// SPDX-License-Identifier: GPL-2.0-or-later /* * ov534-ov7xxx gspca driver * * Copyright (C) 2008 Antonio Ospite * Copyright (C) 2008 Jim Paris * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr * * Based on a prototype written by Mark Ferrell * USB protocol reverse engineered by Jim Paris * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/ * * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr * PS3 Eye camera - brightness, contrast, awb, agc, aec controls * added by Max Thrun * PS3 Eye camera - FPS range extended by Joseph Howse * https://nummist.com */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define MODULE_NAME "ov534" #include "gspca.h" #include #include #define OV534_REG_ADDRESS 0xf1 /* sensor address */ #define OV534_REG_SUBADDR 0xf2 #define OV534_REG_WRITE 0xf3 #define OV534_REG_READ 0xf4 #define OV534_REG_OPERATION 0xf5 #define OV534_REG_STATUS 0xf6 #define OV534_OP_WRITE_3 0x37 #define OV534_OP_WRITE_2 0x33 #define OV534_OP_READ_2 0xf9 #define CTRL_TIMEOUT 500 #define DEFAULT_FRAME_RATE 30 MODULE_AUTHOR("Antonio Ospite "); MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver"); MODULE_LICENSE("GPL"); /* specific webcam descriptor */ struct sd { struct gspca_dev gspca_dev; /* !! must be the first item */ struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *hue; struct v4l2_ctrl *saturation; struct v4l2_ctrl *brightness; struct v4l2_ctrl *contrast; struct { /* gain control cluster */ struct v4l2_ctrl *autogain; struct v4l2_ctrl *gain; }; struct v4l2_ctrl *autowhitebalance; struct { /* exposure control cluster */ struct v4l2_ctrl *autoexposure; struct v4l2_ctrl *exposure; }; struct v4l2_ctrl *sharpness; struct v4l2_ctrl *hflip; struct v4l2_ctrl *vflip; struct v4l2_ctrl *plfreq; __u32 last_pts; u16 last_fid; u8 frame_rate; u8 sensor; }; enum sensors { SENSOR_OV767x, SENSOR_OV772x, NSENSORS }; static int sd_start(struct gspca_dev *gspca_dev); static void sd_stopN(struct gspca_dev *gspca_dev); static const struct v4l2_pix_format ov772x_mode[] = { {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, .bytesperline = 320 * 2, .sizeimage = 320 * 240 * 2, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1}, {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, .bytesperline = 640 * 2, .sizeimage = 640 * 480 * 2, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0}, {320, 240, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1}, {640, 480, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0}, }; static const struct v4l2_pix_format ov767x_mode[] = { {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG}, {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG}, }; static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30}; static const u8 vga_rates[] = {60, 50, 40, 30, 15}; static const struct framerates ov772x_framerates[] = { { /* 320x240 */ .rates = qvga_rates, .nrates = ARRAY_SIZE(qvga_rates), }, { /* 640x480 */ .rates = vga_rates, .nrates = ARRAY_SIZE(vga_rates), }, { /* 320x240 SGBRG8 */ .rates = qvga_rates, .nrates = ARRAY_SIZE(qvga_rates), }, { /* 640x480 SGBRG8 */ .rates = vga_rates, .nrates = ARRAY_SIZE(vga_rates), }, }; struct reg_array { const u8 (*val)[2]; int len; }; static const u8 bridge_init_767x[][2] = { /* comments from the ms-win file apollo7670.set */ /* str1 */ {0xf1, 0x42}, {0x88, 0xf8}, {0x89, 0xff}, {0x76, 0x03}, {0x92, 0x03}, {0x95, 0x10}, {0xe2, 0x00}, {0xe7, 0x3e}, {0x8d, 0x1c}, {0x8e, 0x00}, {0x8f, 0x00}, {0x1f, 0x00}, {0xc3, 0xf9}, {0x89, 0xff}, {0x88, 0xf8}, {0x76, 0x03}, {0x92, 0x01}, {0x93, 0x18}, {0x1c, 0x00}, {0x1d, 0x48}, {0x1d, 0x00}, {0x1d, 0xff}, {0x1d, 0x02}, {0x1d, 0x58}, {0x1d, 0x00}, {0x1c, 0x0a}, {0x1d, 0x0a}, {0x1d, 0x0e}, {0xc0, 0x50}, /* HSize 640 */ {0xc1, 0x3c}, /* VSize 480 */ {0x34, 0x05}, /* enable Audio Suspend mode */ {0xc2, 0x0c}, /* Input YUV */ {0xc3, 0xf9}, /* enable PRE */ {0x34, 0x05}, /* enable Audio Suspend mode */ {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */ {0x31, 0xf9}, /* enable 1.8V Suspend */ {0x35, 0x02}, /* turn on JPEG */ {0xd9, 0x10}, {0x25, 0x42}, /* GPIO[8]:Input */ {0x94, 0x11}, /* If the default setting is loaded when * system boots up, this flag is closed here */ }; static const u8 sensor_init_767x[][2] = { {0x12, 0x80}, {0x11, 0x03}, {0x3a, 0x04}, {0x12, 0x00}, {0x17, 0x13}, {0x18, 0x01}, {0x32, 0xb6}, {0x19, 0x02}, {0x1a, 0x7a}, {0x03, 0x0a}, {0x0c, 0x00}, {0x3e, 0x00}, {0x70, 0x3a}, {0x71, 0x35}, {0x72, 0x11}, {0x73, 0xf0}, {0xa2, 0x02}, {0x7a, 0x2a}, /* set Gamma=1.6 below */ {0x7b, 0x12}, {0x7c, 0x1d}, {0x7d, 0x2d}, {0x7e, 0x45}, {0x7f, 0x50}, {0x80, 0x59}, {0x81, 0x62}, {0x82, 0x6b}, {0x83, 0x73}, {0x84, 0x7b}, {0x85, 0x8a}, {0x86, 0x98}, {0x87, 0xb2}, {0x88, 0xca}, {0x89, 0xe0}, {0x13, 0xe0}, {0x00, 0x00}, {0x10, 0x00}, {0x0d, 0x40}, {0x14, 0x38}, /* gain max 16x */ {0xa5, 0x05}, {0xab, 0x07}, {0x24, 0x95}, {0x25, 0x33}, {0x26, 0xe3}, {0x9f, 0x78}, {0xa0, 0x68}, {0xa1, 0x03}, {0xa6, 0xd8}, {0xa7, 0xd8}, {0xa8, 0xf0}, {0xa9, 0x90}, {0xaa, 0x94}, {0x13, 0xe5}, {0x0e, 0x61}, {0x0f, 0x4b}, {0x16, 0x02}, {0x21, 0x02}, {0x22, 0x91}, {0x29, 0x07}, {0x33, 0x0b}, {0x35, 0x0b}, {0x37, 0x1d}, {0x38, 0x71}, {0x39, 0x2a}, {0x3c, 0x78}, {0x4d, 0x40}, {0x4e, 0x20}, {0x69, 0x00}, {0x6b, 0x4a}, {0x74, 0x10}, {0x8d, 0x4f}, {0x8e, 0x00}, {0x8f, 0x00}, {0x90, 0x00}, {0x91, 0x00}, {0x96, 0x00}, {0x9a, 0x80}, {0xb0, 0x84}, {0xb1, 0x0c}, {0xb2, 0x0e}, {0xb3, 0x82}, {0xb8, 0x0a}, {0x43, 0x0a}, {0x44, 0xf0}, {0x45, 0x34}, {0x46, 0x58}, {0x47, 0x28}, {0x48, 0x3a}, {0x59, 0x88}, {0x5a, 0x88}, {0x5b, 0x44}, {0x5c, 0x67}, {0x5d, 0x49}, {0x5e, 0x0e}, {0x6c, 0x0a}, {0x6d, 0x55}, {0x6e, 0x11}, {0x6f, 0x9f}, {0x6a, 0x40}, {0x01, 0x40}, {0x02, 0x40}, {0x13, 0xe7}, {0x4f, 0x80}, {0x50, 0x80}, {0x51, 0x00}, {0x52, 0x22}, {0x53, 0x5e}, {0x54, 0x80}, {0x58, 0x9e}, {0x41, 0x08}, {0x3f, 0x00}, {0x75, 0x04}, {0x76, 0xe1}, {0x4c, 0x00}, {0x77, 0x01}, {0x3d, 0xc2}, {0x4b, 0x09}, {0xc9, 0x60}, {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */ {0x56, 0x40}, {0x34, 0x11}, {0x3b, 0xc2}, {0xa4, 0x8a}, /* Night mode trigger point */ {0x96, 0x00}, {0x97, 0x30}, {0x98, 0x20}, {0x99, 0x20}, {0x9a, 0x84}, {0x9b, 0x29}, {0x9c, 0x03}, {0x9d, 0x4c}, {0x9e, 0x3f}, {0x78, 0x04}, {0x79, 0x01}, {0xc8, 0xf0}, {0x79, 0x0f}, {0xc8, 0x00}, {0x79, 0x10}, {0xc8, 0x7e}, {0x79, 0x0a}, {0xc8, 0x80}, {0x79, 0x0b}, {0xc8, 0x01}, {0x79, 0x0c}, {0xc8, 0x0f}, {0x79, 0x0d}, {0xc8, 0x20}, {0x79, 0x09}, {0xc8, 0x80}, {0x79, 0x02}, {0xc8, 0xc0}, {0x79, 0x03}, {0xc8, 0x20}, {0x79, 0x26}, }; static const u8 bridge_start_vga_767x[][2] = { /* str59 JPG */ {0x94, 0xaa}, {0xf1, 0x42}, {0xe5, 0x04}, {0xc0, 0x50}, {0xc1, 0x3c}, {0xc2, 0x0c}, {0x35, 0x02}, /* turn on JPEG */ {0xd9, 0x10}, {0xda, 0x00}, /* for higher clock rate(30fps) */ {0x34, 0x05}, /* enable Audio Suspend mode */ {0xc3, 0xf9}, /* enable PRE */ {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ {0x8d, 0x1c}, /* output YUV */ /* {0x34, 0x05}, * enable Audio Suspend mode (?) */ {0x50, 0x00}, /* H/V divider=0 */ {0x51, 0xa0}, /* input H=640/4 */ {0x52, 0x3c}, /* input V=480/4 */ {0x53, 0x00}, /* offset X=0 */ {0x54, 0x00}, /* offset Y=0 */ {0x55, 0x00}, /* H/V size[8]=0 */ {0x57, 0x00}, /* H-size[9]=0 */ {0x5c, 0x00}, /* output size[9:8]=0 */ {0x5a, 0xa0}, /* output H=640/4 */ {0x5b, 0x78}, /* output V=480/4 */ {0x1c, 0x0a}, {0x1d, 0x0a}, {0x94, 0x11}, }; static const u8 sensor_start_vga_767x[][2] = { {0x11, 0x01}, {0x1e, 0x04}, {0x19, 0x02}, {0x1a, 0x7a}, }; static const u8 bridge_start_qvga_767x[][2] = { /* str86 JPG */ {0x94, 0xaa}, {0xf1, 0x42}, {0xe5, 0x04}, {0xc0, 0x80}, {0xc1, 0x60}, {0xc2, 0x0c}, {0x35, 0x02}, /* turn on JPEG */ {0xd9, 0x10}, {0xc0, 0x50}, /* CIF HSize 640 */ {0xc1, 0x3c}, /* CIF VSize 480 */ {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ {0x8d, 0x1c}, /* output YUV */ {0x34, 0x05}, /* enable Audio Suspend mode */ {0xc2, 0x4c}, /* output YUV and Enable DCW */ {0xc3, 0xf9}, /* enable PRE */ {0x1c, 0x00}, /* indirect addressing */ {0x1d, 0x48}, /* output YUV422 */ {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */ {0x51, 0xa0}, /* DCW input H=640/4 */ {0x52, 0x78}, /* DCW input V=480/4 */ {0x53, 0x00}, /* offset X=0 */ {0x54, 0x00}, /* offset Y=0 */ {0x55, 0x00}, /* H/V size[8]=0 */ {0x57, 0x00}, /* H-size[9]=0 */ {0x5c, 0x00}, /* DCW output size[9:8]=0 */ {0x5a, 0x50}, /* DCW output H=320/4 */ {0x5b, 0x3c}, /* DCW output V=240/4 */ {0x1c, 0x0a}, {0x1d, 0x0a}, {0x94, 0x11}, }; static const u8 sensor_start_qvga_767x[][2] = { {0x11, 0x01}, {0x1e, 0x04}, {0x19, 0x02}, {0x1a, 0x7a}, }; static const u8 bridge_init_772x[][2] = { { 0x88, 0xf8 }, { 0x89, 0xff }, { 0x76, 0x03 }, { 0x92, 0x01 }, { 0x93, 0x18 }, { 0x94, 0x10 }, { 0x95, 0x10 }, { 0xe2, 0x00 }, { 0xe7, 0x3e }, { 0x96, 0x00 }, { 0x97, 0x20 }, { 0x97, 0x20 }, { 0x97, 0x20 }, { 0x97, 0x0a }, { 0x97, 0x3f }, { 0x97, 0x4a }, { 0x97, 0x20 }, { 0x97, 0x15 }, { 0x97, 0x0b }, { 0x8e, 0x40 }, { 0x1f, 0x81 }, { 0x34, 0x05 }, { 0xe3, 0x04 }, { 0x89, 0x00 }, { 0x76, 0x00 }, { 0xe7, 0x2e }, { 0x31, 0xf9 }, { 0x25, 0x42 }, { 0x21, 0xf0 }, { 0x1c, 0x0a }, { 0x1d, 0x08 }, /* turn on UVC header */ { 0x1d, 0x0e }, /* .. */ }; static const u8 sensor_init_772x[][2] = { { 0x12, 0x80 }, { 0x11, 0x01 }, /*fixme: better have a delay?*/ { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x11, 0x01 }, { 0x3d, 0x03 }, { 0x17, 0x26 }, { 0x18, 0xa0 }, { 0x19, 0x07 }, { 0x1a, 0xf0 }, { 0x32, 0x00 }, { 0x29, 0xa0 }, { 0x2c, 0xf0 }, { 0x65, 0x20 }, { 0x11, 0x01 }, { 0x42, 0x7f }, { 0x63, 0xaa }, /* AWB - was e0 */ { 0x64, 0xff }, { 0x66, 0x00 }, { 0x13, 0xf0 }, /* com8 */ { 0x0d, 0x41 }, { 0x0f, 0xc5 }, { 0x14, 0x11 }, { 0x22, 0x7f }, { 0x23, 0x03 }, { 0x24, 0x40 }, { 0x25, 0x30 }, { 0x26, 0xa1 }, { 0x2a, 0x00 }, { 0x2b, 0x00 }, { 0x6b, 0xaa }, { 0x13, 0xff }, /* AWB */ { 0x90, 0x05 }, { 0x91, 0x01 }, { 0x92, 0x03 }, { 0x93, 0x00 }, { 0x94, 0x60 }, { 0x95, 0x3c }, { 0x96, 0x24 }, { 0x97, 0x1e }, { 0x98, 0x62 }, { 0x99, 0x80 }, { 0x9a, 0x1e }, { 0x9b, 0x08 }, { 0x9c, 0x20 }, { 0x9e, 0x81 }, { 0xa6, 0x07 }, { 0x7e, 0x0c }, { 0x7f, 0x16 }, { 0x80, 0x2a }, { 0x81, 0x4e }, { 0x82, 0x61 }, { 0x83, 0x6f }, { 0x84, 0x7b }, { 0x85, 0x86 }, { 0x86, 0x8e }, { 0x87, 0x97 }, { 0x88, 0xa4 }, { 0x89, 0xaf }, { 0x8a, 0xc5 }, { 0x8b, 0xd7 }, { 0x8c, 0xe8 }, { 0x8d, 0x20 }, { 0x2b, 0x00 }, { 0x22, 0x7f }, { 0x23, 0x03 }, { 0x11, 0x01 }, { 0x64, 0xff }, { 0x0d, 0x41 }, { 0x14, 0x41 }, { 0x0e, 0xcd }, { 0xac, 0xbf }, { 0x8e, 0x00 }, /* De-noise threshold */ }; static const u8 bridge_start_vga_yuyv_772x[][2] = { {0x88, 0x00}, {0x1c, 0x00}, {0x1d, 0x40}, {0x1d, 0x02}, {0x1d, 0x00}, {0x1d, 0x02}, {0x1d, 0x58}, {0x1d, 0x00}, {0x8d, 0x1c}, {0x8e, 0x80}, {0xc0, 0x50}, {0xc1, 0x3c}, {0xc2, 0x0c}, {0xc3, 0x69}, }; static const u8 sensor_start_vga_yuyv_772x[][2] = { {0x12, 0x00}, {0x17, 0x26}, {0x18, 0xa0}, {0x19, 0x07}, {0x1a, 0xf0}, {0x29, 0xa0}, {0x2c, 0xf0}, {0x65, 0x20}, {0x67, 0x00}, }; static const u8 bridge_start_qvga_yuyv_772x[][2] = { {0x88, 0x00}, {0x1c, 0x00}, {0x1d, 0x40}, {0x1d, 0x02}, {0x1d, 0x00}, {0x1d, 0x01}, {0x1d, 0x4b}, {0x1d, 0x00}, {0x8d, 0x1c}, {0x8e, 0x80}, {0xc0, 0x28}, {0xc1, 0x1e}, {0xc2, 0x0c}, {0xc3, 0x69}, }; static const u8 sensor_start_qvga_yuyv_772x[][2] = { {0x12, 0x40}, {0x17, 0x3f}, {0x18, 0x50}, {0x19, 0x03}, {0x1a, 0x78}, {0x29, 0x50}, {0x2c, 0x78}, {0x65, 0x2f}, {0x67, 0x00}, }; static const u8 bridge_start_vga_gbrg_772x[][2] = { {0x88, 0x08}, {0x1c, 0x00}, {0x1d, 0x00}, {0x1d, 0x02}, {0x1d, 0x00}, {0x1d, 0x01}, {0x1d, 0x2c}, {0x1d, 0x00}, {0x8d, 0x00}, {0x8e, 0x00}, {0xc0, 0x50}, {0xc1, 0x3c}, {0xc2, 0x01}, {0xc3, 0x01}, }; static const u8 sensor_start_vga_gbrg_772x[][2] = { {0x12, 0x01}, {0x17, 0x26}, {0x18, 0xa0}, {0x19, 0x07}, {0x1a, 0xf0}, {0x29, 0xa0}, {0x2c, 0xf0}, {0x65, 0x20}, {0x67, 0x02}, }; static const u8 bridge_start_qvga_gbrg_772x[][2] = { {0x88, 0x08}, {0x1c, 0x00}, {0x1d, 0x00}, {0x1d, 0x02}, {0x1d, 0x00}, {0x1d, 0x00}, {0x1d, 0x4b}, {0x1d, 0x00}, {0x8d, 0x00}, {0x8e, 0x00}, {0xc0, 0x28}, {0xc1, 0x1e}, {0xc2, 0x01}, {0xc3, 0x01}, }; static const u8 sensor_start_qvga_gbrg_772x[][2] = { {0x12, 0x41}, {0x17, 0x3f}, {0x18, 0x50}, {0x19, 0x03}, {0x1a, 0x78}, {0x29, 0x50}, {0x2c, 0x78}, {0x65, 0x2f}, {0x67, 0x02}, }; static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val) { struct usb_device *udev = gspca_dev->dev; int ret; if (gspca_dev->usb_err < 0) return; gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val); gspca_dev->usb_buf[0] = val; ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x01, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); if (ret < 0) { pr_err("write failed %d\n", ret); gspca_dev->usb_err = ret; } } static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg) { struct usb_device *udev = gspca_dev->dev; int ret; if (gspca_dev->usb_err < 0) return 0; ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x01, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n", reg, gspca_dev->usb_buf[0]); if (ret < 0) { pr_err("read failed %d\n", ret); gspca_dev->usb_err = ret; /* * Make sure the result is zeroed to avoid uninitialized * values. */ gspca_dev->usb_buf[0] = 0; } return gspca_dev->usb_buf[0]; } /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7. * (direction and output)? */ static void ov534_set_led(struct gspca_dev *gspca_dev, int status) { u8 data; gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status); data = ov534_reg_read(gspca_dev, 0x21); data |= 0x80; ov534_reg_write(gspca_dev, 0x21, data); data = ov534_reg_read(gspca_dev, 0x23); if (status) data |= 0x80; else data &= ~0x80; ov534_reg_write(gspca_dev, 0x23, data); if (!status) { data = ov534_reg_read(gspca_dev, 0x21); data &= ~0x80; ov534_reg_write(gspca_dev, 0x21, data); } } static int sccb_check_status(struct gspca_dev *gspca_dev) { u8 data; int i; for (i = 0; i < 5; i++) { usleep_range(10000, 20000); data = ov534_reg_read(gspca_dev, OV534_REG_STATUS); switch (data) { case 0x00: return 1; case 0x04: return 0; case 0x03: break; default: gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n", data, i + 1); } } return 0; } static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val) { gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val); ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); ov534_reg_write(gspca_dev, OV534_REG_WRITE, val); ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3); if (!sccb_check_status(gspca_dev)) { pr_err("sccb_reg_write failed\n"); gspca_dev->usb_err = -EIO; } } static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg) { ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2); if (!sccb_check_status(gspca_dev)) pr_err("sccb_reg_read failed 1\n"); ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2); if (!sccb_check_status(gspca_dev)) pr_err("sccb_reg_read failed 2\n"); return ov534_reg_read(gspca_dev, OV534_REG_READ); } /* output a bridge sequence (reg - val) */ static void reg_w_array(struct gspca_dev *gspca_dev, const u8 (*data)[2], int len) { while (--len >= 0) { ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]); data++; } } /* output a sensor sequence (reg - val) */ static void sccb_w_array(struct gspca_dev *gspca_dev, const u8 (*data)[2], int len) { while (--len >= 0) { if ((*data)[0] != 0xff) { sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]); } else { sccb_reg_read(gspca_dev, (*data)[1]); sccb_reg_write(gspca_dev, 0xff, 0x00); } data++; } } /* ov772x specific controls */ static void set_frame_rate(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int i; struct rate_s { u8 fps; u8 r11; u8 r0d; u8 re5; }; const struct rate_s *r; static const struct rate_s rate_0[] = { /* 640x480 */ {60, 0x01, 0xc1, 0x04}, {50, 0x01, 0x41, 0x02}, {40, 0x02, 0xc1, 0x04}, {30, 0x04, 0x81, 0x02}, {15, 0x03, 0x41, 0x04}, }; static const struct rate_s rate_1[] = { /* 320x240 */ /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */ {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */ {150, 0x01, 0xc1, 0x04}, {137, 0x02, 0xc1, 0x02}, {125, 0x02, 0x81, 0x02}, {100, 0x02, 0xc1, 0x04}, {75, 0x03, 0xc1, 0x04}, {60, 0x04, 0xc1, 0x04}, {50, 0x02, 0x41, 0x04}, {37, 0x03, 0x41, 0x04}, {30, 0x04, 0x41, 0x04}, }; if (sd->sensor != SENSOR_OV772x) return; if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) { r = rate_0; i = ARRAY_SIZE(rate_0); } else { r = rate_1; i = ARRAY_SIZE(rate_1); } while (--i >= 0) { if (sd->frame_rate >= r->fps) break; r++; } sccb_reg_write(gspca_dev, 0x11, r->r11); sccb_reg_write(gspca_dev, 0x0d, r->r0d); ov534_reg_write(gspca_dev, 0xe5, r->re5); gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps); } static void sethue(struct gspca_dev *gspca_dev, s32 val) { struct sd *sd = (struct sd *) gspca_dev; if (sd->sensor == SENSOR_OV767x) { /* TBD */ } else { s16 huesin; s16 huecos; /* According to the datasheet the registers expect HUESIN and * HUECOS to be the result of the trigonometric functions, * scaled by 0x80. * * The 0x7fff here represents the maximum absolute value * returned byt fixp_sin and fixp_cos, so the scaling will * consider the result like in the interval [-1.0, 1.0]. */ huesin = fixp_sin16(val) * 0x80 / 0x7fff; huecos = fixp_cos16(val) * 0x80 / 0x7fff; if (huesin < 0) { sccb_reg_write(gspca_dev, 0xab, sccb_reg_read(gspca_dev, 0xab) | 0x2); huesin = -huesin; } else { sccb_reg_write(gspca_dev, 0xab, sccb_reg_read(gspca_dev, 0xab) & ~0x2); } sccb_reg_write(gspca_dev, 0xa9, (u8)huecos); sccb_reg_write(gspca_dev, 0xaa, (u8)huesin); } } static void setsaturation(struct gspca_dev *gspca_dev, s32 val) { struct sd *sd = (struct sd *) gspca_dev; if (sd->sensor == SENSOR_OV767x) { int i; static u8 color_tb[][6] = { {0x42, 0x42, 0x00, 0x11, 0x30, 0x41}, {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52}, {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66}, {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80}, {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a}, {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8}, {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd}, }; for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++) sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]); } else { sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */ sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */ } } static void setbrightness(struct gspca_dev *gspca_dev, s32 val) { struct sd *sd = (struct sd *) gspca_dev; if (sd->sensor == SENSOR_OV767x) { if (val < 0) val = 0x80 - val; sccb_reg_write(gspca_dev, 0x55, val); /* bright */ } else { sccb_reg_write(gspca_dev, 0x9b, val); } } static void setcontrast(struct gspca_dev *gspca_dev, s32 val) { struct sd *sd = (struct sd *) gspca_dev; if (sd->sensor == SENSOR_OV767x) sccb_reg_write(gspca_dev, 0x56, val); /* contras */ else sccb_reg_write(gspca_dev, 0x9c, val); } static void setgain(struct gspca_dev *gspca_dev, s32 val) { switch (val & 0x30) { case 0x00: val &= 0x0f; break; case 0x10: val &= 0x0f; val |= 0x30; break; case 0x20: val &= 0x0f; val |= 0x70; break; default: /* case 0x30: */ val &= 0x0f; val |= 0xf0; break; } sccb_reg_write(gspca_dev, 0x00, val); } static s32 getgain(struct gspca_dev *gspca_dev) { return sccb_reg_read(gspca_dev, 0x00); } static void setexposure(struct gspca_dev *gspca_dev, s32 val) { struct sd *sd = (struct sd *) gspca_dev; if (sd->sensor == SENSOR_OV767x) { /* set only aec[9:2] */ sccb_reg_write(gspca_dev, 0x10, val); /* aech */ } else { /* 'val' is one byte and represents half of the exposure value * we are going to set into registers, a two bytes value: * * MSB: ((u16) val << 1) >> 8 == val >> 7 * LSB: ((u16) val << 1) & 0xff == val << 1 */ sccb_reg_write(gspca_dev, 0x08, val >> 7); sccb_reg_write(gspca_dev, 0x10, val << 1); } } static s32 getexposure(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; if (sd->sensor == SENSOR_OV767x) { /* get only aec[9:2] */ return sccb_reg_read(gspca_dev, 0x10); /* aech */ } else { u8 hi = sccb_reg_read(gspca_dev, 0x08); u8 lo = sccb_reg_read(gspca_dev, 0x10); return (hi << 8 | lo) >> 1; } } static void setagc(struct gspca_dev *gspca_dev, s32 val) { if (val) { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) | 0x04); sccb_reg_write(gspca_dev, 0x64, sccb_reg_read(gspca_dev, 0x64) | 0x03); } else { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) & ~0x04); sccb_reg_write(gspca_dev, 0x64, sccb_reg_read(gspca_dev, 0x64) & ~0x03); } } static void setawb(struct gspca_dev *gspca_dev, s32 val) { struct sd *sd = (struct sd *) gspca_dev; if (val) { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) | 0x02); if (sd->sensor == SENSOR_OV772x) sccb_reg_write(gspca_dev, 0x63, sccb_reg_read(gspca_dev, 0x63) | 0xc0); } else { sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) & ~0x02); if (sd->sensor == SENSOR_OV772x) sccb_reg_write(gspca_dev, 0x63, sccb_reg_read(gspca_dev, 0x63) & ~0xc0); } } static void setaec(struct gspca_dev *gspca_dev, s32 val) { struct sd *sd = (struct sd *) gspca_dev; u8 data; data = sd->sensor == SENSOR_OV767x ? 0x05 : /* agc + aec */ 0x01; /* agc */ switch (val) { case V4L2_EXPOSURE_AUTO: sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) | data); break; case V4L2_EXPOSURE_MANUAL: sccb_reg_write(gspca_dev, 0x13, sccb_reg_read(gspca_dev, 0x13) & ~data); break; } } static void setsharpness(struct gspca_dev *gspca_dev, s32 val) { sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */ sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */ } static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip) { struct sd *sd = (struct sd *) gspca_dev; u8 val; if (sd->sensor == SENSOR_OV767x) { val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */ val &= ~0x30; if (hflip) val |= 0x20; if (vflip) val |= 0x10; sccb_reg_write(gspca_dev, 0x1e, val); } else { val = sccb_reg_read(gspca_dev, 0x0c); val &= ~0xc0; if (hflip == 0) val |= 0x40; if (vflip == 0) val |= 0x80; sccb_reg_write(gspca_dev, 0x0c, val); } } static void setlightfreq(struct gspca_dev *gspca_dev, s32 val) { struct sd *sd = (struct sd *) gspca_dev; val = val ? 0x9e : 0x00; if (sd->sensor == SENSOR_OV767x) { sccb_reg_write(gspca_dev, 0x2a, 0x00); if (val) val = 0x9d; /* insert dummy to 25fps for 50Hz */ } sccb_reg_write(gspca_dev, 0x2b, val); } /* this function is called at probe time */ static int sd_config(struct gspca_dev *gspca_dev, const struct usb_device_id *id) { struct sd *sd = (struct sd *) gspca_dev; struct cam *cam; cam = &gspca_dev->cam; cam->cam_mode = ov772x_mode; cam->nmodes = ARRAY_SIZE(ov772x_mode); sd->frame_rate = DEFAULT_FRAME_RATE; return 0; } static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); struct gspca_dev *gspca_dev = &sd->gspca_dev; switch (ctrl->id) { case V4L2_CID_AUTOGAIN: gspca_dev->usb_err = 0; if (ctrl->val && sd->gain && gspca_dev->streaming) sd->gain->val = getgain(gspca_dev); return gspca_dev->usb_err; case V4L2_CID_EXPOSURE_AUTO: gspca_dev->usb_err = 0; if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure && gspca_dev->streaming) sd->exposure->val = getexposure(gspca_dev); return gspca_dev->usb_err; } return -EINVAL; } static int ov534_s_ctrl(struct v4l2_ctrl *ctrl) { struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); struct gspca_dev *gspca_dev = &sd->gspca_dev; gspca_dev->usb_err = 0; if (!gspca_dev->streaming) return 0; switch (ctrl->id) { case V4L2_CID_HUE: sethue(gspca_dev, ctrl->val); break; case V4L2_CID_SATURATION: setsaturation(gspca_dev, ctrl->val); break; case V4L2_CID_BRIGHTNESS: setbrightness(gspca_dev, ctrl->val); break; case V4L2_CID_CONTRAST: setcontrast(gspca_dev, ctrl->val); break; case V4L2_CID_AUTOGAIN: /* case V4L2_CID_GAIN: */ setagc(gspca_dev, ctrl->val); if (!gspca_dev->usb_err && !ctrl->val && sd->gain) setgain(gspca_dev, sd->gain->val); break; case V4L2_CID_AUTO_WHITE_BALANCE: setawb(gspca_dev, ctrl->val); break; case V4L2_CID_EXPOSURE_AUTO: /* case V4L2_CID_EXPOSURE: */ setaec(gspca_dev, ctrl->val); if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL && sd->exposure) setexposure(gspca_dev, sd->exposure->val); break; case V4L2_CID_SHARPNESS: setsharpness(gspca_dev, ctrl->val); break; case V4L2_CID_HFLIP: sethvflip(gspca_dev, ctrl->val, sd->vflip->val); break; case V4L2_CID_VFLIP: sethvflip(gspca_dev, sd->hflip->val, ctrl->val); break; case V4L2_CID_POWER_LINE_FREQUENCY: setlightfreq(gspca_dev, ctrl->val); break; } return gspca_dev->usb_err; } static const struct v4l2_ctrl_ops ov534_ctrl_ops = { .g_volatile_ctrl = ov534_g_volatile_ctrl, .s_ctrl = ov534_s_ctrl, }; static int sd_init_controls(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler; /* parameters with different values between the supported sensors */ int saturation_min; int saturation_max; int saturation_def; int brightness_min; int brightness_max; int brightness_def; int contrast_max; int contrast_def; int exposure_min; int exposure_max; int exposure_def; int hflip_def; if (sd->sensor == SENSOR_OV767x) { saturation_min = 0; saturation_max = 6; saturation_def = 3; brightness_min = -127; brightness_max = 127; brightness_def = 0; contrast_max = 0x80; contrast_def = 0x40; exposure_min = 0x08; exposure_max = 0x60; exposure_def = 0x13; hflip_def = 1; } else { saturation_min = 0; saturation_max = 255; saturation_def = 64; brightness_min = 0; brightness_max = 255; brightness_def = 0; contrast_max = 255; contrast_def = 32; exposure_min = 0; exposure_max = 255; exposure_def = 120; hflip_def = 0; } gspca_dev->vdev.ctrl_handler = hdl; v4l2_ctrl_handler_init(hdl, 13); if (sd->sensor == SENSOR_OV772x) sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_HUE, -90, 90, 1, 0); sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_SATURATION, saturation_min, saturation_max, 1, saturation_def); sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1, brightness_def); sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def); if (sd->sensor == SENSOR_OV772x) { sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_GAIN, 0, 63, 1, 20); } sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO); sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1, exposure_def); sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); if (sd->sensor == SENSOR_OV772x) sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_SHARPNESS, 0, 63, 1, 0); sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, hflip_def); sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, V4L2_CID_POWER_LINE_FREQUENCY, V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0, V4L2_CID_POWER_LINE_FREQUENCY_DISABLED); if (hdl->error) { pr_err("Could not initialize controls\n"); return hdl->error; } if (sd->sensor == SENSOR_OV772x) v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true); v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL, true); return 0; } /* this function is called at probe and resume time */ static int sd_init(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; u16 sensor_id; static const struct reg_array bridge_init[NSENSORS] = { [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)}, [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)}, }; static const struct reg_array sensor_init[NSENSORS] = { [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)}, [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)}, }; /* reset bridge */ ov534_reg_write(gspca_dev, 0xe7, 0x3a); ov534_reg_write(gspca_dev, 0xe0, 0x08); msleep(100); /* initialize the sensor address */ ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42); /* reset sensor */ sccb_reg_write(gspca_dev, 0x12, 0x80); usleep_range(10000, 20000); /* probe the sensor */ sccb_reg_read(gspca_dev, 0x0a); sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8; sccb_reg_read(gspca_dev, 0x0b); sensor_id |= sccb_reg_read(gspca_dev, 0x0b); gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id); if ((sensor_id & 0xfff0) == 0x7670) { sd->sensor = SENSOR_OV767x; gspca_dev->cam.cam_mode = ov767x_mode; gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode); } else { sd->sensor = SENSOR_OV772x; gspca_dev->cam.bulk = 1; gspca_dev->cam.bulk_size = 16384; gspca_dev->cam.bulk_nurbs = 2; gspca_dev->cam.mode_framerates = ov772x_framerates; } /* initialize */ reg_w_array(gspca_dev, bridge_init[sd->sensor].val, bridge_init[sd->sensor].len); ov534_set_led(gspca_dev, 1); sccb_w_array(gspca_dev, sensor_init[sd->sensor].val, sensor_init[sd->sensor].len); sd_stopN(gspca_dev); /* set_frame_rate(gspca_dev); */ return gspca_dev->usb_err; } static int sd_start(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int mode; static const struct reg_array bridge_start[NSENSORS][4] = { [SENSOR_OV767x] = {{bridge_start_qvga_767x, ARRAY_SIZE(bridge_start_qvga_767x)}, {bridge_start_vga_767x, ARRAY_SIZE(bridge_start_vga_767x)}}, [SENSOR_OV772x] = {{bridge_start_qvga_yuyv_772x, ARRAY_SIZE(bridge_start_qvga_yuyv_772x)}, {bridge_start_vga_yuyv_772x, ARRAY_SIZE(bridge_start_vga_yuyv_772x)}, {bridge_start_qvga_gbrg_772x, ARRAY_SIZE(bridge_start_qvga_gbrg_772x)}, {bridge_start_vga_gbrg_772x, ARRAY_SIZE(bridge_start_vga_gbrg_772x)} }, }; static const struct reg_array sensor_start[NSENSORS][4] = { [SENSOR_OV767x] = {{sensor_start_qvga_767x, ARRAY_SIZE(sensor_start_qvga_767x)}, {sensor_start_vga_767x, ARRAY_SIZE(sensor_start_vga_767x)}}, [SENSOR_OV772x] = {{sensor_start_qvga_yuyv_772x, ARRAY_SIZE(sensor_start_qvga_yuyv_772x)}, {sensor_start_vga_yuyv_772x, ARRAY_SIZE(sensor_start_vga_yuyv_772x)}, {sensor_start_qvga_gbrg_772x, ARRAY_SIZE(sensor_start_qvga_gbrg_772x)}, {sensor_start_vga_gbrg_772x, ARRAY_SIZE(sensor_start_vga_gbrg_772x)} }, }; /* (from ms-win trace) */ if (sd->sensor == SENSOR_OV767x) sccb_reg_write(gspca_dev, 0x1e, 0x04); /* black sun enable ? */ mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */ reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val, bridge_start[sd->sensor][mode].len); sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val, sensor_start[sd->sensor][mode].len); set_frame_rate(gspca_dev); if (sd->hue) sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue)); setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation)); if (sd->autogain) setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain)); setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance)); setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure)); if (sd->gain) setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain)); setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure)); setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness)); setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast)); if (sd->sharpness) setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness)); sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip), v4l2_ctrl_g_ctrl(sd->vflip)); setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq)); ov534_set_led(gspca_dev, 1); ov534_reg_write(gspca_dev, 0xe0, 0x00); return gspca_dev->usb_err; } static void sd_stopN(struct gspca_dev *gspca_dev) { ov534_reg_write(gspca_dev, 0xe0, 0x09); ov534_set_led(gspca_dev, 0); } /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */ #define UVC_STREAM_EOH (1 << 7) #define UVC_STREAM_ERR (1 << 6) #define UVC_STREAM_STI (1 << 5) #define UVC_STREAM_RES (1 << 4) #define UVC_STREAM_SCR (1 << 3) #define UVC_STREAM_PTS (1 << 2) #define UVC_STREAM_EOF (1 << 1) #define UVC_STREAM_FID (1 << 0) static void sd_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, int len) { struct sd *sd = (struct sd *) gspca_dev; __u32 this_pts; u16 this_fid; int remaining_len = len; int payload_len; payload_len = gspca_dev->cam.bulk ? 2048 : 2040; do { len = min(remaining_len, payload_len); /* Payloads are prefixed with a UVC-style header. We consider a frame to start when the FID toggles, or the PTS changes. A frame ends when EOF is set, and we've received the correct number of bytes. */ /* Verify UVC header. Header length is always 12 */ if (data[0] != 12 || len < 12) { gspca_dbg(gspca_dev, D_PACK, "bad header\n"); goto discard; } /* Check errors */ if (data[1] & UVC_STREAM_ERR) { gspca_dbg(gspca_dev, D_PACK, "payload error\n"); goto discard; } /* Extract PTS and FID */ if (!(data[1] & UVC_STREAM_PTS)) { gspca_dbg(gspca_dev, D_PACK, "PTS not present\n"); goto discard; } this_pts = (data[5] << 24) | (data[4] << 16) | (data[3] << 8) | data[2]; this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0; /* If PTS or FID has changed, start a new frame. */ if (this_pts != sd->last_pts || this_fid != sd->last_fid) { if (gspca_dev->last_packet_type == INTER_PACKET) gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0); sd->last_pts = this_pts; sd->last_fid = this_fid; gspca_frame_add(gspca_dev, FIRST_PACKET, data + 12, len - 12); /* If this packet is marked as EOF, end the frame */ } else if (data[1] & UVC_STREAM_EOF) { sd->last_pts = 0; if (gspca_dev->pixfmt.pixelformat != V4L2_PIX_FMT_JPEG && gspca_dev->image_len + len - 12 != gspca_dev->pixfmt.sizeimage) { gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n"); goto discard; } gspca_frame_add(gspca_dev, LAST_PACKET, data + 12, len - 12); } else { /* Add the data from this payload */ gspca_frame_add(gspca_dev, INTER_PACKET, data + 12, len - 12); } /* Done this payload */ goto scan_next; discard: /* Discard data until a new frame starts. */ gspca_dev->last_packet_type = DISCARD_PACKET; scan_next: remaining_len -= len; data += len; } while (remaining_len > 0); } /* get stream parameters (framerate) */ static void sd_get_streamparm(struct gspca_dev *gspca_dev, struct v4l2_streamparm *parm) { struct v4l2_captureparm *cp = &parm->parm.capture; struct v4l2_fract *tpf = &cp->timeperframe; struct sd *sd = (struct sd *) gspca_dev; tpf->numerator = 1; tpf->denominator = sd->frame_rate; } /* set stream parameters (framerate) */ static void sd_set_streamparm(struct gspca_dev *gspca_dev, struct v4l2_streamparm *parm) { struct v4l2_captureparm *cp = &parm->parm.capture; struct v4l2_fract *tpf = &cp->timeperframe; struct sd *sd = (struct sd *) gspca_dev; if (tpf->numerator == 0 || tpf->denominator == 0) sd->frame_rate = DEFAULT_FRAME_RATE; else sd->frame_rate = tpf->denominator / tpf->numerator; if (gspca_dev->streaming) set_frame_rate(gspca_dev); /* Return the actual framerate */ tpf->numerator = 1; tpf->denominator = sd->frame_rate; } /* sub-driver description */ static const struct sd_desc sd_desc = { .name = MODULE_NAME, .config = sd_config, .init = sd_init, .init_controls = sd_init_controls, .start = sd_start, .stopN = sd_stopN, .pkt_scan = sd_pkt_scan, .get_streamparm = sd_get_streamparm, .set_streamparm = sd_set_streamparm, }; /* -- module initialisation -- */ static const struct usb_device_id device_table[] = { {USB_DEVICE(0x1415, 0x2000)}, {USB_DEVICE(0x06f8, 0x3002)}, {} }; MODULE_DEVICE_TABLE(usb, device_table); /* -- device connect -- */ static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) { return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), THIS_MODULE); } static struct usb_driver sd_driver = { .name = MODULE_NAME, .id_table = device_table, .probe = sd_probe, .disconnect = gspca_disconnect, #ifdef CONFIG_PM .suspend = gspca_suspend, .resume = gspca_resume, .reset_resume = gspca_resume, #endif }; module_usb_driver(sd_driver);