// SPDX-License-Identifier: GPL-2.0+ /* * Device tree based initialization code for reserved memory. * * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd. * http://www.samsung.com * Author: Marek Szyprowski * Author: Josh Cartwright */ #define pr_fmt(fmt) "OF: reserved mem: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "of_private.h" static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata; static struct reserved_mem *reserved_mem __refdata = reserved_mem_array; static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS; static int reserved_mem_count; static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap, phys_addr_t *res_base) { phys_addr_t base; int err = 0; end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end; align = !align ? SMP_CACHE_BYTES : align; base = memblock_phys_alloc_range(size, align, start, end); if (!base) return -ENOMEM; *res_base = base; if (nomap) { err = memblock_mark_nomap(base, size); if (err) memblock_phys_free(base, size); } kmemleak_ignore_phys(base); return err; } /* * alloc_reserved_mem_array() - allocate memory for the reserved_mem * array using memblock * * This function is used to allocate memory for the reserved_mem * array according to the total number of reserved memory regions * defined in the DT. * After the new array is allocated, the information stored in * the initial static array is copied over to this new array and * the new array is used from this point on. */ static void __init alloc_reserved_mem_array(void) { struct reserved_mem *new_array; size_t alloc_size, copy_size, memset_size; alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array)); if (alloc_size == SIZE_MAX) { pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW); return; } new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES); if (!new_array) { pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM); return; } copy_size = array_size(reserved_mem_count, sizeof(*new_array)); if (copy_size == SIZE_MAX) { memblock_free(new_array, alloc_size); total_reserved_mem_cnt = MAX_RESERVED_REGIONS; pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW); return; } memset_size = alloc_size - copy_size; memcpy(new_array, reserved_mem, copy_size); memset(new_array + reserved_mem_count, 0, memset_size); reserved_mem = new_array; } static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem); /* * fdt_reserved_mem_save_node() - save fdt node for second pass initialization */ static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname, phys_addr_t base, phys_addr_t size) { struct reserved_mem *rmem = &reserved_mem[reserved_mem_count]; if (reserved_mem_count == total_reserved_mem_cnt) { pr_err("not enough space for all defined regions.\n"); return; } rmem->fdt_node = node; rmem->name = uname; rmem->base = base; rmem->size = size; /* Call the region specific initialization function */ fdt_init_reserved_mem_node(rmem); reserved_mem_count++; return; } static int __init early_init_dt_reserve_memory(phys_addr_t base, phys_addr_t size, bool nomap) { if (nomap) { /* * If the memory is already reserved (by another region), we * should not allow it to be marked nomap, but don't worry * if the region isn't memory as it won't be mapped. */ if (memblock_overlaps_region(&memblock.memory, base, size) && memblock_is_region_reserved(base, size)) return -EBUSY; return memblock_mark_nomap(base, size); } return memblock_reserve(base, size); } /* * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property */ static int __init __reserved_mem_reserve_reg(unsigned long node, const char *uname) { int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); phys_addr_t base, size; int len; const __be32 *prop; bool nomap; prop = of_get_flat_dt_prop(node, "reg", &len); if (!prop) return -ENOENT; if (len && len % t_len != 0) { pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", uname); return -EINVAL; } nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; while (len >= t_len) { base = dt_mem_next_cell(dt_root_addr_cells, &prop); size = dt_mem_next_cell(dt_root_size_cells, &prop); if (size && early_init_dt_reserve_memory(base, size, nomap) == 0) pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n", uname, &base, (unsigned long)(size / SZ_1M)); else pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n", uname, &base, (unsigned long)(size / SZ_1M)); len -= t_len; } return 0; } /* * __reserved_mem_check_root() - check if #size-cells, #address-cells provided * in /reserved-memory matches the values supported by the current implementation, * also check if ranges property has been provided */ static int __init __reserved_mem_check_root(unsigned long node) { const __be32 *prop; prop = of_get_flat_dt_prop(node, "#size-cells", NULL); if (!prop || be32_to_cpup(prop) != dt_root_size_cells) return -EINVAL; prop = of_get_flat_dt_prop(node, "#address-cells", NULL); if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) return -EINVAL; prop = of_get_flat_dt_prop(node, "ranges", NULL); if (!prop) return -EINVAL; return 0; } static void __init __rmem_check_for_overlap(void); /** * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined * reserved memory regions. * * This function is used to scan through the DT and store the * information for the reserved memory regions that are defined using * the "reg" property. The region node number, name, base address, and * size are all stored in the reserved_mem array by calling the * fdt_reserved_mem_save_node() function. */ void __init fdt_scan_reserved_mem_reg_nodes(void) { int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); const void *fdt = initial_boot_params; phys_addr_t base, size; const __be32 *prop; int node, child; int len; if (!fdt) return; node = fdt_path_offset(fdt, "/reserved-memory"); if (node < 0) { pr_info("Reserved memory: No reserved-memory node in the DT\n"); return; } /* Attempt dynamic allocation of a new reserved_mem array */ alloc_reserved_mem_array(); if (__reserved_mem_check_root(node)) { pr_err("Reserved memory: unsupported node format, ignoring\n"); return; } fdt_for_each_subnode(child, fdt, node) { const char *uname; prop = of_get_flat_dt_prop(child, "reg", &len); if (!prop) continue; if (!of_fdt_device_is_available(fdt, child)) continue; uname = fdt_get_name(fdt, child, NULL); if (len && len % t_len != 0) { pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n", uname); continue; } base = dt_mem_next_cell(dt_root_addr_cells, &prop); size = dt_mem_next_cell(dt_root_size_cells, &prop); if (size) fdt_reserved_mem_save_node(child, uname, base, size); } /* check for overlapping reserved regions */ __rmem_check_for_overlap(); } static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname); /* * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory */ int __init fdt_scan_reserved_mem(void) { int node, child; int dynamic_nodes_cnt = 0, count = 0; int dynamic_nodes[MAX_RESERVED_REGIONS]; const void *fdt = initial_boot_params; node = fdt_path_offset(fdt, "/reserved-memory"); if (node < 0) return -ENODEV; if (__reserved_mem_check_root(node) != 0) { pr_err("Reserved memory: unsupported node format, ignoring\n"); return -EINVAL; } fdt_for_each_subnode(child, fdt, node) { const char *uname; int err; if (!of_fdt_device_is_available(fdt, child)) continue; uname = fdt_get_name(fdt, child, NULL); err = __reserved_mem_reserve_reg(child, uname); if (!err) count++; /* * Save the nodes for the dynamically-placed regions * into an array which will be used for allocation right * after all the statically-placed regions are reserved * or marked as no-map. This is done to avoid dynamically * allocating from one of the statically-placed regions. */ if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) { dynamic_nodes[dynamic_nodes_cnt] = child; dynamic_nodes_cnt++; } } for (int i = 0; i < dynamic_nodes_cnt; i++) { const char *uname; int err; child = dynamic_nodes[i]; uname = fdt_get_name(fdt, child, NULL); err = __reserved_mem_alloc_size(child, uname); if (!err) count++; } total_reserved_mem_cnt = count; return 0; } /* * __reserved_mem_alloc_in_range() - allocate reserved memory described with * 'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing * reserved regions to keep the reserved memory contiguous if possible. */ static int __init __reserved_mem_alloc_in_range(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap, phys_addr_t *res_base) { bool prev_bottom_up = memblock_bottom_up(); bool bottom_up = false, top_down = false; int ret, i; for (i = 0; i < reserved_mem_count; i++) { struct reserved_mem *rmem = &reserved_mem[i]; /* Skip regions that were not reserved yet */ if (rmem->size == 0) continue; /* * If range starts next to an existing reservation, use bottom-up: * |....RRRR................RRRRRRRR..............| * --RRRR------ */ if (start >= rmem->base && start <= (rmem->base + rmem->size)) bottom_up = true; /* * If range ends next to an existing reservation, use top-down: * |....RRRR................RRRRRRRR..............| * -------RRRR----- */ if (end >= rmem->base && end <= (rmem->base + rmem->size)) top_down = true; } /* Change setting only if either bottom-up or top-down was selected */ if (bottom_up != top_down) memblock_set_bottom_up(bottom_up); ret = early_init_dt_alloc_reserved_memory_arch(size, align, start, end, nomap, res_base); /* Restore old setting if needed */ if (bottom_up != top_down) memblock_set_bottom_up(prev_bottom_up); return ret; } /* * __reserved_mem_alloc_size() - allocate reserved memory described by * 'size', 'alignment' and 'alloc-ranges' properties. */ static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname) { int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32); phys_addr_t start = 0, end = 0; phys_addr_t base = 0, align = 0, size; int len; const __be32 *prop; bool nomap; int ret; prop = of_get_flat_dt_prop(node, "size", &len); if (!prop) return -EINVAL; if (len != dt_root_size_cells * sizeof(__be32)) { pr_err("invalid size property in '%s' node.\n", uname); return -EINVAL; } size = dt_mem_next_cell(dt_root_size_cells, &prop); prop = of_get_flat_dt_prop(node, "alignment", &len); if (prop) { if (len != dt_root_addr_cells * sizeof(__be32)) { pr_err("invalid alignment property in '%s' node.\n", uname); return -EINVAL; } align = dt_mem_next_cell(dt_root_addr_cells, &prop); } nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; /* Need adjust the alignment to satisfy the CMA requirement */ if (IS_ENABLED(CONFIG_CMA) && of_flat_dt_is_compatible(node, "shared-dma-pool") && of_get_flat_dt_prop(node, "reusable", NULL) && !nomap) align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); prop = of_get_flat_dt_prop(node, "alloc-ranges", &len); if (prop) { if (len % t_len != 0) { pr_err("invalid alloc-ranges property in '%s', skipping node.\n", uname); return -EINVAL; } base = 0; while (len > 0) { start = dt_mem_next_cell(dt_root_addr_cells, &prop); end = start + dt_mem_next_cell(dt_root_size_cells, &prop); ret = __reserved_mem_alloc_in_range(size, align, start, end, nomap, &base); if (ret == 0) { pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n", uname, &base, (unsigned long)(size / SZ_1M)); break; } len -= t_len; } } else { ret = early_init_dt_alloc_reserved_memory_arch(size, align, 0, 0, nomap, &base); if (ret == 0) pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n", uname, &base, (unsigned long)(size / SZ_1M)); } if (base == 0) { pr_err("failed to allocate memory for node '%s': size %lu MiB\n", uname, (unsigned long)(size / SZ_1M)); return -ENOMEM; } /* Save region in the reserved_mem array */ fdt_reserved_mem_save_node(node, uname, base, size); return 0; } static const struct of_device_id __rmem_of_table_sentinel __used __section("__reservedmem_of_table_end"); /* * __reserved_mem_init_node() - call region specific reserved memory init code */ static int __init __reserved_mem_init_node(struct reserved_mem *rmem) { extern const struct of_device_id __reservedmem_of_table[]; const struct of_device_id *i; int ret = -ENOENT; for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) { reservedmem_of_init_fn initfn = i->data; const char *compat = i->compatible; if (!of_flat_dt_is_compatible(rmem->fdt_node, compat)) continue; ret = initfn(rmem); if (ret == 0) { pr_info("initialized node %s, compatible id %s\n", rmem->name, compat); break; } } return ret; } static int __init __rmem_cmp(const void *a, const void *b) { const struct reserved_mem *ra = a, *rb = b; if (ra->base < rb->base) return -1; if (ra->base > rb->base) return 1; /* * Put the dynamic allocations (address == 0, size == 0) before static * allocations at address 0x0 so that overlap detection works * correctly. */ if (ra->size < rb->size) return -1; if (ra->size > rb->size) return 1; if (ra->fdt_node < rb->fdt_node) return -1; if (ra->fdt_node > rb->fdt_node) return 1; return 0; } static void __init __rmem_check_for_overlap(void) { int i; if (reserved_mem_count < 2) return; sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]), __rmem_cmp, NULL); for (i = 0; i < reserved_mem_count - 1; i++) { struct reserved_mem *this, *next; this = &reserved_mem[i]; next = &reserved_mem[i + 1]; if (this->base + this->size > next->base) { phys_addr_t this_end, next_end; this_end = this->base + this->size; next_end = next->base + next->size; pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n", this->name, &this->base, &this_end, next->name, &next->base, &next_end); } } } /** * fdt_init_reserved_mem_node() - Initialize a reserved memory region * @rmem: reserved_mem struct of the memory region to be initialized. * * This function is used to call the region specific initialization * function for a reserved memory region. */ static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem) { unsigned long node = rmem->fdt_node; int err = 0; bool nomap; nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; err = __reserved_mem_init_node(rmem); if (err != 0 && err != -ENOENT) { pr_info("node %s compatible matching fail\n", rmem->name); if (nomap) memblock_clear_nomap(rmem->base, rmem->size); else memblock_phys_free(rmem->base, rmem->size); } else { phys_addr_t end = rmem->base + rmem->size - 1; bool reusable = (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL; pr_info("%pa..%pa (%lu KiB) %s %s %s\n", &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K), nomap ? "nomap" : "map", reusable ? "reusable" : "non-reusable", rmem->name ? rmem->name : "unknown"); } } struct rmem_assigned_device { struct device *dev; struct reserved_mem *rmem; struct list_head list; }; static LIST_HEAD(of_rmem_assigned_device_list); static DEFINE_MUTEX(of_rmem_assigned_device_mutex); /** * of_reserved_mem_device_init_by_idx() - assign reserved memory region to * given device * @dev: Pointer to the device to configure * @np: Pointer to the device_node with 'reserved-memory' property * @idx: Index of selected region * * This function assigns respective DMA-mapping operations based on reserved * memory region specified by 'memory-region' property in @np node to the @dev * device. When driver needs to use more than one reserved memory region, it * should allocate child devices and initialize regions by name for each of * child device. * * Returns error code or zero on success. */ int of_reserved_mem_device_init_by_idx(struct device *dev, struct device_node *np, int idx) { struct rmem_assigned_device *rd; struct device_node *target; struct reserved_mem *rmem; int ret; if (!np || !dev) return -EINVAL; target = of_parse_phandle(np, "memory-region", idx); if (!target) return -ENODEV; if (!of_device_is_available(target)) { of_node_put(target); return 0; } rmem = of_reserved_mem_lookup(target); of_node_put(target); if (!rmem || !rmem->ops || !rmem->ops->device_init) return -EINVAL; rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL); if (!rd) return -ENOMEM; ret = rmem->ops->device_init(rmem, dev); if (ret == 0) { rd->dev = dev; rd->rmem = rmem; mutex_lock(&of_rmem_assigned_device_mutex); list_add(&rd->list, &of_rmem_assigned_device_list); mutex_unlock(&of_rmem_assigned_device_mutex); dev_info(dev, "assigned reserved memory node %s\n", rmem->name); } else { kfree(rd); } return ret; } EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx); /** * of_reserved_mem_device_init_by_name() - assign named reserved memory region * to given device * @dev: pointer to the device to configure * @np: pointer to the device node with 'memory-region' property * @name: name of the selected memory region * * Returns: 0 on success or a negative error-code on failure. */ int of_reserved_mem_device_init_by_name(struct device *dev, struct device_node *np, const char *name) { int idx = of_property_match_string(np, "memory-region-names", name); return of_reserved_mem_device_init_by_idx(dev, np, idx); } EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name); /** * of_reserved_mem_device_release() - release reserved memory device structures * @dev: Pointer to the device to deconfigure * * This function releases structures allocated for memory region handling for * the given device. */ void of_reserved_mem_device_release(struct device *dev) { struct rmem_assigned_device *rd, *tmp; LIST_HEAD(release_list); mutex_lock(&of_rmem_assigned_device_mutex); list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) { if (rd->dev == dev) list_move_tail(&rd->list, &release_list); } mutex_unlock(&of_rmem_assigned_device_mutex); list_for_each_entry_safe(rd, tmp, &release_list, list) { if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release) rd->rmem->ops->device_release(rd->rmem, dev); kfree(rd); } } EXPORT_SYMBOL_GPL(of_reserved_mem_device_release); /** * of_reserved_mem_lookup() - acquire reserved_mem from a device node * @np: node pointer of the desired reserved-memory region * * This function allows drivers to acquire a reference to the reserved_mem * struct based on a device node handle. * * Returns a reserved_mem reference, or NULL on error. */ struct reserved_mem *of_reserved_mem_lookup(struct device_node *np) { const char *name; int i; if (!np->full_name) return NULL; name = kbasename(np->full_name); for (i = 0; i < reserved_mem_count; i++) if (!strcmp(reserved_mem[i].name, name)) return &reserved_mem[i]; return NULL; } EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);