// SPDX-License-Identifier: GPL-2.0-or-later /* * AMD Address Translation Library * * map.c : Functions to read and decode DRAM address maps * * Copyright (c) 2023, Advanced Micro Devices, Inc. * All Rights Reserved. * * Author: Yazen Ghannam */ #include "internal.h" static int df2_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF2_INTLV_NUM_CHAN, ctx->map.base); if (ctx->map.intlv_mode == 8) ctx->map.intlv_mode = DF2_2CHAN_HASH; if (ctx->map.intlv_mode != NONE && ctx->map.intlv_mode != NOHASH_2CHAN && ctx->map.intlv_mode != DF2_2CHAN_HASH) return -EINVAL; return 0; } static int df3_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF3_INTLV_NUM_CHAN, ctx->map.base); return 0; } static int df3p5_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF3p5_INTLV_NUM_CHAN, ctx->map.base); if (ctx->map.intlv_mode == DF3_6CHAN) return -EINVAL; return 0; } static int df4_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF4_INTLV_NUM_CHAN, ctx->map.intlv); if (ctx->map.intlv_mode == DF3_COD4_2CHAN_HASH || ctx->map.intlv_mode == DF3_COD2_4CHAN_HASH || ctx->map.intlv_mode == DF3_COD1_8CHAN_HASH || ctx->map.intlv_mode == DF3_6CHAN) return -EINVAL; return 0; } static int df4p5_get_intlv_mode(struct addr_ctx *ctx) { ctx->map.intlv_mode = FIELD_GET(DF4p5_INTLV_NUM_CHAN, ctx->map.intlv); if (ctx->map.intlv_mode <= NOHASH_32CHAN) return 0; if (ctx->map.intlv_mode >= MI3_HASH_8CHAN && ctx->map.intlv_mode <= MI3_HASH_32CHAN) return 0; /* * Modes matching the ranges above are returned as-is. * * All other modes are "fixed up" by adding 20h to make a unique value. */ ctx->map.intlv_mode += 0x20; return 0; } static int get_intlv_mode(struct addr_ctx *ctx) { int ret; switch (df_cfg.rev) { case DF2: ret = df2_get_intlv_mode(ctx); break; case DF3: ret = df3_get_intlv_mode(ctx); break; case DF3p5: ret = df3p5_get_intlv_mode(ctx); break; case DF4: ret = df4_get_intlv_mode(ctx); break; case DF4p5: ret = df4p5_get_intlv_mode(ctx); break; default: ret = -EINVAL; } if (ret) atl_debug_on_bad_df_rev(); return ret; } static u64 get_hi_addr_offset(u32 reg_dram_offset) { u8 shift = DF_DRAM_BASE_LIMIT_LSB; u64 hi_addr_offset; switch (df_cfg.rev) { case DF2: hi_addr_offset = FIELD_GET(DF2_HI_ADDR_OFFSET, reg_dram_offset); break; case DF3: case DF3p5: hi_addr_offset = FIELD_GET(DF3_HI_ADDR_OFFSET, reg_dram_offset); break; case DF4: case DF4p5: hi_addr_offset = FIELD_GET(DF4_HI_ADDR_OFFSET, reg_dram_offset); break; default: hi_addr_offset = 0; atl_debug_on_bad_df_rev(); } if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) shift = MI300_DRAM_LIMIT_LSB; return hi_addr_offset << shift; } /* * Returns: 0 if offset is disabled. * 1 if offset is enabled. * -EINVAL on error. */ static int get_dram_offset(struct addr_ctx *ctx, u64 *norm_offset) { u32 reg_dram_offset; u8 map_num; /* Should not be called for map 0. */ if (!ctx->map.num) { atl_debug(ctx, "Trying to find DRAM offset for map 0"); return -EINVAL; } /* * DramOffset registers don't exist for map 0, so the base register * actually refers to map 1. * Adjust the map_num for the register offsets. */ map_num = ctx->map.num - 1; if (df_cfg.rev >= DF4) { /* Read D18F7x140 (DramOffset) */ if (df_indirect_read_instance(ctx->node_id, 7, 0x140 + (4 * map_num), ctx->inst_id, ®_dram_offset)) return -EINVAL; } else { /* Read D18F0x1B4 (DramOffset) */ if (df_indirect_read_instance(ctx->node_id, 0, 0x1B4 + (4 * map_num), ctx->inst_id, ®_dram_offset)) return -EINVAL; } if (!FIELD_GET(DF_HI_ADDR_OFFSET_EN, reg_dram_offset)) return 0; *norm_offset = get_hi_addr_offset(reg_dram_offset); return 1; } static int df3_6ch_get_dram_addr_map(struct addr_ctx *ctx) { u16 dst_fabric_id = FIELD_GET(DF3_DST_FABRIC_ID, ctx->map.limit); u8 i, j, shift = 4, mask = 0xF; u32 reg, offset = 0x60; u16 dst_node_id; /* Get Socket 1 register. */ if (dst_fabric_id & df_cfg.socket_id_mask) offset = 0x68; /* Read D18F0x06{0,8} (DF::Skt0CsTargetRemap0)/(DF::Skt0CsTargetRemap1) */ if (df_indirect_read_broadcast(ctx->node_id, 0, offset, ®)) return -EINVAL; /* Save 8 remap entries. */ for (i = 0, j = 0; i < 8; i++, j++) ctx->map.remap_array[i] = (reg >> (j * shift)) & mask; dst_node_id = dst_fabric_id & df_cfg.node_id_mask; dst_node_id >>= df_cfg.node_id_shift; /* Read D18F2x090 (DF::Np2ChannelConfig) */ if (df_indirect_read_broadcast(dst_node_id, 2, 0x90, ®)) return -EINVAL; ctx->map.np2_bits = FIELD_GET(DF_LOG2_ADDR_64K_SPACE0, reg); return 0; } static int df2_get_dram_addr_map(struct addr_ctx *ctx) { /* Read D18F0x110 (DramBaseAddress). */ if (df_indirect_read_instance(ctx->node_id, 0, 0x110 + (8 * ctx->map.num), ctx->inst_id, &ctx->map.base)) return -EINVAL; /* Read D18F0x114 (DramLimitAddress). */ if (df_indirect_read_instance(ctx->node_id, 0, 0x114 + (8 * ctx->map.num), ctx->inst_id, &ctx->map.limit)) return -EINVAL; return 0; } static int df3_get_dram_addr_map(struct addr_ctx *ctx) { if (df2_get_dram_addr_map(ctx)) return -EINVAL; /* Read D18F0x3F8 (DfGlobalCtl). */ if (df_indirect_read_instance(ctx->node_id, 0, 0x3F8, ctx->inst_id, &ctx->map.ctl)) return -EINVAL; return 0; } static int df4_get_dram_addr_map(struct addr_ctx *ctx) { u8 remap_sel, i, j, shift = 4, mask = 0xF; u32 remap_reg; /* Read D18F7xE00 (DramBaseAddress). */ if (df_indirect_read_instance(ctx->node_id, 7, 0xE00 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.base)) return -EINVAL; /* Read D18F7xE04 (DramLimitAddress). */ if (df_indirect_read_instance(ctx->node_id, 7, 0xE04 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.limit)) return -EINVAL; /* Read D18F7xE08 (DramAddressCtl). */ if (df_indirect_read_instance(ctx->node_id, 7, 0xE08 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.ctl)) return -EINVAL; /* Read D18F7xE0C (DramAddressIntlv). */ if (df_indirect_read_instance(ctx->node_id, 7, 0xE0C + (16 * ctx->map.num), ctx->inst_id, &ctx->map.intlv)) return -EINVAL; /* Check if Remap Enable bit is valid. */ if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl)) return 0; /* Fill with bogus values, because '0' is a valid value. */ memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array)); /* Get Remap registers. */ remap_sel = FIELD_GET(DF4_REMAP_SEL, ctx->map.ctl); /* Read D18F7x180 (CsTargetRemap0A). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (8 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save first 8 remap entries. */ for (i = 0, j = 0; i < 8; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; /* Read D18F7x184 (CsTargetRemap0B). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (8 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save next 8 remap entries. */ for (i = 8, j = 0; i < 16; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; return 0; } static int df4p5_get_dram_addr_map(struct addr_ctx *ctx) { u8 remap_sel, i, j, shift = 5, mask = 0x1F; u32 remap_reg; /* Read D18F7x200 (DramBaseAddress). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x200 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.base)) return -EINVAL; /* Read D18F7x204 (DramLimitAddress). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x204 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.limit)) return -EINVAL; /* Read D18F7x208 (DramAddressCtl). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x208 + (16 * ctx->map.num), ctx->inst_id, &ctx->map.ctl)) return -EINVAL; /* Read D18F7x20C (DramAddressIntlv). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x20C + (16 * ctx->map.num), ctx->inst_id, &ctx->map.intlv)) return -EINVAL; /* Check if Remap Enable bit is valid. */ if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl)) return 0; /* Fill with bogus values, because '0' is a valid value. */ memset(&ctx->map.remap_array, 0xFF, sizeof(ctx->map.remap_array)); /* Get Remap registers. */ remap_sel = FIELD_GET(DF4p5_REMAP_SEL, ctx->map.ctl); /* Read D18F7x180 (CsTargetRemap0A). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x180 + (24 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save first 6 remap entries. */ for (i = 0, j = 0; i < 6; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; /* Read D18F7x184 (CsTargetRemap0B). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x184 + (24 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save next 6 remap entries. */ for (i = 6, j = 0; i < 12; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; /* Read D18F7x188 (CsTargetRemap0C). */ if (df_indirect_read_instance(ctx->node_id, 7, 0x188 + (24 * remap_sel), ctx->inst_id, &remap_reg)) return -EINVAL; /* Save next 6 remap entries. */ for (i = 12, j = 0; i < 18; i++, j++) ctx->map.remap_array[i] = (remap_reg >> (j * shift)) & mask; return 0; } static int get_dram_addr_map(struct addr_ctx *ctx) { switch (df_cfg.rev) { case DF2: return df2_get_dram_addr_map(ctx); case DF3: case DF3p5: return df3_get_dram_addr_map(ctx); case DF4: return df4_get_dram_addr_map(ctx); case DF4p5: return df4p5_get_dram_addr_map(ctx); default: atl_debug_on_bad_df_rev(); return -EINVAL; } } static int get_coh_st_fabric_id(struct addr_ctx *ctx) { u32 reg; /* * On MI300 systems, the Coherent Station Fabric ID is derived * later. And it does not depend on the register value. */ if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous) return 0; /* Read D18F0x50 (FabricBlockInstanceInformation3). */ if (df_indirect_read_instance(ctx->node_id, 0, 0x50, ctx->inst_id, ®)) return -EINVAL; if (df_cfg.rev < DF4p5) ctx->coh_st_fabric_id = FIELD_GET(DF2_COH_ST_FABRIC_ID, reg); else ctx->coh_st_fabric_id = FIELD_GET(DF4p5_COH_ST_FABRIC_ID, reg); return 0; } static int find_normalized_offset(struct addr_ctx *ctx, u64 *norm_offset) { u64 last_offset = 0; int ret; for (ctx->map.num = 1; ctx->map.num < df_cfg.num_coh_st_maps; ctx->map.num++) { ret = get_dram_offset(ctx, norm_offset); if (ret < 0) return ret; /* Continue search if this map's offset is not enabled. */ if (!ret) continue; /* Enabled offsets should never be 0. */ if (*norm_offset == 0) { atl_debug(ctx, "Enabled map %u offset is 0", ctx->map.num); return -EINVAL; } /* Offsets should always increase from one map to the next. */ if (*norm_offset <= last_offset) { atl_debug(ctx, "Map %u offset (0x%016llx) <= previous (0x%016llx)", ctx->map.num, *norm_offset, last_offset); return -EINVAL; } /* Match if this map's offset is less than the current calculated address. */ if (ctx->ret_addr >= *norm_offset) break; last_offset = *norm_offset; } /* * Finished search without finding a match. * Reset to map 0 and no offset. */ if (ctx->map.num >= df_cfg.num_coh_st_maps) { ctx->map.num = 0; *norm_offset = 0; } return 0; } static bool valid_map(struct addr_ctx *ctx) { if (df_cfg.rev >= DF4) return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.ctl); else return FIELD_GET(DF_ADDR_RANGE_VAL, ctx->map.base); } static int get_address_map_common(struct addr_ctx *ctx) { u64 norm_offset = 0; if (get_coh_st_fabric_id(ctx)) return -EINVAL; if (find_normalized_offset(ctx, &norm_offset)) return -EINVAL; if (get_dram_addr_map(ctx)) return -EINVAL; if (!valid_map(ctx)) return -EINVAL; ctx->ret_addr -= norm_offset; return 0; } static u8 get_num_intlv_chan(struct addr_ctx *ctx) { switch (ctx->map.intlv_mode) { case NONE: return 1; case NOHASH_2CHAN: case DF2_2CHAN_HASH: case DF3_COD4_2CHAN_HASH: case DF4_NPS4_2CHAN_HASH: case DF4p5_NPS4_2CHAN_1K_HASH: case DF4p5_NPS4_2CHAN_2K_HASH: return 2; case DF4_NPS4_3CHAN_HASH: case DF4p5_NPS4_3CHAN_1K_HASH: case DF4p5_NPS4_3CHAN_2K_HASH: return 3; case NOHASH_4CHAN: case DF3_COD2_4CHAN_HASH: case DF4_NPS2_4CHAN_HASH: case DF4p5_NPS2_4CHAN_1K_HASH: case DF4p5_NPS2_4CHAN_2K_HASH: return 4; case DF4_NPS2_5CHAN_HASH: case DF4p5_NPS2_5CHAN_1K_HASH: case DF4p5_NPS2_5CHAN_2K_HASH: return 5; case DF3_6CHAN: case DF4_NPS2_6CHAN_HASH: case DF4p5_NPS2_6CHAN_1K_HASH: case DF4p5_NPS2_6CHAN_2K_HASH: return 6; case NOHASH_8CHAN: case DF3_COD1_8CHAN_HASH: case DF4_NPS1_8CHAN_HASH: case MI3_HASH_8CHAN: case DF4p5_NPS1_8CHAN_1K_HASH: case DF4p5_NPS1_8CHAN_2K_HASH: return 8; case DF4_NPS1_10CHAN_HASH: case DF4p5_NPS1_10CHAN_1K_HASH: case DF4p5_NPS1_10CHAN_2K_HASH: return 10; case DF4_NPS1_12CHAN_HASH: case DF4p5_NPS1_12CHAN_1K_HASH: case DF4p5_NPS1_12CHAN_2K_HASH: return 12; case NOHASH_16CHAN: case MI3_HASH_16CHAN: case DF4p5_NPS1_16CHAN_1K_HASH: case DF4p5_NPS1_16CHAN_2K_HASH: return 16; case DF4p5_NPS0_24CHAN_1K_HASH: case DF4p5_NPS0_24CHAN_2K_HASH: return 24; case NOHASH_32CHAN: case MI3_HASH_32CHAN: return 32; default: atl_debug_on_bad_intlv_mode(ctx); return 0; } } static void calculate_intlv_bits(struct addr_ctx *ctx) { ctx->map.num_intlv_chan = get_num_intlv_chan(ctx); ctx->map.total_intlv_chan = ctx->map.num_intlv_chan; ctx->map.total_intlv_chan *= ctx->map.num_intlv_dies; ctx->map.total_intlv_chan *= ctx->map.num_intlv_sockets; /* * Get the number of bits needed to cover this many channels. * order_base_2() rounds up automatically. */ ctx->map.total_intlv_bits = order_base_2(ctx->map.total_intlv_chan); } static u8 get_intlv_bit_pos(struct addr_ctx *ctx) { u8 addr_sel = 0; switch (df_cfg.rev) { case DF2: addr_sel = FIELD_GET(DF2_INTLV_ADDR_SEL, ctx->map.base); break; case DF3: case DF3p5: addr_sel = FIELD_GET(DF3_INTLV_ADDR_SEL, ctx->map.base); break; case DF4: case DF4p5: addr_sel = FIELD_GET(DF4_INTLV_ADDR_SEL, ctx->map.intlv); break; default: atl_debug_on_bad_df_rev(); break; } /* Add '8' to get the 'interleave bit position'. */ return addr_sel + 8; } static u8 get_num_intlv_dies(struct addr_ctx *ctx) { u8 dies = 0; switch (df_cfg.rev) { case DF2: dies = FIELD_GET(DF2_INTLV_NUM_DIES, ctx->map.limit); break; case DF3: dies = FIELD_GET(DF3_INTLV_NUM_DIES, ctx->map.base); break; case DF3p5: dies = FIELD_GET(DF3p5_INTLV_NUM_DIES, ctx->map.base); break; case DF4: case DF4p5: dies = FIELD_GET(DF4_INTLV_NUM_DIES, ctx->map.intlv); break; default: atl_debug_on_bad_df_rev(); break; } /* Register value is log2, e.g. 0 -> 1 die, 1 -> 2 dies, etc. */ return 1 << dies; } static u8 get_num_intlv_sockets(struct addr_ctx *ctx) { u8 sockets = 0; switch (df_cfg.rev) { case DF2: sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.limit); break; case DF3: case DF3p5: sockets = FIELD_GET(DF2_INTLV_NUM_SOCKETS, ctx->map.base); break; case DF4: case DF4p5: sockets = FIELD_GET(DF4_INTLV_NUM_SOCKETS, ctx->map.intlv); break; default: atl_debug_on_bad_df_rev(); break; } /* Register value is log2, e.g. 0 -> 1 sockets, 1 -> 2 sockets, etc. */ return 1 << sockets; } static int get_global_map_data(struct addr_ctx *ctx) { if (get_intlv_mode(ctx)) return -EINVAL; if (ctx->map.intlv_mode == DF3_6CHAN && df3_6ch_get_dram_addr_map(ctx)) return -EINVAL; ctx->map.intlv_bit_pos = get_intlv_bit_pos(ctx); ctx->map.num_intlv_dies = get_num_intlv_dies(ctx); ctx->map.num_intlv_sockets = get_num_intlv_sockets(ctx); calculate_intlv_bits(ctx); return 0; } /* * Verify the interleave bits are correct in the different interleaving * settings. * * If @num_intlv_dies and/or @num_intlv_sockets are 1, it means the * respective interleaving is disabled. */ static inline bool map_bits_valid(struct addr_ctx *ctx, u8 bit1, u8 bit2, u8 num_intlv_dies, u8 num_intlv_sockets) { if (!(ctx->map.intlv_bit_pos == bit1 || ctx->map.intlv_bit_pos == bit2)) { pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos); return false; } if (ctx->map.num_intlv_dies > num_intlv_dies) { pr_debug("Invalid number of interleave dies: %u", ctx->map.num_intlv_dies); return false; } if (ctx->map.num_intlv_sockets > num_intlv_sockets) { pr_debug("Invalid number of interleave sockets: %u", ctx->map.num_intlv_sockets); return false; } return true; } static int validate_address_map(struct addr_ctx *ctx) { switch (ctx->map.intlv_mode) { case DF2_2CHAN_HASH: case DF3_COD4_2CHAN_HASH: case DF3_COD2_4CHAN_HASH: case DF3_COD1_8CHAN_HASH: if (!map_bits_valid(ctx, 8, 9, 1, 1)) goto err; break; case DF4_NPS4_2CHAN_HASH: case DF4_NPS2_4CHAN_HASH: case DF4_NPS1_8CHAN_HASH: case DF4p5_NPS4_2CHAN_1K_HASH: case DF4p5_NPS4_2CHAN_2K_HASH: case DF4p5_NPS2_4CHAN_1K_HASH: case DF4p5_NPS2_4CHAN_2K_HASH: case DF4p5_NPS1_8CHAN_1K_HASH: case DF4p5_NPS1_8CHAN_2K_HASH: case DF4p5_NPS1_16CHAN_1K_HASH: case DF4p5_NPS1_16CHAN_2K_HASH: if (!map_bits_valid(ctx, 8, 8, 1, 2)) goto err; break; case DF4p5_NPS4_3CHAN_1K_HASH: case DF4p5_NPS4_3CHAN_2K_HASH: case DF4p5_NPS2_5CHAN_1K_HASH: case DF4p5_NPS2_5CHAN_2K_HASH: case DF4p5_NPS2_6CHAN_1K_HASH: case DF4p5_NPS2_6CHAN_2K_HASH: case DF4p5_NPS1_10CHAN_1K_HASH: case DF4p5_NPS1_10CHAN_2K_HASH: case DF4p5_NPS1_12CHAN_1K_HASH: case DF4p5_NPS1_12CHAN_2K_HASH: if (ctx->map.num_intlv_sockets != 1 || !map_bits_valid(ctx, 8, 0, 1, 1)) goto err; break; case DF4p5_NPS0_24CHAN_1K_HASH: case DF4p5_NPS0_24CHAN_2K_HASH: if (ctx->map.num_intlv_sockets < 2 || !map_bits_valid(ctx, 8, 0, 1, 2)) goto err; break; case MI3_HASH_8CHAN: case MI3_HASH_16CHAN: case MI3_HASH_32CHAN: if (!map_bits_valid(ctx, 8, 8, 4, 1)) goto err; break; /* Nothing to do for modes that don't need special validation checks. */ default: break; } return 0; err: atl_debug(ctx, "Inconsistent address map"); return -EINVAL; } static void dump_address_map(struct dram_addr_map *map) { u8 i; pr_debug("intlv_mode=0x%x", map->intlv_mode); pr_debug("num=0x%x", map->num); pr_debug("base=0x%x", map->base); pr_debug("limit=0x%x", map->limit); pr_debug("ctl=0x%x", map->ctl); pr_debug("intlv=0x%x", map->intlv); for (i = 0; i < MAX_COH_ST_CHANNELS; i++) pr_debug("remap_array[%u]=0x%x", i, map->remap_array[i]); pr_debug("intlv_bit_pos=%u", map->intlv_bit_pos); pr_debug("num_intlv_chan=%u", map->num_intlv_chan); pr_debug("num_intlv_dies=%u", map->num_intlv_dies); pr_debug("num_intlv_sockets=%u", map->num_intlv_sockets); pr_debug("total_intlv_chan=%u", map->total_intlv_chan); pr_debug("total_intlv_bits=%u", map->total_intlv_bits); } int get_address_map(struct addr_ctx *ctx) { int ret; ret = get_address_map_common(ctx); if (ret) return ret; ret = get_global_map_data(ctx); if (ret) return ret; dump_address_map(&ctx->map); ret = validate_address_map(ctx); if (ret) return ret; return ret; }