// SPDX-License-Identifier: GPL-2.0 /* * Driver for Synopsys DesignWare Cores Mobile Storage Host Controller * * Copyright (C) 2018 Synaptics Incorporated * * Author: Jisheng Zhang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdhci-pltfm.h" #include "cqhci.h" #define SDHCI_DWCMSHC_ARG2_STUFF GENMASK(31, 16) /* DWCMSHC specific Mode Select value */ #define DWCMSHC_CTRL_HS400 0x7 /* DWC IP vendor area 1 pointer */ #define DWCMSHC_P_VENDOR_AREA1 0xe8 #define DWCMSHC_AREA1_MASK GENMASK(11, 0) /* Offset inside the vendor area 1 */ #define DWCMSHC_HOST_CTRL3 0x8 #define DWCMSHC_EMMC_CONTROL 0x2c #define DWCMSHC_CARD_IS_EMMC BIT(0) #define DWCMSHC_ENHANCED_STROBE BIT(8) #define DWCMSHC_EMMC_ATCTRL 0x40 /* Tuning and auto-tuning fields in AT_CTRL_R control register */ #define AT_CTRL_AT_EN BIT(0) /* autotuning is enabled */ #define AT_CTRL_CI_SEL BIT(1) /* interval to drive center phase select */ #define AT_CTRL_SWIN_TH_EN BIT(2) /* sampling window threshold enable */ #define AT_CTRL_RPT_TUNE_ERR BIT(3) /* enable reporting framing errors */ #define AT_CTRL_SW_TUNE_EN BIT(4) /* enable software managed tuning */ #define AT_CTRL_WIN_EDGE_SEL_MASK GENMASK(11, 8) /* bits [11:8] */ #define AT_CTRL_WIN_EDGE_SEL 0xf /* sampling window edge select */ #define AT_CTRL_TUNE_CLK_STOP_EN BIT(16) /* clocks stopped during phase code change */ #define AT_CTRL_PRE_CHANGE_DLY_MASK GENMASK(18, 17) /* bits [18:17] */ #define AT_CTRL_PRE_CHANGE_DLY 0x1 /* 2-cycle latency */ #define AT_CTRL_POST_CHANGE_DLY_MASK GENMASK(20, 19) /* bits [20:19] */ #define AT_CTRL_POST_CHANGE_DLY 0x3 /* 4-cycle latency */ #define AT_CTRL_SWIN_TH_VAL_MASK GENMASK(31, 24) /* bits [31:24] */ #define AT_CTRL_SWIN_TH_VAL 0x9 /* sampling window threshold */ /* DWC IP vendor area 2 pointer */ #define DWCMSHC_P_VENDOR_AREA2 0xea /* Sophgo CV18XX specific Registers */ #define CV18XX_SDHCI_MSHC_CTRL 0x00 #define CV18XX_EMMC_FUNC_EN BIT(0) #define CV18XX_LATANCY_1T BIT(1) #define CV18XX_SDHCI_PHY_TX_RX_DLY 0x40 #define CV18XX_PHY_TX_DLY_MSK GENMASK(6, 0) #define CV18XX_PHY_TX_SRC_MSK GENMASK(9, 8) #define CV18XX_PHY_TX_SRC_INVERT_CLK_TX 0x1 #define CV18XX_PHY_RX_DLY_MSK GENMASK(22, 16) #define CV18XX_PHY_RX_SRC_MSK GENMASK(25, 24) #define CV18XX_PHY_RX_SRC_INVERT_RX_CLK 0x1 #define CV18XX_SDHCI_PHY_CONFIG 0x4c #define CV18XX_PHY_TX_BPS BIT(0) #define CV18XX_TUNE_MAX 128 #define CV18XX_TUNE_STEP 1 #define CV18XX_RETRY_TUNING_MAX 50 /* Rockchip specific Registers */ #define DWCMSHC_EMMC_DLL_CTRL 0x800 #define DWCMSHC_EMMC_DLL_RXCLK 0x804 #define DWCMSHC_EMMC_DLL_TXCLK 0x808 #define DWCMSHC_EMMC_DLL_STRBIN 0x80c #define DECMSHC_EMMC_DLL_CMDOUT 0x810 #define DWCMSHC_EMMC_DLL_STATUS0 0x840 #define DWCMSHC_EMMC_DLL_START BIT(0) #define DWCMSHC_EMMC_DLL_LOCKED BIT(8) #define DWCMSHC_EMMC_DLL_TIMEOUT BIT(9) #define DWCMSHC_EMMC_DLL_RXCLK_SRCSEL 29 #define DWCMSHC_EMMC_DLL_START_POINT 16 #define DWCMSHC_EMMC_DLL_INC 8 #define DWCMSHC_EMMC_DLL_BYPASS BIT(24) #define DWCMSHC_EMMC_DLL_DLYENA BIT(27) #define DLL_TXCLK_TAPNUM_DEFAULT 0x10 #define DLL_TXCLK_TAPNUM_90_DEGREES 0xA #define DLL_TXCLK_TAPNUM_FROM_SW BIT(24) #define DLL_STRBIN_TAPNUM_DEFAULT 0x8 #define DLL_STRBIN_TAPNUM_FROM_SW BIT(24) #define DLL_STRBIN_DELAY_NUM_SEL BIT(26) #define DLL_STRBIN_DELAY_NUM_OFFSET 16 #define DLL_STRBIN_DELAY_NUM_DEFAULT 0x16 #define DLL_RXCLK_NO_INVERTER 1 #define DLL_RXCLK_INVERTER 0 #define DLL_CMDOUT_TAPNUM_90_DEGREES 0x8 #define DLL_RXCLK_ORI_GATE BIT(31) #define DLL_CMDOUT_TAPNUM_FROM_SW BIT(24) #define DLL_CMDOUT_SRC_CLK_NEG BIT(28) #define DLL_CMDOUT_EN_SRC_CLK_NEG BIT(29) #define DLL_LOCK_WO_TMOUT(x) \ ((((x) & DWCMSHC_EMMC_DLL_LOCKED) == DWCMSHC_EMMC_DLL_LOCKED) && \ (((x) & DWCMSHC_EMMC_DLL_TIMEOUT) == 0)) /* PHY register area pointer */ #define DWC_MSHC_PTR_PHY_R 0x300 /* PHY general configuration */ #define PHY_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x00) #define PHY_CNFG_RSTN_DEASSERT 0x1 /* Deassert PHY reset */ #define PHY_CNFG_PHY_PWRGOOD_MASK BIT_MASK(1) /* bit [1] */ #define PHY_CNFG_PAD_SP_MASK GENMASK(19, 16) /* bits [19:16] */ #define PHY_CNFG_PAD_SP 0x0c /* PMOS TX drive strength */ #define PHY_CNFG_PAD_SP_SG2042 0x09 /* PMOS TX drive strength for SG2042 */ #define PHY_CNFG_PAD_SN_MASK GENMASK(23, 20) /* bits [23:20] */ #define PHY_CNFG_PAD_SN 0x0c /* NMOS TX drive strength */ #define PHY_CNFG_PAD_SN_SG2042 0x08 /* NMOS TX drive strength for SG2042 */ /* PHY command/response pad settings */ #define PHY_CMDPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x04) /* PHY data pad settings */ #define PHY_DATAPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x06) /* PHY clock pad settings */ #define PHY_CLKPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x08) /* PHY strobe pad settings */ #define PHY_STBPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x0a) /* PHY reset pad settings */ #define PHY_RSTNPAD_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x0c) /* Bitfields are common for all pad settings */ #define PHY_PAD_RXSEL_1V8 0x1 /* Receiver type select for 1.8V */ #define PHY_PAD_RXSEL_3V3 0x2 /* Receiver type select for 3.3V */ #define PHY_PAD_WEAKPULL_MASK GENMASK(4, 3) /* bits [4:3] */ #define PHY_PAD_WEAKPULL_PULLUP 0x1 /* Weak pull up enabled */ #define PHY_PAD_WEAKPULL_PULLDOWN 0x2 /* Weak pull down enabled */ #define PHY_PAD_TXSLEW_CTRL_P_MASK GENMASK(8, 5) /* bits [8:5] */ #define PHY_PAD_TXSLEW_CTRL_P 0x3 /* Slew control for P-Type pad TX */ #define PHY_PAD_TXSLEW_CTRL_N_MASK GENMASK(12, 9) /* bits [12:9] */ #define PHY_PAD_TXSLEW_CTRL_N 0x3 /* Slew control for N-Type pad TX */ #define PHY_PAD_TXSLEW_CTRL_N_SG2042 0x2 /* Slew control for N-Type pad TX for SG2042 */ /* PHY CLK delay line settings */ #define PHY_SDCLKDL_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x1d) #define PHY_SDCLKDL_CNFG_EXTDLY_EN BIT(0) #define PHY_SDCLKDL_CNFG_UPDATE BIT(4) /* set before writing to SDCLKDL_DC */ /* PHY CLK delay line delay code */ #define PHY_SDCLKDL_DC_R (DWC_MSHC_PTR_PHY_R + 0x1e) #define PHY_SDCLKDL_DC_INITIAL 0x40 /* initial delay code */ #define PHY_SDCLKDL_DC_DEFAULT 0x32 /* default delay code */ #define PHY_SDCLKDL_DC_HS400 0x18 /* delay code for HS400 mode */ #define PHY_SMPLDL_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x20) #define PHY_SMPLDL_CNFG_BYPASS_EN BIT(1) /* PHY drift_cclk_rx delay line configuration setting */ #define PHY_ATDL_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x21) #define PHY_ATDL_CNFG_INPSEL_MASK GENMASK(3, 2) /* bits [3:2] */ #define PHY_ATDL_CNFG_INPSEL 0x3 /* delay line input source */ #define PHY_ATDL_CNFG_INPSEL_SG2042 0x2 /* delay line input source for SG2042 */ /* PHY DLL control settings */ #define PHY_DLL_CTRL_R (DWC_MSHC_PTR_PHY_R + 0x24) #define PHY_DLL_CTRL_DISABLE 0x0 /* PHY DLL is enabled */ #define PHY_DLL_CTRL_ENABLE 0x1 /* PHY DLL is disabled */ /* PHY DLL configuration register 1 */ #define PHY_DLL_CNFG1_R (DWC_MSHC_PTR_PHY_R + 0x25) #define PHY_DLL_CNFG1_SLVDLY_MASK GENMASK(5, 4) /* bits [5:4] */ #define PHY_DLL_CNFG1_SLVDLY 0x2 /* DLL slave update delay input */ #define PHY_DLL_CNFG1_WAITCYCLE 0x5 /* DLL wait cycle input */ /* PHY DLL configuration register 2 */ #define PHY_DLL_CNFG2_R (DWC_MSHC_PTR_PHY_R + 0x26) #define PHY_DLL_CNFG2_JUMPSTEP 0xa /* DLL jump step input */ /* PHY DLL master and slave delay line configuration settings */ #define PHY_DLLDL_CNFG_R (DWC_MSHC_PTR_PHY_R + 0x28) #define PHY_DLLDL_CNFG_SLV_INPSEL_MASK GENMASK(6, 5) /* bits [6:5] */ #define PHY_DLLDL_CNFG_SLV_INPSEL 0x3 /* clock source select for slave DL */ #define FLAG_IO_FIXED_1V8 BIT(0) #define BOUNDARY_OK(addr, len) \ ((addr | (SZ_128M - 1)) == ((addr + len - 1) | (SZ_128M - 1))) #define DWCMSHC_SDHCI_CQE_TRNS_MODE (SDHCI_TRNS_MULTI | \ SDHCI_TRNS_BLK_CNT_EN | \ SDHCI_TRNS_DMA) /* SMC call for BlueField-3 eMMC RST_N */ #define BLUEFIELD_SMC_SET_EMMC_RST_N 0x82000007 enum dwcmshc_rk_type { DWCMSHC_RK3568, DWCMSHC_RK3588, }; struct rk35xx_priv { struct reset_control *reset; enum dwcmshc_rk_type devtype; u8 txclk_tapnum; }; #define DWCMSHC_MAX_OTHER_CLKS 3 struct dwcmshc_priv { struct clk *bus_clk; int vendor_specific_area1; /* P_VENDOR_SPECIFIC_AREA1 reg */ int vendor_specific_area2; /* P_VENDOR_SPECIFIC_AREA2 reg */ int num_other_clks; struct clk_bulk_data other_clks[DWCMSHC_MAX_OTHER_CLKS]; void *priv; /* pointer to SoC private stuff */ u16 delay_line; u16 flags; }; struct dwcmshc_pltfm_data { const struct sdhci_pltfm_data pdata; int (*init)(struct device *dev, struct sdhci_host *host, struct dwcmshc_priv *dwc_priv); void (*postinit)(struct sdhci_host *host, struct dwcmshc_priv *dwc_priv); }; static int dwcmshc_get_enable_other_clks(struct device *dev, struct dwcmshc_priv *priv, int num_clks, const char * const clk_ids[]) { int err; if (num_clks > DWCMSHC_MAX_OTHER_CLKS) return -EINVAL; for (int i = 0; i < num_clks; i++) priv->other_clks[i].id = clk_ids[i]; err = devm_clk_bulk_get_optional(dev, num_clks, priv->other_clks); if (err) { dev_err(dev, "failed to get clocks %d\n", err); return err; } err = clk_bulk_prepare_enable(num_clks, priv->other_clks); if (err) dev_err(dev, "failed to enable clocks %d\n", err); priv->num_other_clks = num_clks; return err; } /* * If DMA addr spans 128MB boundary, we split the DMA transfer into two * so that each DMA transfer doesn't exceed the boundary. */ static void dwcmshc_adma_write_desc(struct sdhci_host *host, void **desc, dma_addr_t addr, int len, unsigned int cmd) { int tmplen, offset; if (likely(!len || BOUNDARY_OK(addr, len))) { sdhci_adma_write_desc(host, desc, addr, len, cmd); return; } offset = addr & (SZ_128M - 1); tmplen = SZ_128M - offset; sdhci_adma_write_desc(host, desc, addr, tmplen, cmd); addr += tmplen; len -= tmplen; sdhci_adma_write_desc(host, desc, addr, len, cmd); } static unsigned int dwcmshc_get_max_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); if (pltfm_host->clk) return sdhci_pltfm_clk_get_max_clock(host); else return pltfm_host->clock; } static unsigned int rk35xx_get_max_clock(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); return clk_round_rate(pltfm_host->clk, ULONG_MAX); } static void dwcmshc_check_auto_cmd23(struct mmc_host *mmc, struct mmc_request *mrq) { struct sdhci_host *host = mmc_priv(mmc); /* * No matter V4 is enabled or not, ARGUMENT2 register is 32-bit * block count register which doesn't support stuff bits of * CMD23 argument on dwcmsch host controller. */ if (mrq->sbc && (mrq->sbc->arg & SDHCI_DWCMSHC_ARG2_STUFF)) host->flags &= ~SDHCI_AUTO_CMD23; else host->flags |= SDHCI_AUTO_CMD23; } static void dwcmshc_request(struct mmc_host *mmc, struct mmc_request *mrq) { dwcmshc_check_auto_cmd23(mmc, mrq); sdhci_request(mmc, mrq); } static void dwcmshc_phy_1_8v_init(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); u32 val; /* deassert phy reset & set tx drive strength */ val = PHY_CNFG_RSTN_DEASSERT; val |= FIELD_PREP(PHY_CNFG_PAD_SP_MASK, PHY_CNFG_PAD_SP); val |= FIELD_PREP(PHY_CNFG_PAD_SN_MASK, PHY_CNFG_PAD_SN); sdhci_writel(host, val, PHY_CNFG_R); /* disable delay line */ sdhci_writeb(host, PHY_SDCLKDL_CNFG_UPDATE, PHY_SDCLKDL_CNFG_R); /* set delay line */ sdhci_writeb(host, priv->delay_line, PHY_SDCLKDL_DC_R); sdhci_writeb(host, PHY_DLL_CNFG2_JUMPSTEP, PHY_DLL_CNFG2_R); /* enable delay lane */ val = sdhci_readb(host, PHY_SDCLKDL_CNFG_R); val &= ~(PHY_SDCLKDL_CNFG_UPDATE); sdhci_writeb(host, val, PHY_SDCLKDL_CNFG_R); /* configure phy pads */ val = PHY_PAD_RXSEL_1V8; val |= FIELD_PREP(PHY_PAD_WEAKPULL_MASK, PHY_PAD_WEAKPULL_PULLUP); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_CMDPAD_CNFG_R); sdhci_writew(host, val, PHY_DATAPAD_CNFG_R); sdhci_writew(host, val, PHY_RSTNPAD_CNFG_R); val = FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_CLKPAD_CNFG_R); val = PHY_PAD_RXSEL_1V8; val |= FIELD_PREP(PHY_PAD_WEAKPULL_MASK, PHY_PAD_WEAKPULL_PULLDOWN); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_STBPAD_CNFG_R); /* enable data strobe mode */ sdhci_writeb(host, FIELD_PREP(PHY_DLLDL_CNFG_SLV_INPSEL_MASK, PHY_DLLDL_CNFG_SLV_INPSEL), PHY_DLLDL_CNFG_R); /* enable phy dll */ sdhci_writeb(host, PHY_DLL_CTRL_ENABLE, PHY_DLL_CTRL_R); } static void dwcmshc_phy_3_3v_init(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); u32 val; /* deassert phy reset & set tx drive strength */ val = PHY_CNFG_RSTN_DEASSERT; val |= FIELD_PREP(PHY_CNFG_PAD_SP_MASK, PHY_CNFG_PAD_SP); val |= FIELD_PREP(PHY_CNFG_PAD_SN_MASK, PHY_CNFG_PAD_SN); sdhci_writel(host, val, PHY_CNFG_R); /* disable delay line */ sdhci_writeb(host, PHY_SDCLKDL_CNFG_UPDATE, PHY_SDCLKDL_CNFG_R); /* set delay line */ sdhci_writeb(host, priv->delay_line, PHY_SDCLKDL_DC_R); sdhci_writeb(host, PHY_DLL_CNFG2_JUMPSTEP, PHY_DLL_CNFG2_R); /* enable delay lane */ val = sdhci_readb(host, PHY_SDCLKDL_CNFG_R); val &= ~(PHY_SDCLKDL_CNFG_UPDATE); sdhci_writeb(host, val, PHY_SDCLKDL_CNFG_R); /* configure phy pads */ val = PHY_PAD_RXSEL_3V3; val |= FIELD_PREP(PHY_PAD_WEAKPULL_MASK, PHY_PAD_WEAKPULL_PULLUP); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_CMDPAD_CNFG_R); sdhci_writew(host, val, PHY_DATAPAD_CNFG_R); sdhci_writew(host, val, PHY_RSTNPAD_CNFG_R); val = FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_CLKPAD_CNFG_R); val = PHY_PAD_RXSEL_3V3; val |= FIELD_PREP(PHY_PAD_WEAKPULL_MASK, PHY_PAD_WEAKPULL_PULLDOWN); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N); sdhci_writew(host, val, PHY_STBPAD_CNFG_R); /* enable phy dll */ sdhci_writeb(host, PHY_DLL_CTRL_ENABLE, PHY_DLL_CTRL_R); } static void th1520_sdhci_set_phy(struct sdhci_host *host) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); u32 emmc_caps = MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO; u16 emmc_ctrl; /* Before power on, set PHY configs */ if (priv->flags & FLAG_IO_FIXED_1V8) dwcmshc_phy_1_8v_init(host); else dwcmshc_phy_3_3v_init(host); if ((host->mmc->caps2 & emmc_caps) == emmc_caps) { emmc_ctrl = sdhci_readw(host, priv->vendor_specific_area1 + DWCMSHC_EMMC_CONTROL); emmc_ctrl |= DWCMSHC_CARD_IS_EMMC; sdhci_writew(host, emmc_ctrl, priv->vendor_specific_area1 + DWCMSHC_EMMC_CONTROL); } sdhci_writeb(host, FIELD_PREP(PHY_DLL_CNFG1_SLVDLY_MASK, PHY_DLL_CNFG1_SLVDLY) | PHY_DLL_CNFG1_WAITCYCLE, PHY_DLL_CNFG1_R); } static void dwcmshc_set_uhs_signaling(struct sdhci_host *host, unsigned int timing) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); u16 ctrl, ctrl_2; ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); /* Select Bus Speed Mode for host */ ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; if ((timing == MMC_TIMING_MMC_HS200) || (timing == MMC_TIMING_UHS_SDR104)) ctrl_2 |= SDHCI_CTRL_UHS_SDR104; else if (timing == MMC_TIMING_UHS_SDR12) ctrl_2 |= SDHCI_CTRL_UHS_SDR12; else if ((timing == MMC_TIMING_UHS_SDR25) || (timing == MMC_TIMING_MMC_HS)) ctrl_2 |= SDHCI_CTRL_UHS_SDR25; else if (timing == MMC_TIMING_UHS_SDR50) ctrl_2 |= SDHCI_CTRL_UHS_SDR50; else if ((timing == MMC_TIMING_UHS_DDR50) || (timing == MMC_TIMING_MMC_DDR52)) ctrl_2 |= SDHCI_CTRL_UHS_DDR50; else if (timing == MMC_TIMING_MMC_HS400) { /* set CARD_IS_EMMC bit to enable Data Strobe for HS400 */ ctrl = sdhci_readw(host, priv->vendor_specific_area1 + DWCMSHC_EMMC_CONTROL); ctrl |= DWCMSHC_CARD_IS_EMMC; sdhci_writew(host, ctrl, priv->vendor_specific_area1 + DWCMSHC_EMMC_CONTROL); ctrl_2 |= DWCMSHC_CTRL_HS400; } if (priv->flags & FLAG_IO_FIXED_1V8) ctrl_2 |= SDHCI_CTRL_VDD_180; sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); } static void th1520_set_uhs_signaling(struct sdhci_host *host, unsigned int timing) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); dwcmshc_set_uhs_signaling(host, timing); if (timing == MMC_TIMING_MMC_HS400) priv->delay_line = PHY_SDCLKDL_DC_HS400; else sdhci_writeb(host, 0, PHY_DLLDL_CNFG_R); th1520_sdhci_set_phy(host); } static void dwcmshc_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios) { u32 vendor; struct sdhci_host *host = mmc_priv(mmc); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); int reg = priv->vendor_specific_area1 + DWCMSHC_EMMC_CONTROL; vendor = sdhci_readl(host, reg); if (ios->enhanced_strobe) vendor |= DWCMSHC_ENHANCED_STROBE; else vendor &= ~DWCMSHC_ENHANCED_STROBE; sdhci_writel(host, vendor, reg); } static int dwcmshc_execute_tuning(struct mmc_host *mmc, u32 opcode) { int err = sdhci_execute_tuning(mmc, opcode); struct sdhci_host *host = mmc_priv(mmc); if (err) return err; /* * Tuning can leave the IP in an active state (Buffer Read Enable bit * set) which prevents the entry to low power states (i.e. S0i3). Data * reset will clear it. */ sdhci_reset(host, SDHCI_RESET_DATA); return 0; } static u32 dwcmshc_cqe_irq_handler(struct sdhci_host *host, u32 intmask) { int cmd_error = 0; int data_error = 0; if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error)) return intmask; cqhci_irq(host->mmc, intmask, cmd_error, data_error); return 0; } static void dwcmshc_sdhci_cqe_enable(struct mmc_host *mmc) { struct sdhci_host *host = mmc_priv(mmc); u8 ctrl; sdhci_writew(host, DWCMSHC_SDHCI_CQE_TRNS_MODE, SDHCI_TRANSFER_MODE); sdhci_cqe_enable(mmc); /* * The "DesignWare Cores Mobile Storage Host Controller * DWC_mshc / DWC_mshc_lite Databook" says: * when Host Version 4 Enable" is 1 in Host Control 2 register, * SDHCI_CTRL_ADMA32 bit means ADMA2 is selected. * Selection of 32-bit/64-bit System Addressing: * either 32-bit or 64-bit system addressing is selected by * 64-bit Addressing bit in Host Control 2 register. * * On the other hand the "DesignWare Cores Mobile Storage Host * Controller DWC_mshc / DWC_mshc_lite User Guide" says, that we have to * set DMA_SEL to ADMA2 _only_ mode in the Host Control 2 register. */ ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL); ctrl &= ~SDHCI_CTRL_DMA_MASK; ctrl |= SDHCI_CTRL_ADMA32; sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL); } static void dwcmshc_set_tran_desc(struct cqhci_host *cq_host, u8 **desc, dma_addr_t addr, int len, bool end, bool dma64) { int tmplen, offset; if (likely(!len || BOUNDARY_OK(addr, len))) { cqhci_set_tran_desc(*desc, addr, len, end, dma64); return; } offset = addr & (SZ_128M - 1); tmplen = SZ_128M - offset; cqhci_set_tran_desc(*desc, addr, tmplen, false, dma64); addr += tmplen; len -= tmplen; *desc += cq_host->trans_desc_len; cqhci_set_tran_desc(*desc, addr, len, end, dma64); } static void dwcmshc_cqhci_dumpregs(struct mmc_host *mmc) { sdhci_dumpregs(mmc_priv(mmc)); } static void dwcmshc_rk3568_set_clock(struct sdhci_host *host, unsigned int clock) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *dwc_priv = sdhci_pltfm_priv(pltfm_host); struct rk35xx_priv *priv = dwc_priv->priv; u8 txclk_tapnum = DLL_TXCLK_TAPNUM_DEFAULT; u32 extra, reg; int err; host->mmc->actual_clock = 0; if (clock == 0) { /* Disable interface clock at initial state. */ sdhci_set_clock(host, clock); return; } /* Rockchip platform only support 375KHz for identify mode */ if (clock <= 400000) clock = 375000; err = clk_set_rate(pltfm_host->clk, clock); if (err) dev_err(mmc_dev(host->mmc), "fail to set clock %d", clock); sdhci_set_clock(host, clock); /* Disable cmd conflict check */ reg = dwc_priv->vendor_specific_area1 + DWCMSHC_HOST_CTRL3; extra = sdhci_readl(host, reg); extra &= ~BIT(0); sdhci_writel(host, extra, reg); if (clock <= 52000000) { /* * Disable DLL and reset both of sample and drive clock. * The bypass bit and start bit need to be set if DLL is not locked. */ sdhci_writel(host, DWCMSHC_EMMC_DLL_BYPASS | DWCMSHC_EMMC_DLL_START, DWCMSHC_EMMC_DLL_CTRL); sdhci_writel(host, DLL_RXCLK_ORI_GATE, DWCMSHC_EMMC_DLL_RXCLK); sdhci_writel(host, 0, DWCMSHC_EMMC_DLL_TXCLK); sdhci_writel(host, 0, DECMSHC_EMMC_DLL_CMDOUT); /* * Before switching to hs400es mode, the driver will enable * enhanced strobe first. PHY needs to configure the parameters * of enhanced strobe first. */ extra = DWCMSHC_EMMC_DLL_DLYENA | DLL_STRBIN_DELAY_NUM_SEL | DLL_STRBIN_DELAY_NUM_DEFAULT << DLL_STRBIN_DELAY_NUM_OFFSET; sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_STRBIN); return; } /* Reset DLL */ sdhci_writel(host, BIT(1), DWCMSHC_EMMC_DLL_CTRL); udelay(1); sdhci_writel(host, 0x0, DWCMSHC_EMMC_DLL_CTRL); /* * We shouldn't set DLL_RXCLK_NO_INVERTER for identify mode but * we must set it in higher speed mode. */ extra = DWCMSHC_EMMC_DLL_DLYENA; if (priv->devtype == DWCMSHC_RK3568) extra |= DLL_RXCLK_NO_INVERTER << DWCMSHC_EMMC_DLL_RXCLK_SRCSEL; sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_RXCLK); /* Init DLL settings */ extra = 0x5 << DWCMSHC_EMMC_DLL_START_POINT | 0x2 << DWCMSHC_EMMC_DLL_INC | DWCMSHC_EMMC_DLL_START; sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_CTRL); err = readl_poll_timeout(host->ioaddr + DWCMSHC_EMMC_DLL_STATUS0, extra, DLL_LOCK_WO_TMOUT(extra), 1, 500 * USEC_PER_MSEC); if (err) { dev_err(mmc_dev(host->mmc), "DLL lock timeout!\n"); return; } extra = 0x1 << 16 | /* tune clock stop en */ 0x3 << 17 | /* pre-change delay */ 0x3 << 19; /* post-change delay */ sdhci_writel(host, extra, dwc_priv->vendor_specific_area1 + DWCMSHC_EMMC_ATCTRL); if (host->mmc->ios.timing == MMC_TIMING_MMC_HS200 || host->mmc->ios.timing == MMC_TIMING_MMC_HS400) txclk_tapnum = priv->txclk_tapnum; if ((priv->devtype == DWCMSHC_RK3588) && host->mmc->ios.timing == MMC_TIMING_MMC_HS400) { txclk_tapnum = DLL_TXCLK_TAPNUM_90_DEGREES; extra = DLL_CMDOUT_SRC_CLK_NEG | DLL_CMDOUT_EN_SRC_CLK_NEG | DWCMSHC_EMMC_DLL_DLYENA | DLL_CMDOUT_TAPNUM_90_DEGREES | DLL_CMDOUT_TAPNUM_FROM_SW; sdhci_writel(host, extra, DECMSHC_EMMC_DLL_CMDOUT); } extra = DWCMSHC_EMMC_DLL_DLYENA | DLL_TXCLK_TAPNUM_FROM_SW | DLL_RXCLK_NO_INVERTER << DWCMSHC_EMMC_DLL_RXCLK_SRCSEL | txclk_tapnum; sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_TXCLK); extra = DWCMSHC_EMMC_DLL_DLYENA | DLL_STRBIN_TAPNUM_DEFAULT | DLL_STRBIN_TAPNUM_FROM_SW; sdhci_writel(host, extra, DWCMSHC_EMMC_DLL_STRBIN); } static void rk35xx_sdhci_reset(struct sdhci_host *host, u8 mask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *dwc_priv = sdhci_pltfm_priv(pltfm_host); struct rk35xx_priv *priv = dwc_priv->priv; if (mask & SDHCI_RESET_ALL && priv->reset) { reset_control_assert(priv->reset); udelay(1); reset_control_deassert(priv->reset); } sdhci_reset(host, mask); } static int dwcmshc_rk35xx_init(struct device *dev, struct sdhci_host *host, struct dwcmshc_priv *dwc_priv) { static const char * const clk_ids[] = {"axi", "block", "timer"}; struct rk35xx_priv *priv; int err; priv = devm_kzalloc(dev, sizeof(struct rk35xx_priv), GFP_KERNEL); if (!priv) return -ENOMEM; if (of_device_is_compatible(dev->of_node, "rockchip,rk3588-dwcmshc")) priv->devtype = DWCMSHC_RK3588; else priv->devtype = DWCMSHC_RK3568; priv->reset = devm_reset_control_array_get_optional_exclusive(mmc_dev(host->mmc)); if (IS_ERR(priv->reset)) { err = PTR_ERR(priv->reset); dev_err(mmc_dev(host->mmc), "failed to get reset control %d\n", err); return err; } err = dwcmshc_get_enable_other_clks(mmc_dev(host->mmc), dwc_priv, ARRAY_SIZE(clk_ids), clk_ids); if (err) return err; if (of_property_read_u8(mmc_dev(host->mmc)->of_node, "rockchip,txclk-tapnum", &priv->txclk_tapnum)) priv->txclk_tapnum = DLL_TXCLK_TAPNUM_DEFAULT; /* Disable cmd conflict check */ sdhci_writel(host, 0x0, dwc_priv->vendor_specific_area1 + DWCMSHC_HOST_CTRL3); /* Reset previous settings */ sdhci_writel(host, 0, DWCMSHC_EMMC_DLL_TXCLK); sdhci_writel(host, 0, DWCMSHC_EMMC_DLL_STRBIN); dwc_priv->priv = priv; return 0; } static void dwcmshc_rk35xx_postinit(struct sdhci_host *host, struct dwcmshc_priv *dwc_priv) { /* * Don't support highspeed bus mode with low clk speed as we * cannot use DLL for this condition. */ if (host->mmc->f_max <= 52000000) { dev_info(mmc_dev(host->mmc), "Disabling HS200/HS400, frequency too low (%d)\n", host->mmc->f_max); host->mmc->caps2 &= ~(MMC_CAP2_HS200 | MMC_CAP2_HS400); host->mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR); } } static int th1520_execute_tuning(struct sdhci_host *host, u32 opcode) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); u32 val = 0; if (host->flags & SDHCI_HS400_TUNING) return 0; sdhci_writeb(host, FIELD_PREP(PHY_ATDL_CNFG_INPSEL_MASK, PHY_ATDL_CNFG_INPSEL), PHY_ATDL_CNFG_R); val = sdhci_readl(host, priv->vendor_specific_area1 + DWCMSHC_EMMC_ATCTRL); /* * configure tuning settings: * - center phase select code driven in block gap interval * - disable reporting of framing errors * - disable software managed tuning * - disable user selection of sampling window edges, * instead tuning calculated edges are used */ val &= ~(AT_CTRL_CI_SEL | AT_CTRL_RPT_TUNE_ERR | AT_CTRL_SW_TUNE_EN | FIELD_PREP(AT_CTRL_WIN_EDGE_SEL_MASK, AT_CTRL_WIN_EDGE_SEL)); /* * configure tuning settings: * - enable auto-tuning * - enable sampling window threshold * - stop clocks during phase code change * - set max latency in cycles between tx and rx clocks * - set max latency in cycles to switch output phase * - set max sampling window threshold value */ val |= AT_CTRL_AT_EN | AT_CTRL_SWIN_TH_EN | AT_CTRL_TUNE_CLK_STOP_EN; val |= FIELD_PREP(AT_CTRL_PRE_CHANGE_DLY_MASK, AT_CTRL_PRE_CHANGE_DLY); val |= FIELD_PREP(AT_CTRL_POST_CHANGE_DLY_MASK, AT_CTRL_POST_CHANGE_DLY); val |= FIELD_PREP(AT_CTRL_SWIN_TH_VAL_MASK, AT_CTRL_SWIN_TH_VAL); sdhci_writel(host, val, priv->vendor_specific_area1 + DWCMSHC_EMMC_ATCTRL); val = sdhci_readl(host, priv->vendor_specific_area1 + DWCMSHC_EMMC_ATCTRL); /* perform tuning */ sdhci_start_tuning(host); host->tuning_loop_count = 128; host->tuning_err = __sdhci_execute_tuning(host, opcode); if (host->tuning_err) { /* disable auto-tuning upon tuning error */ val &= ~AT_CTRL_AT_EN; sdhci_writel(host, val, priv->vendor_specific_area1 + DWCMSHC_EMMC_ATCTRL); dev_err(mmc_dev(host->mmc), "tuning failed: %d\n", host->tuning_err); return -EIO; } sdhci_end_tuning(host); return 0; } static void th1520_sdhci_reset(struct sdhci_host *host, u8 mask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); u16 ctrl_2; sdhci_reset(host, mask); /* The T-Head 1520 SoC does not comply with the SDHCI specification * regarding the "Software Reset for CMD line should clear 'Command * Complete' in the Normal Interrupt Status Register." Clear the bit * here to compensate for this quirk. */ if (mask & SDHCI_RESET_CMD) sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS); if (priv->flags & FLAG_IO_FIXED_1V8) { ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); if (!(ctrl_2 & SDHCI_CTRL_VDD_180)) { ctrl_2 |= SDHCI_CTRL_VDD_180; sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); } } } static int th1520_init(struct device *dev, struct sdhci_host *host, struct dwcmshc_priv *dwc_priv) { dwc_priv->delay_line = PHY_SDCLKDL_DC_DEFAULT; if (device_property_read_bool(dev, "mmc-ddr-1_8v") || device_property_read_bool(dev, "mmc-hs200-1_8v") || device_property_read_bool(dev, "mmc-hs400-1_8v")) dwc_priv->flags |= FLAG_IO_FIXED_1V8; else dwc_priv->flags &= ~FLAG_IO_FIXED_1V8; /* * start_signal_voltage_switch() will try 3.3V first * then 1.8V. Use SDHCI_SIGNALING_180 rather than * SDHCI_SIGNALING_330 to avoid setting voltage to 3.3V * in sdhci_start_signal_voltage_switch(). */ if (dwc_priv->flags & FLAG_IO_FIXED_1V8) { host->flags &= ~SDHCI_SIGNALING_330; host->flags |= SDHCI_SIGNALING_180; } sdhci_enable_v4_mode(host); return 0; } static void cv18xx_sdhci_reset(struct sdhci_host *host, u8 mask) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); u32 val, emmc_caps = MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO; sdhci_reset(host, mask); if ((host->mmc->caps2 & emmc_caps) == emmc_caps) { val = sdhci_readl(host, priv->vendor_specific_area1 + CV18XX_SDHCI_MSHC_CTRL); val |= CV18XX_EMMC_FUNC_EN; sdhci_writel(host, val, priv->vendor_specific_area1 + CV18XX_SDHCI_MSHC_CTRL); } val = sdhci_readl(host, priv->vendor_specific_area1 + CV18XX_SDHCI_MSHC_CTRL); val |= CV18XX_LATANCY_1T; sdhci_writel(host, val, priv->vendor_specific_area1 + CV18XX_SDHCI_MSHC_CTRL); val = sdhci_readl(host, priv->vendor_specific_area1 + CV18XX_SDHCI_PHY_CONFIG); val |= CV18XX_PHY_TX_BPS; sdhci_writel(host, val, priv->vendor_specific_area1 + CV18XX_SDHCI_PHY_CONFIG); val = (FIELD_PREP(CV18XX_PHY_TX_DLY_MSK, 0) | FIELD_PREP(CV18XX_PHY_TX_SRC_MSK, CV18XX_PHY_TX_SRC_INVERT_CLK_TX) | FIELD_PREP(CV18XX_PHY_RX_DLY_MSK, 0) | FIELD_PREP(CV18XX_PHY_RX_SRC_MSK, CV18XX_PHY_RX_SRC_INVERT_RX_CLK)); sdhci_writel(host, val, priv->vendor_specific_area1 + CV18XX_SDHCI_PHY_TX_RX_DLY); } static void cv18xx_sdhci_set_tap(struct sdhci_host *host, int tap) { struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); u16 clk; u32 val; clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); val = sdhci_readl(host, priv->vendor_specific_area1 + CV18XX_SDHCI_MSHC_CTRL); val &= ~CV18XX_LATANCY_1T; sdhci_writel(host, val, priv->vendor_specific_area1 + CV18XX_SDHCI_MSHC_CTRL); val = (FIELD_PREP(CV18XX_PHY_TX_DLY_MSK, 0) | FIELD_PREP(CV18XX_PHY_TX_SRC_MSK, CV18XX_PHY_TX_SRC_INVERT_CLK_TX) | FIELD_PREP(CV18XX_PHY_RX_DLY_MSK, tap)); sdhci_writel(host, val, priv->vendor_specific_area1 + CV18XX_SDHCI_PHY_TX_RX_DLY); sdhci_writel(host, 0, priv->vendor_specific_area1 + CV18XX_SDHCI_PHY_CONFIG); clk |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); usleep_range(1000, 2000); } static int cv18xx_retry_tuning(struct mmc_host *mmc, u32 opcode, int *cmd_error) { int ret, retry = 0; while (retry < CV18XX_RETRY_TUNING_MAX) { ret = mmc_send_tuning(mmc, opcode, NULL); if (ret) return ret; retry++; } return 0; } static void cv18xx_sdhci_post_tuning(struct sdhci_host *host) { u32 val; val = sdhci_readl(host, SDHCI_INT_STATUS); val |= SDHCI_INT_DATA_AVAIL; sdhci_writel(host, val, SDHCI_INT_STATUS); sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); } static int cv18xx_sdhci_execute_tuning(struct sdhci_host *host, u32 opcode) { int min, max, avg, ret; int win_length, target_min, target_max, target_win_length; min = max = 0; target_win_length = 0; sdhci_reset_tuning(host); while (max < CV18XX_TUNE_MAX) { /* find the mininum delay first which can pass tuning */ while (min < CV18XX_TUNE_MAX) { cv18xx_sdhci_set_tap(host, min); if (!cv18xx_retry_tuning(host->mmc, opcode, NULL)) break; min += CV18XX_TUNE_STEP; } /* find the maxinum delay which can not pass tuning */ max = min + CV18XX_TUNE_STEP; while (max < CV18XX_TUNE_MAX) { cv18xx_sdhci_set_tap(host, max); if (cv18xx_retry_tuning(host->mmc, opcode, NULL)) { max -= CV18XX_TUNE_STEP; break; } max += CV18XX_TUNE_STEP; } win_length = max - min + 1; /* get the largest pass window */ if (win_length > target_win_length) { target_win_length = win_length; target_min = min; target_max = max; } /* continue to find the next pass window */ min = max + CV18XX_TUNE_STEP; } cv18xx_sdhci_post_tuning(host); /* use average delay to get the best timing */ avg = (target_min + target_max) / 2; cv18xx_sdhci_set_tap(host, avg); ret = mmc_send_tuning(host->mmc, opcode, NULL); dev_dbg(mmc_dev(host->mmc), "tuning %s at 0x%x ret %d\n", ret ? "failed" : "passed", avg, ret); return ret; } static inline void sg2042_sdhci_phy_init(struct sdhci_host *host) { u32 val; /* Asset phy reset & set tx drive strength */ val = sdhci_readl(host, PHY_CNFG_R); val &= ~PHY_CNFG_RSTN_DEASSERT; val |= FIELD_PREP(PHY_CNFG_PHY_PWRGOOD_MASK, 1); val |= FIELD_PREP(PHY_CNFG_PAD_SP_MASK, PHY_CNFG_PAD_SP_SG2042); val |= FIELD_PREP(PHY_CNFG_PAD_SN_MASK, PHY_CNFG_PAD_SN_SG2042); sdhci_writel(host, val, PHY_CNFG_R); /* Configure phy pads */ val = PHY_PAD_RXSEL_3V3; val |= FIELD_PREP(PHY_PAD_WEAKPULL_MASK, PHY_PAD_WEAKPULL_PULLUP); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N_SG2042); sdhci_writew(host, val, PHY_CMDPAD_CNFG_R); sdhci_writew(host, val, PHY_DATAPAD_CNFG_R); sdhci_writew(host, val, PHY_RSTNPAD_CNFG_R); val = PHY_PAD_RXSEL_3V3; val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N_SG2042); sdhci_writew(host, val, PHY_CLKPAD_CNFG_R); val = PHY_PAD_RXSEL_3V3; val |= FIELD_PREP(PHY_PAD_WEAKPULL_MASK, PHY_PAD_WEAKPULL_PULLDOWN); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_P_MASK, PHY_PAD_TXSLEW_CTRL_P); val |= FIELD_PREP(PHY_PAD_TXSLEW_CTRL_N_MASK, PHY_PAD_TXSLEW_CTRL_N_SG2042); sdhci_writew(host, val, PHY_STBPAD_CNFG_R); /* Configure delay line */ /* Enable fixed delay */ sdhci_writeb(host, PHY_SDCLKDL_CNFG_EXTDLY_EN, PHY_SDCLKDL_CNFG_R); /* * Set delay line. * Its recommended that bit UPDATE_DC[4] is 1 when SDCLKDL_DC is being written. * Ensure UPDATE_DC[4] is '0' when not updating code. */ val = sdhci_readb(host, PHY_SDCLKDL_CNFG_R); val |= PHY_SDCLKDL_CNFG_UPDATE; sdhci_writeb(host, val, PHY_SDCLKDL_CNFG_R); /* Add 10 * 70ps = 0.7ns for output delay */ sdhci_writeb(host, 10, PHY_SDCLKDL_DC_R); val = sdhci_readb(host, PHY_SDCLKDL_CNFG_R); val &= ~(PHY_SDCLKDL_CNFG_UPDATE); sdhci_writeb(host, val, PHY_SDCLKDL_CNFG_R); /* Set SMPLDL_CNFG, Bypass */ sdhci_writeb(host, PHY_SMPLDL_CNFG_BYPASS_EN, PHY_SMPLDL_CNFG_R); /* Set ATDL_CNFG, tuning clk not use for init */ val = FIELD_PREP(PHY_ATDL_CNFG_INPSEL_MASK, PHY_ATDL_CNFG_INPSEL_SG2042); sdhci_writeb(host, val, PHY_ATDL_CNFG_R); /* Deasset phy reset */ val = sdhci_readl(host, PHY_CNFG_R); val |= PHY_CNFG_RSTN_DEASSERT; sdhci_writel(host, val, PHY_CNFG_R); } static void sg2042_sdhci_reset(struct sdhci_host *host, u8 mask) { sdhci_reset(host, mask); if (mask & SDHCI_RESET_ALL) sg2042_sdhci_phy_init(host); } static int sg2042_init(struct device *dev, struct sdhci_host *host, struct dwcmshc_priv *dwc_priv) { static const char * const clk_ids[] = {"timer"}; return dwcmshc_get_enable_other_clks(mmc_dev(host->mmc), dwc_priv, ARRAY_SIZE(clk_ids), clk_ids); } static const struct sdhci_ops sdhci_dwcmshc_ops = { .set_clock = sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .set_uhs_signaling = dwcmshc_set_uhs_signaling, .get_max_clock = dwcmshc_get_max_clock, .reset = sdhci_reset, .adma_write_desc = dwcmshc_adma_write_desc, .irq = dwcmshc_cqe_irq_handler, }; #ifdef CONFIG_ACPI static void dwcmshc_bf3_hw_reset(struct sdhci_host *host) { struct arm_smccc_res res = { 0 }; arm_smccc_smc(BLUEFIELD_SMC_SET_EMMC_RST_N, 0, 0, 0, 0, 0, 0, 0, &res); if (res.a0) pr_err("%s: RST_N failed.\n", mmc_hostname(host->mmc)); } static const struct sdhci_ops sdhci_dwcmshc_bf3_ops = { .set_clock = sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .set_uhs_signaling = dwcmshc_set_uhs_signaling, .get_max_clock = dwcmshc_get_max_clock, .reset = sdhci_reset, .adma_write_desc = dwcmshc_adma_write_desc, .irq = dwcmshc_cqe_irq_handler, .hw_reset = dwcmshc_bf3_hw_reset, }; #endif static const struct sdhci_ops sdhci_dwcmshc_rk35xx_ops = { .set_clock = dwcmshc_rk3568_set_clock, .set_bus_width = sdhci_set_bus_width, .set_uhs_signaling = dwcmshc_set_uhs_signaling, .get_max_clock = rk35xx_get_max_clock, .reset = rk35xx_sdhci_reset, .adma_write_desc = dwcmshc_adma_write_desc, .irq = dwcmshc_cqe_irq_handler, }; static const struct sdhci_ops sdhci_dwcmshc_th1520_ops = { .set_clock = sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .set_uhs_signaling = th1520_set_uhs_signaling, .get_max_clock = dwcmshc_get_max_clock, .reset = th1520_sdhci_reset, .adma_write_desc = dwcmshc_adma_write_desc, .voltage_switch = dwcmshc_phy_1_8v_init, .platform_execute_tuning = th1520_execute_tuning, }; static const struct sdhci_ops sdhci_dwcmshc_cv18xx_ops = { .set_clock = sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .set_uhs_signaling = dwcmshc_set_uhs_signaling, .get_max_clock = dwcmshc_get_max_clock, .reset = cv18xx_sdhci_reset, .adma_write_desc = dwcmshc_adma_write_desc, .platform_execute_tuning = cv18xx_sdhci_execute_tuning, }; static const struct sdhci_ops sdhci_dwcmshc_sg2042_ops = { .set_clock = sdhci_set_clock, .set_bus_width = sdhci_set_bus_width, .set_uhs_signaling = dwcmshc_set_uhs_signaling, .get_max_clock = dwcmshc_get_max_clock, .reset = sg2042_sdhci_reset, .adma_write_desc = dwcmshc_adma_write_desc, .platform_execute_tuning = th1520_execute_tuning, }; static const struct dwcmshc_pltfm_data sdhci_dwcmshc_pdata = { .pdata = { .ops = &sdhci_dwcmshc_ops, .quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, }, }; #ifdef CONFIG_ACPI static const struct dwcmshc_pltfm_data sdhci_dwcmshc_bf3_pdata = { .pdata = { .ops = &sdhci_dwcmshc_bf3_ops, .quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_ACMD23_BROKEN, }, }; #endif static const struct dwcmshc_pltfm_data sdhci_dwcmshc_rk35xx_pdata = { .pdata = { .ops = &sdhci_dwcmshc_rk35xx_ops, .quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | SDHCI_QUIRK_BROKEN_TIMEOUT_VAL, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN | SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN, }, .init = dwcmshc_rk35xx_init, .postinit = dwcmshc_rk35xx_postinit, }; static const struct dwcmshc_pltfm_data sdhci_dwcmshc_th1520_pdata = { .pdata = { .ops = &sdhci_dwcmshc_th1520_ops, .quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, }, .init = th1520_init, }; static const struct dwcmshc_pltfm_data sdhci_dwcmshc_cv18xx_pdata = { .pdata = { .ops = &sdhci_dwcmshc_cv18xx_ops, .quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, }, }; static const struct dwcmshc_pltfm_data sdhci_dwcmshc_sg2042_pdata = { .pdata = { .ops = &sdhci_dwcmshc_sg2042_ops, .quirks = SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN, .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN, }, .init = sg2042_init, }; static const struct cqhci_host_ops dwcmshc_cqhci_ops = { .enable = dwcmshc_sdhci_cqe_enable, .disable = sdhci_cqe_disable, .dumpregs = dwcmshc_cqhci_dumpregs, .set_tran_desc = dwcmshc_set_tran_desc, }; static void dwcmshc_cqhci_init(struct sdhci_host *host, struct platform_device *pdev) { struct cqhci_host *cq_host; struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); bool dma64 = false; u16 clk; int err; host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD; cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL); if (!cq_host) { dev_err(mmc_dev(host->mmc), "Unable to setup CQE: not enough memory\n"); goto dsbl_cqe_caps; } /* * For dwcmshc host controller we have to enable internal clock * before access to some registers from Vendor Specific Area 2. */ clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk |= SDHCI_CLOCK_INT_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); if (!(clk & SDHCI_CLOCK_INT_EN)) { dev_err(mmc_dev(host->mmc), "Unable to setup CQE: internal clock enable error\n"); goto free_cq_host; } cq_host->mmio = host->ioaddr + priv->vendor_specific_area2; cq_host->ops = &dwcmshc_cqhci_ops; /* Enable using of 128-bit task descriptors */ dma64 = host->flags & SDHCI_USE_64_BIT_DMA; if (dma64) { dev_dbg(mmc_dev(host->mmc), "128-bit task descriptors\n"); cq_host->caps |= CQHCI_TASK_DESC_SZ_128; } err = cqhci_init(cq_host, host->mmc, dma64); if (err) { dev_err(mmc_dev(host->mmc), "Unable to setup CQE: error %d\n", err); goto int_clock_disable; } dev_dbg(mmc_dev(host->mmc), "CQE init done\n"); return; int_clock_disable: clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL); clk &= ~SDHCI_CLOCK_INT_EN; sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL); free_cq_host: devm_kfree(&pdev->dev, cq_host); dsbl_cqe_caps: host->mmc->caps2 &= ~(MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD); } static const struct of_device_id sdhci_dwcmshc_dt_ids[] = { { .compatible = "rockchip,rk3588-dwcmshc", .data = &sdhci_dwcmshc_rk35xx_pdata, }, { .compatible = "rockchip,rk3568-dwcmshc", .data = &sdhci_dwcmshc_rk35xx_pdata, }, { .compatible = "snps,dwcmshc-sdhci", .data = &sdhci_dwcmshc_pdata, }, { .compatible = "sophgo,cv1800b-dwcmshc", .data = &sdhci_dwcmshc_cv18xx_pdata, }, { .compatible = "sophgo,sg2002-dwcmshc", .data = &sdhci_dwcmshc_cv18xx_pdata, }, { .compatible = "thead,th1520-dwcmshc", .data = &sdhci_dwcmshc_th1520_pdata, }, { .compatible = "sophgo,sg2042-dwcmshc", .data = &sdhci_dwcmshc_sg2042_pdata, }, {}, }; MODULE_DEVICE_TABLE(of, sdhci_dwcmshc_dt_ids); #ifdef CONFIG_ACPI static const struct acpi_device_id sdhci_dwcmshc_acpi_ids[] = { { .id = "MLNXBF30", .driver_data = (kernel_ulong_t)&sdhci_dwcmshc_bf3_pdata, }, {} }; MODULE_DEVICE_TABLE(acpi, sdhci_dwcmshc_acpi_ids); #endif static int dwcmshc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sdhci_pltfm_host *pltfm_host; struct sdhci_host *host; struct dwcmshc_priv *priv; const struct dwcmshc_pltfm_data *pltfm_data; int err; u32 extra, caps; pltfm_data = device_get_match_data(&pdev->dev); if (!pltfm_data) { dev_err(&pdev->dev, "Error: No device match data found\n"); return -ENODEV; } host = sdhci_pltfm_init(pdev, &pltfm_data->pdata, sizeof(struct dwcmshc_priv)); if (IS_ERR(host)) return PTR_ERR(host); /* * extra adma table cnt for cross 128M boundary handling. */ extra = DIV_ROUND_UP_ULL(dma_get_required_mask(dev), SZ_128M); if (extra > SDHCI_MAX_SEGS) extra = SDHCI_MAX_SEGS; host->adma_table_cnt += extra; pltfm_host = sdhci_priv(host); priv = sdhci_pltfm_priv(pltfm_host); if (dev->of_node) { pltfm_host->clk = devm_clk_get(dev, "core"); if (IS_ERR(pltfm_host->clk)) { err = PTR_ERR(pltfm_host->clk); dev_err(dev, "failed to get core clk: %d\n", err); goto free_pltfm; } err = clk_prepare_enable(pltfm_host->clk); if (err) goto free_pltfm; priv->bus_clk = devm_clk_get(dev, "bus"); if (!IS_ERR(priv->bus_clk)) clk_prepare_enable(priv->bus_clk); } err = mmc_of_parse(host->mmc); if (err) goto err_clk; sdhci_get_of_property(pdev); priv->vendor_specific_area1 = sdhci_readl(host, DWCMSHC_P_VENDOR_AREA1) & DWCMSHC_AREA1_MASK; host->mmc_host_ops.request = dwcmshc_request; host->mmc_host_ops.hs400_enhanced_strobe = dwcmshc_hs400_enhanced_strobe; host->mmc_host_ops.execute_tuning = dwcmshc_execute_tuning; if (pltfm_data->init) { err = pltfm_data->init(&pdev->dev, host, priv); if (err) goto err_clk; } #ifdef CONFIG_ACPI if (pltfm_data == &sdhci_dwcmshc_bf3_pdata) sdhci_enable_v4_mode(host); #endif caps = sdhci_readl(host, SDHCI_CAPABILITIES); if (caps & SDHCI_CAN_64BIT_V4) sdhci_enable_v4_mode(host); host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); err = sdhci_setup_host(host); if (err) goto err_rpm; /* Setup Command Queue Engine if enabled */ if (device_property_read_bool(&pdev->dev, "supports-cqe")) { priv->vendor_specific_area2 = sdhci_readw(host, DWCMSHC_P_VENDOR_AREA2); dwcmshc_cqhci_init(host, pdev); } if (pltfm_data->postinit) pltfm_data->postinit(host, priv); err = __sdhci_add_host(host); if (err) goto err_setup_host; pm_runtime_put(dev); return 0; err_setup_host: sdhci_cleanup_host(host); err_rpm: pm_runtime_disable(dev); pm_runtime_put_noidle(dev); err_clk: clk_disable_unprepare(pltfm_host->clk); clk_disable_unprepare(priv->bus_clk); clk_bulk_disable_unprepare(priv->num_other_clks, priv->other_clks); free_pltfm: sdhci_pltfm_free(pdev); return err; } static void dwcmshc_disable_card_clk(struct sdhci_host *host) { u16 ctrl; ctrl = sdhci_readw(host, SDHCI_CLOCK_CONTROL); if (ctrl & SDHCI_CLOCK_CARD_EN) { ctrl &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, ctrl, SDHCI_CLOCK_CONTROL); } } static void dwcmshc_remove(struct platform_device *pdev) { struct sdhci_host *host = platform_get_drvdata(pdev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); pm_runtime_get_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); sdhci_remove_host(host, 0); dwcmshc_disable_card_clk(host); clk_disable_unprepare(pltfm_host->clk); clk_disable_unprepare(priv->bus_clk); clk_bulk_disable_unprepare(priv->num_other_clks, priv->other_clks); sdhci_pltfm_free(pdev); } #ifdef CONFIG_PM_SLEEP static int dwcmshc_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); int ret; pm_runtime_resume(dev); if (host->mmc->caps2 & MMC_CAP2_CQE) { ret = cqhci_suspend(host->mmc); if (ret) return ret; } ret = sdhci_suspend_host(host); if (ret) return ret; clk_disable_unprepare(pltfm_host->clk); if (!IS_ERR(priv->bus_clk)) clk_disable_unprepare(priv->bus_clk); clk_bulk_disable_unprepare(priv->num_other_clks, priv->other_clks); return ret; } static int dwcmshc_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host); struct dwcmshc_priv *priv = sdhci_pltfm_priv(pltfm_host); int ret; ret = clk_prepare_enable(pltfm_host->clk); if (ret) return ret; if (!IS_ERR(priv->bus_clk)) { ret = clk_prepare_enable(priv->bus_clk); if (ret) goto disable_clk; } ret = clk_bulk_prepare_enable(priv->num_other_clks, priv->other_clks); if (ret) goto disable_bus_clk; ret = sdhci_resume_host(host); if (ret) goto disable_other_clks; if (host->mmc->caps2 & MMC_CAP2_CQE) { ret = cqhci_resume(host->mmc); if (ret) goto disable_other_clks; } return 0; disable_other_clks: clk_bulk_disable_unprepare(priv->num_other_clks, priv->other_clks); disable_bus_clk: if (!IS_ERR(priv->bus_clk)) clk_disable_unprepare(priv->bus_clk); disable_clk: clk_disable_unprepare(pltfm_host->clk); return ret; } #endif #ifdef CONFIG_PM static void dwcmshc_enable_card_clk(struct sdhci_host *host) { u16 ctrl; ctrl = sdhci_readw(host, SDHCI_CLOCK_CONTROL); if ((ctrl & SDHCI_CLOCK_INT_EN) && !(ctrl & SDHCI_CLOCK_CARD_EN)) { ctrl |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, ctrl, SDHCI_CLOCK_CONTROL); } } static int dwcmshc_runtime_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); dwcmshc_disable_card_clk(host); return 0; } static int dwcmshc_runtime_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); dwcmshc_enable_card_clk(host); return 0; } #endif static const struct dev_pm_ops dwcmshc_pmops = { SET_SYSTEM_SLEEP_PM_OPS(dwcmshc_suspend, dwcmshc_resume) SET_RUNTIME_PM_OPS(dwcmshc_runtime_suspend, dwcmshc_runtime_resume, NULL) }; static struct platform_driver sdhci_dwcmshc_driver = { .driver = { .name = "sdhci-dwcmshc", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = sdhci_dwcmshc_dt_ids, .acpi_match_table = ACPI_PTR(sdhci_dwcmshc_acpi_ids), .pm = &dwcmshc_pmops, }, .probe = dwcmshc_probe, .remove = dwcmshc_remove, }; module_platform_driver(sdhci_dwcmshc_driver); MODULE_DESCRIPTION("SDHCI platform driver for Synopsys DWC MSHC"); MODULE_AUTHOR("Jisheng Zhang "); MODULE_LICENSE("GPL v2");