2c, &msg, 1) != 1) { printk(KERN_WARNING "mt2060 I2C write failed\n"); rc = -EREMOTEIO; } kfree(buf); return rc; } // Writes a set of consecutive registers static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len) { int rem, val_len; u8 *xfer_buf; int rc = 0; struct i2c_msg msg = { .addr = priv->cfg->i2c_address, .flags = 0 }; xfer_buf = kmalloc(16, GFP_KERNEL); if (!xfer_buf) return -ENOMEM; msg.buf = xfer_buf; for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) { val_len = min_t(int, rem, priv->i2c_max_regs); msg.len = 1 + val_len; xfer_buf[0] = buf[0] + len - 1 - rem; memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len); if (i2c_transfer(priv->i2c, &msg, 1) != 1) { printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len); rc = -EREMOTEIO; break; } } kfree(xfer_buf); return rc; } // Initialisation sequences // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49 static u8 mt2060_config1[] = { REG_LO1C1, 0x3F, 0x74, 0x00, 0x08, 0x93 }; // FMCG=2, GP2=0, GP1=0 static u8 mt2060_config2[] = { REG_MISC_CTRL, 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42 }; // VGAG=3, V1CSE=1 #ifdef MT2060_SPURCHECK /* The function below calculates the frequency offset between the output frequency if2 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */ static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2) { int I,J; int dia,diamin,diff; diamin=1000000; for (I = 1; I < 10; I++) { J = ((2*I*lo1)/lo2+1)/2; diff = I*(int)lo1-J*(int)lo2; if (diff < 0) diff=-diff; dia = (diff-(int)if2); if (dia < 0) dia=-dia; if (diamin > dia) diamin=dia; } return diamin; } #define BANDWIDTH 4000 // kHz /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */ static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2) { u32 Spur,Sp1,Sp2; int I,J; I=0; J=1000; Spur=mt2060_spurcalc(lo1,lo2,if2); if (Spur < BANDWIDTH) { /* Potential spurs detected */ dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)", (int)lo1,(int)lo2); I=1000; Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2); Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2); if (Sp1 < Sp2) { J=-J; I=-I; Spur=Sp2; } else Spur=Sp1; while (Spur < BANDWIDTH) { I += J; Spur = mt2060_spurcalc(lo1+I,lo2+I,if2); } dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)", (int)(lo1+I),(int)(lo2+I)); } return I; } #endif #define IF2 36150 // IF2 frequency = 36.150 MHz #define FREF 16000 // Quartz oscillator 16 MHz static int mt2060_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct mt2060_priv *priv; int i=0; u32 freq; u8 lnaband; u32 f_lo1,f_lo2; u32 div1,num1,div2,num2; u8 b[8]; u32 if1; priv = fe->tuner_priv; if1 = priv->if1_freq; b[0] = REG_LO1B1; b[1] = 0xFF; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ mt2060_writeregs(priv,b,2); freq = c->frequency / 1000; /* Hz -> kHz */ f_lo1 = freq + if1 * 1000; f_lo1 = (f_lo1 / 250) * 250; f_lo2 = f_lo1 - freq - IF2; // From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise f_lo2 = ((f_lo2 + 25) / 50) * 50; priv->frequency = (f_lo1 - f_lo2 - IF2) * 1000; #ifdef MT2060_SPURCHECK // LO-related spurs detection and correction num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2); f_lo1 += num1; f_lo2 += num1; #endif //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 ) num1 = f_lo1 / (FREF / 64); div1 = num1 / 64; num1 &= 0x3f; // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 ) num2 = f_lo2 * 64 / (FREF / 128); div2 = num2 / 8192; num2 &= 0x1fff; if (freq <= 95000) lnaband = 0xB0; else if (freq <= 180000) lnaband = 0xA0; else if (freq <= 260000) lnaband = 0x90; else if (freq <= 335000) lnaband = 0x80; else if (freq <= 425000) lnaband = 0x70; else if (freq <= 480000) lnaband = 0x60; else if (freq <= 570000) lnaband = 0x50; else if (freq <= 645000) lnaband = 0x40; else if (freq <= 730000) lnaband = 0x30; else if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10; b[0] = REG_LO1C1; b[1] = lnaband | ((num1 >>2) & 0x0F); b[2] = div1; b[3] = (num2 & 0x0F) | ((num1 & 3) << 4); b[4] = num2 >> 4; b[5] = ((num2 >>12) & 1) | (div2 << 1); dprintk("IF1: %dMHz",(int)if1); dprintk("PLL freq=%dkHz f_lo1=%dkHz f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2); dprintk("PLL div1=%d num1=%d div2=%d num2=%d",(int)div1,(int)num1,(int)div2,(int)num2); dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]); mt2060_writeregs(priv,b,6); //Waits for pll lock or timeout i = 0; do { mt2060_readreg(priv,REG_LO_STATUS,b); if ((b[0] & 0x88)==0x88) break; msleep(4); i++; } while (i<10); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ return 0; } static void mt2060_calibrate(struct mt2060_priv *priv) { u8 b = 0; int i = 0; if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1))) return; if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2))) return; /* initialize the clock output */ mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30); do { b |= (1 << 6); // FM1SS; mt2060_writereg(priv, REG_LO2C1,b); msleep(20); if (i == 0) { b |= (1 << 7); // FM1CA; mt2060_writereg(priv, REG_LO2C1,b); b &= ~(1 << 7); // FM1CA; msleep(20); } b &= ~(1 << 6); // FM1SS mt2060_writereg(priv, REG_LO2C1,b); msleep(20); i++; } while (i < 9); i = 0; while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0) msleep(20); if (i <= 10) { mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :) dprintk("calibration was successful: %d", (int)priv->fmfreq); } else dprintk("FMCAL timed out"); } static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct mt2060_priv *priv = fe->tuner_priv; *frequency = priv->frequency; return 0; } static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { *frequency = IF2 * 1000; return 0; } static int mt2060_init(struct dvb_frontend *fe) { struct mt2060_priv *priv = fe->tuner_priv; int ret; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ if (priv->sleep) { ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20); if (ret) goto err_i2c_gate_ctrl; } ret = mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x33); err_i2c_gate_ctrl: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ return ret; } static int mt2060_sleep(struct dvb_frontend *fe) { struct mt2060_priv *priv = fe->tuner_priv; int ret; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ ret = mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30); if (ret) goto err_i2c_gate_ctrl; if (priv->sleep) ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8); err_i2c_gate_ctrl: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ return ret; } static void mt2060_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; } static const struct dvb_tuner_ops mt2060_tuner_ops = { .info = { .name = "Microtune MT2060", .frequency_min_hz = 48 * MHz, .frequency_max_hz = 860 * MHz, .frequency_step_hz = 50 * kHz, }, .release = mt2060_release, .init = mt2060_init, .sleep = mt2060_sleep, .set_params = mt2060_set_params, .get_frequency = mt2060_get_frequency, .get_if_frequency = mt2060_get_if_frequency, }; /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */ struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1) { struct mt2060_priv *priv = NULL; u8 id = 0; priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->cfg = cfg; priv->i2c = i2c; priv->if1_freq = if1; priv->i2c_max_regs = ~0; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */ if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) { kfree(priv); return NULL; } if (id != PART_REV) { kfree(priv); return NULL; } printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1); memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops)); fe->tuner_priv = priv; mt2060_calibrate(priv); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */ return fe; } EXPORT_SYMBOL_GPL(mt2060_attach); static int mt2060_probe(struct i2c_client *client) { struct mt2060_platform_data *pdata = client->dev.platform_data; struct dvb_frontend *fe; struct mt2060_priv *dev; int ret; u8 chip_id; dev_dbg(&client->dev, "\n"); if (!pdata) { dev_err(&client->dev, "Cannot proceed without platform data\n"); ret = -EINVAL; goto err; } dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } fe = pdata->dvb_frontend; dev->config.i2c_address = client->addr; dev->config.clock_out = pdata->clock_out; dev->cfg = &dev->config; dev->i2c = client->adapter; dev->if1_freq = pdata->if1 ? pdata->if1 : 1220; dev->client = client; dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0; dev->sleep = true; ret = mt2060_readreg(dev, REG_PART_REV, &chip_id); if (ret) { ret = -ENODEV; goto err; } dev_dbg(&client->dev, "chip id=%02x\n", chip_id); if (chip_id != PART_REV) { ret = -ENODEV; goto err; } /* Power on, calibrate, sleep */ ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20); if (ret) goto err; mt2060_calibrate(dev); ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8); if (ret) goto err; dev_info(&client->dev, "Microtune MT2060 successfully identified\n"); memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops)); fe->ops.tuner_ops.release = NULL; fe->tuner_priv = dev; i2c_set_clientdata(client, dev); return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static void mt2060_remove(struct i2c_client *client) { dev_dbg(&client->dev, "\n"); } static const struct i2c_device_id mt2060_id_table[] = { { "mt2060" }, {} }; MODULE_DEVICE_TABLE(i2c, mt2060_id_table); static struct i2c_driver mt2060_driver = { .driver = { .name = "mt2060", .suppress_bind_attrs = true, }, .probe = mt2060_probe, .remove = mt2060_remove, .id_table = mt2060_id_table, }; module_i2c_driver(mt2060_driver); MODULE_AUTHOR("Olivier DANET"); MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver"); MODULE_LICENSE("GPL");