// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2015, 2017, 2021, The Linux Foundation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* PMIC Arbiter configuration registers */ #define PMIC_ARB_VERSION 0x0000 #define PMIC_ARB_VERSION_V2_MIN 0x20010000 #define PMIC_ARB_VERSION_V3_MIN 0x30000000 #define PMIC_ARB_VERSION_V5_MIN 0x50000000 #define PMIC_ARB_VERSION_V7_MIN 0x70000000 #define PMIC_ARB_INT_EN 0x0004 #define PMIC_ARB_FEATURES 0x0004 #define PMIC_ARB_FEATURES_PERIPH_MASK GENMASK(10, 0) #define PMIC_ARB_FEATURES1 0x0008 /* PMIC Arbiter channel registers offsets */ #define PMIC_ARB_CMD 0x00 #define PMIC_ARB_CONFIG 0x04 #define PMIC_ARB_STATUS 0x08 #define PMIC_ARB_WDATA0 0x10 #define PMIC_ARB_WDATA1 0x14 #define PMIC_ARB_RDATA0 0x18 #define PMIC_ARB_RDATA1 0x1C /* Mapping Table */ #define SPMI_MAPPING_TABLE_REG(N) (0x0B00 + (4 * (N))) #define SPMI_MAPPING_BIT_INDEX(X) (((X) >> 18) & 0xF) #define SPMI_MAPPING_BIT_IS_0_FLAG(X) (((X) >> 17) & 0x1) #define SPMI_MAPPING_BIT_IS_0_RESULT(X) (((X) >> 9) & 0xFF) #define SPMI_MAPPING_BIT_IS_1_FLAG(X) (((X) >> 8) & 0x1) #define SPMI_MAPPING_BIT_IS_1_RESULT(X) (((X) >> 0) & 0xFF) #define SPMI_MAPPING_TABLE_TREE_DEPTH 16 /* Maximum of 16-bits */ #define PMIC_ARB_MAX_PPID BIT(12) /* PPID is 12bit */ #define PMIC_ARB_APID_VALID BIT(15) #define PMIC_ARB_CHAN_IS_IRQ_OWNER(reg) ((reg) & BIT(24)) #define INVALID_EE 0xFF /* Ownership Table */ #define SPMI_OWNERSHIP_PERIPH2OWNER(X) ((X) & 0x7) /* Channel Status fields */ enum pmic_arb_chnl_status { PMIC_ARB_STATUS_DONE = BIT(0), PMIC_ARB_STATUS_FAILURE = BIT(1), PMIC_ARB_STATUS_DENIED = BIT(2), PMIC_ARB_STATUS_DROPPED = BIT(3), }; /* Command register fields */ #define PMIC_ARB_CMD_MAX_BYTE_COUNT 8 /* Command Opcodes */ enum pmic_arb_cmd_op_code { PMIC_ARB_OP_EXT_WRITEL = 0, PMIC_ARB_OP_EXT_READL = 1, PMIC_ARB_OP_EXT_WRITE = 2, PMIC_ARB_OP_RESET = 3, PMIC_ARB_OP_SLEEP = 4, PMIC_ARB_OP_SHUTDOWN = 5, PMIC_ARB_OP_WAKEUP = 6, PMIC_ARB_OP_AUTHENTICATE = 7, PMIC_ARB_OP_MSTR_READ = 8, PMIC_ARB_OP_MSTR_WRITE = 9, PMIC_ARB_OP_EXT_READ = 13, PMIC_ARB_OP_WRITE = 14, PMIC_ARB_OP_READ = 15, PMIC_ARB_OP_ZERO_WRITE = 16, }; /* * PMIC arbiter version 5 uses different register offsets for read/write vs * observer channels. */ enum pmic_arb_channel { PMIC_ARB_CHANNEL_RW, PMIC_ARB_CHANNEL_OBS, }; #define PMIC_ARB_MAX_BUSES 2 /* Maximum number of support PMIC peripherals */ #define PMIC_ARB_MAX_PERIPHS 512 #define PMIC_ARB_MAX_PERIPHS_V7 1024 #define PMIC_ARB_TIMEOUT_US 1000 #define PMIC_ARB_MAX_TRANS_BYTES (8) #define PMIC_ARB_APID_MASK 0xFF #define PMIC_ARB_PPID_MASK 0xFFF /* interrupt enable bit */ #define SPMI_PIC_ACC_ENABLE_BIT BIT(0) #define spec_to_hwirq(slave_id, periph_id, irq_id, apid) \ ((((slave_id) & 0xF) << 28) | \ (((periph_id) & 0xFF) << 20) | \ (((irq_id) & 0x7) << 16) | \ (((apid) & 0x3FF) << 0)) #define hwirq_to_sid(hwirq) (((hwirq) >> 28) & 0xF) #define hwirq_to_per(hwirq) (((hwirq) >> 20) & 0xFF) #define hwirq_to_irq(hwirq) (((hwirq) >> 16) & 0x7) #define hwirq_to_apid(hwirq) (((hwirq) >> 0) & 0x3FF) struct pmic_arb_ver_ops; struct apid_data { u16 ppid; u8 write_ee; u8 irq_ee; }; struct spmi_pmic_arb; /** * struct spmi_pmic_arb_bus - SPMI PMIC Arbiter Bus object * * @pmic_arb: the SPMI PMIC Arbiter the bus belongs to. * @domain: irq domain object for PMIC IRQ domain * @intr: address of the SPMI interrupt control registers. * @cnfg: address of the PMIC Arbiter configuration registers. * @spmic: spmi controller registered for this bus * @lock: lock to synchronize accesses. * @base_apid: on v7: minimum APID associated with the particular SPMI * bus instance * @apid_count: on v5 and v7: number of APIDs associated with the * particular SPMI bus instance * @mapping_table: in-memory copy of PPID -> APID mapping table. * @mapping_table_valid:bitmap containing valid-only periphs * @ppid_to_apid: in-memory copy of PPID -> APID mapping table. * @last_apid: Highest value APID in use * @apid_data: Table of data for all APIDs * @min_apid: minimum APID (used for bounding IRQ search) * @max_apid: maximum APID * @irq: PMIC ARB interrupt. * @id: unique ID of the bus */ struct spmi_pmic_arb_bus { struct spmi_pmic_arb *pmic_arb; struct irq_domain *domain; void __iomem *intr; void __iomem *cnfg; struct spmi_controller *spmic; raw_spinlock_t lock; u16 base_apid; int apid_count; u32 *mapping_table; DECLARE_BITMAP(mapping_table_valid, PMIC_ARB_MAX_PERIPHS); u16 *ppid_to_apid; u16 last_apid; struct apid_data *apid_data; u16 min_apid; u16 max_apid; int irq; u8 id; }; /** * struct spmi_pmic_arb - SPMI PMIC Arbiter object * * @rd_base: on v1 "core", on v2 "observer" register base off DT. * @wr_base: on v1 "core", on v2 "chnls" register base off DT. * @core: core register base for v2 and above only (see above) * @core_size: core register base size * @channel: execution environment channel to use for accesses. * @ee: the current Execution Environment * @ver_ops: version dependent operations. * @max_periphs: Number of elements in apid_data[] * @buses: per arbiter buses instances * @buses_available: number of buses registered */ struct spmi_pmic_arb { void __iomem *rd_base; void __iomem *wr_base; void __iomem *core; resource_size_t core_size; u8 channel; u8 ee; const struct pmic_arb_ver_ops *ver_ops; int max_periphs; struct spmi_pmic_arb_bus *buses[PMIC_ARB_MAX_BUSES]; int buses_available; }; /** * struct pmic_arb_ver_ops - version dependent functionality. * * @ver_str: version string. * @get_core_resources: initializes the core, observer and channels * @init_apid: finds the apid base and count * @ppid_to_apid: finds the apid for a given ppid. * @non_data_cmd: on v1 issues an spmi non-data command. * on v2 no HW support, returns -EOPNOTSUPP. * @offset: on v1 offset of per-ee channel. * on v2 offset of per-ee and per-ppid channel. * @fmt_cmd: formats a GENI/SPMI command. * @owner_acc_status: on v1 address of PMIC_ARB_SPMI_PIC_OWNERm_ACC_STATUSn * on v2 address of SPMI_PIC_OWNERm_ACC_STATUSn. * @acc_enable: on v1 address of PMIC_ARB_SPMI_PIC_ACC_ENABLEn * on v2 address of SPMI_PIC_ACC_ENABLEn. * @irq_status: on v1 address of PMIC_ARB_SPMI_PIC_IRQ_STATUSn * on v2 address of SPMI_PIC_IRQ_STATUSn. * @irq_clear: on v1 address of PMIC_ARB_SPMI_PIC_IRQ_CLEARn * on v2 address of SPMI_PIC_IRQ_CLEARn. * @apid_map_offset: offset of PMIC_ARB_REG_CHNLn * @apid_owner: on v2 and later address of SPMI_PERIPHn_2OWNER_TABLE_REG */ struct pmic_arb_ver_ops { const char *ver_str; int (*get_core_resources)(struct platform_device *pdev, void __iomem *core); int (*init_apid)(struct spmi_pmic_arb_bus *bus, int index); int (*ppid_to_apid)(struct spmi_pmic_arb_bus *bus, u16 ppid); /* spmi commands (read_cmd, write_cmd, cmd) functionality */ int (*offset)(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr, enum pmic_arb_channel ch_type); u32 (*fmt_cmd)(u8 opc, u8 sid, u16 addr, u8 bc); int (*non_data_cmd)(struct spmi_controller *ctrl, u8 opc, u8 sid); /* Interrupts controller functionality (offset of PIC registers) */ void __iomem *(*owner_acc_status)(struct spmi_pmic_arb_bus *bus, u8 m, u16 n); void __iomem *(*acc_enable)(struct spmi_pmic_arb_bus *bus, u16 n); void __iomem *(*irq_status)(struct spmi_pmic_arb_bus *bus, u16 n); void __iomem *(*irq_clear)(struct spmi_pmic_arb_bus *bus, u16 n); u32 (*apid_map_offset)(u16 n); void __iomem *(*apid_owner)(struct spmi_pmic_arb_bus *bus, u16 n); }; static inline void pmic_arb_base_write(struct spmi_pmic_arb *pmic_arb, u32 offset, u32 val) { writel_relaxed(val, pmic_arb->wr_base + offset); } static inline void pmic_arb_set_rd_cmd(struct spmi_pmic_arb *pmic_arb, u32 offset, u32 val) { writel_relaxed(val, pmic_arb->rd_base + offset); } /** * pmic_arb_read_data: reads pmic-arb's register and copy 1..4 bytes to buf * @pmic_arb: the SPMI PMIC arbiter * @bc: byte count -1. range: 0..3 * @reg: register's address * @buf: output parameter, length must be bc + 1 */ static void pmic_arb_read_data(struct spmi_pmic_arb *pmic_arb, u8 *buf, u32 reg, u8 bc) { u32 data = __raw_readl(pmic_arb->rd_base + reg); memcpy(buf, &data, (bc & 3) + 1); } /** * pmic_arb_write_data: write 1..4 bytes from buf to pmic-arb's register * @pmic_arb: the SPMI PMIC arbiter * @bc: byte-count -1. range: 0..3. * @reg: register's address. * @buf: buffer to write. length must be bc + 1. */ static void pmic_arb_write_data(struct spmi_pmic_arb *pmic_arb, const u8 *buf, u32 reg, u8 bc) { u32 data = 0; memcpy(&data, buf, (bc & 3) + 1); __raw_writel(data, pmic_arb->wr_base + reg); } static int pmic_arb_wait_for_done(struct spmi_controller *ctrl, void __iomem *base, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl); struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u32 status = 0; u32 timeout = PMIC_ARB_TIMEOUT_US; u32 offset; int rc; rc = pmic_arb->ver_ops->offset(bus, sid, addr, ch_type); if (rc < 0) return rc; offset = rc; offset += PMIC_ARB_STATUS; while (timeout--) { status = readl_relaxed(base + offset); if (status & PMIC_ARB_STATUS_DONE) { if (status & PMIC_ARB_STATUS_DENIED) { dev_err(&ctrl->dev, "%s: %#x %#x: transaction denied (%#x)\n", __func__, sid, addr, status); return -EPERM; } if (status & PMIC_ARB_STATUS_FAILURE) { dev_err(&ctrl->dev, "%s: %#x %#x: transaction failed (%#x) reg: 0x%x\n", __func__, sid, addr, status, offset); WARN_ON(1); return -EIO; } if (status & PMIC_ARB_STATUS_DROPPED) { dev_err(&ctrl->dev, "%s: %#x %#x: transaction dropped (%#x)\n", __func__, sid, addr, status); return -EIO; } return 0; } udelay(1); } dev_err(&ctrl->dev, "%s: %#x %#x %#x: timeout, status %#x\n", __func__, bus->id, sid, addr, status); return -ETIMEDOUT; } static int pmic_arb_non_data_cmd_v1(struct spmi_controller *ctrl, u8 opc, u8 sid) { struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl); struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; unsigned long flags; u32 cmd; int rc; u32 offset; rc = pmic_arb->ver_ops->offset(bus, sid, 0, PMIC_ARB_CHANNEL_RW); if (rc < 0) return rc; offset = rc; cmd = ((opc | 0x40) << 27) | ((sid & 0xf) << 20); raw_spin_lock_irqsave(&bus->lock, flags); pmic_arb_base_write(pmic_arb, offset + PMIC_ARB_CMD, cmd); rc = pmic_arb_wait_for_done(ctrl, pmic_arb->wr_base, sid, 0, PMIC_ARB_CHANNEL_RW); raw_spin_unlock_irqrestore(&bus->lock, flags); return rc; } static int pmic_arb_non_data_cmd_v2(struct spmi_controller *ctrl, u8 opc, u8 sid) { return -EOPNOTSUPP; } /* Non-data command */ static int pmic_arb_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid) { struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl); dev_dbg(&ctrl->dev, "cmd op:0x%x sid:%d\n", opc, sid); /* Check for valid non-data command */ if (opc < SPMI_CMD_RESET || opc > SPMI_CMD_WAKEUP) return -EINVAL; return pmic_arb->ver_ops->non_data_cmd(ctrl, opc, sid); } static int pmic_arb_fmt_read_cmd(struct spmi_pmic_arb_bus *bus, u8 opc, u8 sid, u16 addr, size_t len, u32 *cmd, u32 *offset) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u8 bc = len - 1; int rc; rc = pmic_arb->ver_ops->offset(bus, sid, addr, PMIC_ARB_CHANNEL_OBS); if (rc < 0) return rc; *offset = rc; if (bc >= PMIC_ARB_MAX_TRANS_BYTES) { dev_err(&bus->spmic->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested\n", PMIC_ARB_MAX_TRANS_BYTES, len); return -EINVAL; } /* Check the opcode */ if (opc >= 0x60 && opc <= 0x7F) opc = PMIC_ARB_OP_READ; else if (opc >= 0x20 && opc <= 0x2F) opc = PMIC_ARB_OP_EXT_READ; else if (opc >= 0x38 && opc <= 0x3F) opc = PMIC_ARB_OP_EXT_READL; else return -EINVAL; *cmd = pmic_arb->ver_ops->fmt_cmd(opc, sid, addr, bc); return 0; } static int pmic_arb_read_cmd_unlocked(struct spmi_controller *ctrl, u32 cmd, u32 offset, u8 sid, u16 addr, u8 *buf, size_t len) { struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl); struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u8 bc = len - 1; int rc; pmic_arb_set_rd_cmd(pmic_arb, offset + PMIC_ARB_CMD, cmd); rc = pmic_arb_wait_for_done(ctrl, pmic_arb->rd_base, sid, addr, PMIC_ARB_CHANNEL_OBS); if (rc) return rc; pmic_arb_read_data(pmic_arb, buf, offset + PMIC_ARB_RDATA0, min_t(u8, bc, 3)); if (bc > 3) pmic_arb_read_data(pmic_arb, buf + 4, offset + PMIC_ARB_RDATA1, bc - 4); return 0; } static int pmic_arb_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid, u16 addr, u8 *buf, size_t len) { struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl); unsigned long flags; u32 cmd, offset; int rc; rc = pmic_arb_fmt_read_cmd(bus, opc, sid, addr, len, &cmd, &offset); if (rc) return rc; raw_spin_lock_irqsave(&bus->lock, flags); rc = pmic_arb_read_cmd_unlocked(ctrl, cmd, offset, sid, addr, buf, len); raw_spin_unlock_irqrestore(&bus->lock, flags); return rc; } static int pmic_arb_fmt_write_cmd(struct spmi_pmic_arb_bus *bus, u8 opc, u8 sid, u16 addr, size_t len, u32 *cmd, u32 *offset) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u8 bc = len - 1; int rc; rc = pmic_arb->ver_ops->offset(bus, sid, addr, PMIC_ARB_CHANNEL_RW); if (rc < 0) return rc; *offset = rc; if (bc >= PMIC_ARB_MAX_TRANS_BYTES) { dev_err(&bus->spmic->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested\n", PMIC_ARB_MAX_TRANS_BYTES, len); return -EINVAL; } /* Check the opcode */ if (opc >= 0x40 && opc <= 0x5F) opc = PMIC_ARB_OP_WRITE; else if (opc <= 0x0F) opc = PMIC_ARB_OP_EXT_WRITE; else if (opc >= 0x30 && opc <= 0x37) opc = PMIC_ARB_OP_EXT_WRITEL; else if (opc >= 0x80) opc = PMIC_ARB_OP_ZERO_WRITE; else return -EINVAL; *cmd = pmic_arb->ver_ops->fmt_cmd(opc, sid, addr, bc); return 0; } static int pmic_arb_write_cmd_unlocked(struct spmi_controller *ctrl, u32 cmd, u32 offset, u8 sid, u16 addr, const u8 *buf, size_t len) { struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl); struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u8 bc = len - 1; /* Write data to FIFOs */ pmic_arb_write_data(pmic_arb, buf, offset + PMIC_ARB_WDATA0, min_t(u8, bc, 3)); if (bc > 3) pmic_arb_write_data(pmic_arb, buf + 4, offset + PMIC_ARB_WDATA1, bc - 4); /* Start the transaction */ pmic_arb_base_write(pmic_arb, offset + PMIC_ARB_CMD, cmd); return pmic_arb_wait_for_done(ctrl, pmic_arb->wr_base, sid, addr, PMIC_ARB_CHANNEL_RW); } static int pmic_arb_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid, u16 addr, const u8 *buf, size_t len) { struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl); unsigned long flags; u32 cmd, offset; int rc; rc = pmic_arb_fmt_write_cmd(bus, opc, sid, addr, len, &cmd, &offset); if (rc) return rc; raw_spin_lock_irqsave(&bus->lock, flags); rc = pmic_arb_write_cmd_unlocked(ctrl, cmd, offset, sid, addr, buf, len); raw_spin_unlock_irqrestore(&bus->lock, flags); return rc; } static int pmic_arb_masked_write(struct spmi_controller *ctrl, u8 sid, u16 addr, const u8 *buf, const u8 *mask, size_t len) { struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl); u32 read_cmd, read_offset, write_cmd, write_offset; u8 temp[PMIC_ARB_MAX_TRANS_BYTES]; unsigned long flags; int rc, i; rc = pmic_arb_fmt_read_cmd(bus, SPMI_CMD_EXT_READL, sid, addr, len, &read_cmd, &read_offset); if (rc) return rc; rc = pmic_arb_fmt_write_cmd(bus, SPMI_CMD_EXT_WRITEL, sid, addr, len, &write_cmd, &write_offset); if (rc) return rc; raw_spin_lock_irqsave(&bus->lock, flags); rc = pmic_arb_read_cmd_unlocked(ctrl, read_cmd, read_offset, sid, addr, temp, len); if (rc) goto done; for (i = 0; i < len; i++) temp[i] = (temp[i] & ~mask[i]) | (buf[i] & mask[i]); rc = pmic_arb_write_cmd_unlocked(ctrl, write_cmd, write_offset, sid, addr, temp, len); done: raw_spin_unlock_irqrestore(&bus->lock, flags); return rc; } enum qpnpint_regs { QPNPINT_REG_RT_STS = 0x10, QPNPINT_REG_SET_TYPE = 0x11, QPNPINT_REG_POLARITY_HIGH = 0x12, QPNPINT_REG_POLARITY_LOW = 0x13, QPNPINT_REG_LATCHED_CLR = 0x14, QPNPINT_REG_EN_SET = 0x15, QPNPINT_REG_EN_CLR = 0x16, QPNPINT_REG_LATCHED_STS = 0x18, }; struct spmi_pmic_arb_qpnpint_type { u8 type; /* 1 -> edge */ u8 polarity_high; u8 polarity_low; } __packed; /* Simplified accessor functions for irqchip callbacks */ static void qpnpint_spmi_write(struct irq_data *d, u8 reg, void *buf, size_t len) { struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d); u8 sid = hwirq_to_sid(d->hwirq); u8 per = hwirq_to_per(d->hwirq); if (pmic_arb_write_cmd(bus->spmic, SPMI_CMD_EXT_WRITEL, sid, (per << 8) + reg, buf, len)) dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x\n", d->irq); } static void qpnpint_spmi_read(struct irq_data *d, u8 reg, void *buf, size_t len) { struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d); u8 sid = hwirq_to_sid(d->hwirq); u8 per = hwirq_to_per(d->hwirq); if (pmic_arb_read_cmd(bus->spmic, SPMI_CMD_EXT_READL, sid, (per << 8) + reg, buf, len)) dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x\n", d->irq); } static int qpnpint_spmi_masked_write(struct irq_data *d, u8 reg, const void *buf, const void *mask, size_t len) { struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d); u8 sid = hwirq_to_sid(d->hwirq); u8 per = hwirq_to_per(d->hwirq); int rc; rc = pmic_arb_masked_write(bus->spmic, sid, (per << 8) + reg, buf, mask, len); if (rc) dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x rc=%d\n", d->irq, rc); return rc; } static void cleanup_irq(struct spmi_pmic_arb_bus *bus, u16 apid, int id) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u16 ppid = bus->apid_data[apid].ppid; u8 sid = ppid >> 8; u8 per = ppid & 0xFF; u8 irq_mask = BIT(id); dev_err_ratelimited(&bus->spmic->dev, "%s apid=%d sid=0x%x per=0x%x irq=%d\n", __func__, apid, sid, per, id); writel_relaxed(irq_mask, pmic_arb->ver_ops->irq_clear(bus, apid)); } static int periph_interrupt(struct spmi_pmic_arb_bus *bus, u16 apid) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; unsigned int irq; u32 status, id; int handled = 0; u8 sid = (bus->apid_data[apid].ppid >> 8) & 0xF; u8 per = bus->apid_data[apid].ppid & 0xFF; status = readl_relaxed(pmic_arb->ver_ops->irq_status(bus, apid)); while (status) { id = ffs(status) - 1; status &= ~BIT(id); irq = irq_find_mapping(bus->domain, spec_to_hwirq(sid, per, id, apid)); if (irq == 0) { cleanup_irq(bus, apid, id); continue; } generic_handle_irq(irq); handled++; } return handled; } static void pmic_arb_chained_irq(struct irq_desc *desc) { struct spmi_pmic_arb_bus *bus = irq_desc_get_handler_data(desc); struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; const struct pmic_arb_ver_ops *ver_ops = pmic_arb->ver_ops; struct irq_chip *chip = irq_desc_get_chip(desc); int first = bus->min_apid; int last = bus->max_apid; /* * acc_offset will be non-zero for the secondary SPMI bus instance on * v7 controllers. */ int acc_offset = bus->base_apid >> 5; u8 ee = pmic_arb->ee; u32 status, enable, handled = 0; int i, id, apid; /* status based dispatch */ bool acc_valid = false; u32 irq_status = 0; chained_irq_enter(chip, desc); for (i = first >> 5; i <= last >> 5; ++i) { status = readl_relaxed(ver_ops->owner_acc_status(bus, ee, i - acc_offset)); if (status) acc_valid = true; while (status) { id = ffs(status) - 1; status &= ~BIT(id); apid = id + i * 32; if (apid < first || apid > last) { WARN_ONCE(true, "spurious spmi irq received for apid=%d\n", apid); continue; } enable = readl_relaxed( ver_ops->acc_enable(bus, apid)); if (enable & SPMI_PIC_ACC_ENABLE_BIT) if (periph_interrupt(bus, apid) != 0) handled++; } } /* ACC_STATUS is empty but IRQ fired check IRQ_STATUS */ if (!acc_valid) { for (i = first; i <= last; i++) { /* skip if APPS is not irq owner */ if (bus->apid_data[i].irq_ee != pmic_arb->ee) continue; irq_status = readl_relaxed( ver_ops->irq_status(bus, i)); if (irq_status) { enable = readl_relaxed( ver_ops->acc_enable(bus, i)); if (enable & SPMI_PIC_ACC_ENABLE_BIT) { dev_dbg(&bus->spmic->dev, "Dispatching IRQ for apid=%d status=%x\n", i, irq_status); if (periph_interrupt(bus, i) != 0) handled++; } } } } if (handled == 0) handle_bad_irq(desc); chained_irq_exit(chip, desc); } static void qpnpint_irq_ack(struct irq_data *d) { struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d); struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u8 irq = hwirq_to_irq(d->hwirq); u16 apid = hwirq_to_apid(d->hwirq); u8 data; writel_relaxed(BIT(irq), pmic_arb->ver_ops->irq_clear(bus, apid)); data = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &data, 1); } static void qpnpint_irq_mask(struct irq_data *d) { u8 irq = hwirq_to_irq(d->hwirq); u8 data = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &data, 1); } static void qpnpint_irq_unmask(struct irq_data *d) { struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d); struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; const struct pmic_arb_ver_ops *ver_ops = pmic_arb->ver_ops; u8 irq = hwirq_to_irq(d->hwirq); u16 apid = hwirq_to_apid(d->hwirq); u8 buf[2]; writel_relaxed(SPMI_PIC_ACC_ENABLE_BIT, ver_ops->acc_enable(bus, apid)); qpnpint_spmi_read(d, QPNPINT_REG_EN_SET, &buf[0], 1); if (!(buf[0] & BIT(irq))) { /* * Since the interrupt is currently disabled, write to both the * LATCHED_CLR and EN_SET registers so that a spurious interrupt * cannot be triggered when the interrupt is enabled */ buf[0] = BIT(irq); buf[1] = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 2); } } static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type) { struct spmi_pmic_arb_qpnpint_type type = {0}; struct spmi_pmic_arb_qpnpint_type mask; irq_flow_handler_t flow_handler; u8 irq_bit = BIT(hwirq_to_irq(d->hwirq)); int rc; if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) { type.type = irq_bit; if (flow_type & IRQF_TRIGGER_RISING) type.polarity_high = irq_bit; if (flow_type & IRQF_TRIGGER_FALLING) type.polarity_low = irq_bit; flow_handler = handle_edge_irq; } else { if ((flow_type & (IRQF_TRIGGER_HIGH)) && (flow_type & (IRQF_TRIGGER_LOW))) return -EINVAL; if (flow_type & IRQF_TRIGGER_HIGH) type.polarity_high = irq_bit; else type.polarity_low = irq_bit; flow_handler = handle_level_irq; } mask.type = irq_bit; mask.polarity_high = irq_bit; mask.polarity_low = irq_bit; rc = qpnpint_spmi_masked_write(d, QPNPINT_REG_SET_TYPE, &type, &mask, sizeof(type)); irq_set_handler_locked(d, flow_handler); return rc; } static int qpnpint_irq_set_wake(struct irq_data *d, unsigned int on) { struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d); return irq_set_irq_wake(bus->irq, on); } static int qpnpint_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *state) { u8 irq = hwirq_to_irq(d->hwirq); u8 status = 0; if (which != IRQCHIP_STATE_LINE_LEVEL) return -EINVAL; qpnpint_spmi_read(d, QPNPINT_REG_RT_STS, &status, 1); *state = !!(status & BIT(irq)); return 0; } static int qpnpint_irq_domain_activate(struct irq_domain *domain, struct irq_data *d, bool reserve) { struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d); struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u16 periph = hwirq_to_per(d->hwirq); u16 apid = hwirq_to_apid(d->hwirq); u16 sid = hwirq_to_sid(d->hwirq); u16 irq = hwirq_to_irq(d->hwirq); u8 buf; if (bus->apid_data[apid].irq_ee != pmic_arb->ee) { dev_err(&bus->spmic->dev, "failed to xlate sid = %#x, periph = %#x, irq = %u: ee=%u but owner=%u\n", sid, periph, irq, pmic_arb->ee, bus->apid_data[apid].irq_ee); return -ENODEV; } buf = BIT(irq); qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &buf, 1); qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 1); return 0; } static struct irq_chip pmic_arb_irqchip = { .name = "pmic_arb", .irq_ack = qpnpint_irq_ack, .irq_mask = qpnpint_irq_mask, .irq_unmask = qpnpint_irq_unmask, .irq_set_type = qpnpint_irq_set_type, .irq_set_wake = qpnpint_irq_set_wake, .irq_get_irqchip_state = qpnpint_get_irqchip_state, .flags = IRQCHIP_MASK_ON_SUSPEND, }; static int qpnpint_irq_domain_translate(struct irq_domain *d, struct irq_fwspec *fwspec, unsigned long *out_hwirq, unsigned int *out_type) { struct spmi_pmic_arb_bus *bus = d->host_data; struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u32 *intspec = fwspec->param; u16 apid, ppid; int rc; dev_dbg(&bus->spmic->dev, "intspec[0] 0x%1x intspec[1] 0x%02x intspec[2] 0x%02x\n", intspec[0], intspec[1], intspec[2]); if (irq_domain_get_of_node(d) != bus->spmic->dev.of_node) return -EINVAL; if (fwspec->param_count != 4) return -EINVAL; if (intspec[0] > 0xF || intspec[1] > 0xFF || intspec[2] > 0x7) return -EINVAL; ppid = intspec[0] << 8 | intspec[1]; rc = pmic_arb->ver_ops->ppid_to_apid(bus, ppid); if (rc < 0) { dev_err(&bus->spmic->dev, "failed to xlate sid = %#x, periph = %#x, irq = %u rc = %d\n", intspec[0], intspec[1], intspec[2], rc); return rc; } apid = rc; /* Keep track of {max,min}_apid for bounding search during interrupt */ if (apid > bus->max_apid) bus->max_apid = apid; if (apid < bus->min_apid) bus->min_apid = apid; *out_hwirq = spec_to_hwirq(intspec[0], intspec[1], intspec[2], apid); *out_type = intspec[3] & IRQ_TYPE_SENSE_MASK; dev_dbg(&bus->spmic->dev, "out_hwirq = %lu\n", *out_hwirq); return 0; } static struct lock_class_key qpnpint_irq_lock_class, qpnpint_irq_request_class; static void qpnpint_irq_domain_map(struct spmi_pmic_arb_bus *bus, struct irq_domain *domain, unsigned int virq, irq_hw_number_t hwirq, unsigned int type) { irq_flow_handler_t handler; dev_dbg(&bus->spmic->dev, "virq = %u, hwirq = %lu, type = %u\n", virq, hwirq, type); if (type & IRQ_TYPE_EDGE_BOTH) handler = handle_edge_irq; else handler = handle_level_irq; irq_set_lockdep_class(virq, &qpnpint_irq_lock_class, &qpnpint_irq_request_class); irq_domain_set_info(domain, virq, hwirq, &pmic_arb_irqchip, bus, handler, NULL, NULL); } static int qpnpint_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *data) { struct spmi_pmic_arb_bus *bus = domain->host_data; struct irq_fwspec *fwspec = data; irq_hw_number_t hwirq; unsigned int type; int ret, i; ret = qpnpint_irq_domain_translate(domain, fwspec, &hwirq, &type); if (ret) return ret; for (i = 0; i < nr_irqs; i++) qpnpint_irq_domain_map(bus, domain, virq + i, hwirq + i, type); return 0; } static int pmic_arb_init_apid_min_max(struct spmi_pmic_arb_bus *bus) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; /* * Initialize max_apid/min_apid to the opposite bounds, during * the irq domain translation, we are sure to update these */ bus->max_apid = 0; bus->min_apid = pmic_arb->max_periphs - 1; return 0; } static int pmic_arb_get_core_resources_v1(struct platform_device *pdev, void __iomem *core) { struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev); pmic_arb->wr_base = core; pmic_arb->rd_base = core; pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS; return 0; } static int pmic_arb_init_apid_v1(struct spmi_pmic_arb_bus *bus, int index) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u32 *mapping_table; if (index) { dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n", index); return -EINVAL; } mapping_table = devm_kcalloc(&bus->spmic->dev, pmic_arb->max_periphs, sizeof(*mapping_table), GFP_KERNEL); if (!mapping_table) return -ENOMEM; bus->mapping_table = mapping_table; return pmic_arb_init_apid_min_max(bus); } static int pmic_arb_ppid_to_apid_v1(struct spmi_pmic_arb_bus *bus, u16 ppid) { u32 *mapping_table = bus->mapping_table; int index = 0, i; u16 apid_valid; u16 apid; u32 data; apid_valid = bus->ppid_to_apid[ppid]; if (apid_valid & PMIC_ARB_APID_VALID) { apid = apid_valid & ~PMIC_ARB_APID_VALID; return apid; } for (i = 0; i < SPMI_MAPPING_TABLE_TREE_DEPTH; ++i) { if (!test_and_set_bit(index, bus->mapping_table_valid)) mapping_table[index] = readl_relaxed(bus->cnfg + SPMI_MAPPING_TABLE_REG(index)); data = mapping_table[index]; if (ppid & BIT(SPMI_MAPPING_BIT_INDEX(data))) { if (SPMI_MAPPING_BIT_IS_1_FLAG(data)) { index = SPMI_MAPPING_BIT_IS_1_RESULT(data); } else { apid = SPMI_MAPPING_BIT_IS_1_RESULT(data); bus->ppid_to_apid[ppid] = apid | PMIC_ARB_APID_VALID; bus->apid_data[apid].ppid = ppid; return apid; } } else { if (SPMI_MAPPING_BIT_IS_0_FLAG(data)) { index = SPMI_MAPPING_BIT_IS_0_RESULT(data); } else { apid = SPMI_MAPPING_BIT_IS_0_RESULT(data); bus->ppid_to_apid[ppid] = apid | PMIC_ARB_APID_VALID; bus->apid_data[apid].ppid = ppid; return apid; } } } return -ENODEV; } /* v1 offset per ee */ static int pmic_arb_offset_v1(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; return 0x800 + 0x80 * pmic_arb->channel; } static u16 pmic_arb_find_apid(struct spmi_pmic_arb_bus *bus, u16 ppid) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; struct apid_data *apidd = &bus->apid_data[bus->last_apid]; u32 regval, offset; u16 id, apid; for (apid = bus->last_apid; ; apid++, apidd++) { offset = pmic_arb->ver_ops->apid_map_offset(apid); if (offset >= pmic_arb->core_size) break; regval = readl_relaxed(pmic_arb->ver_ops->apid_owner(bus, apid)); apidd->irq_ee = SPMI_OWNERSHIP_PERIPH2OWNER(regval); apidd->write_ee = apidd->irq_ee; regval = readl_relaxed(pmic_arb->core + offset); if (!regval) continue; id = (regval >> 8) & PMIC_ARB_PPID_MASK; bus->ppid_to_apid[id] = apid | PMIC_ARB_APID_VALID; apidd->ppid = id; if (id == ppid) { apid |= PMIC_ARB_APID_VALID; break; } } bus->last_apid = apid & ~PMIC_ARB_APID_VALID; return apid; } static int pmic_arb_get_obsrvr_chnls_v2(struct platform_device *pdev) { struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev); pmic_arb->rd_base = devm_platform_ioremap_resource_byname(pdev, "obsrvr"); if (IS_ERR(pmic_arb->rd_base)) return PTR_ERR(pmic_arb->rd_base); pmic_arb->wr_base = devm_platform_ioremap_resource_byname(pdev, "chnls"); if (IS_ERR(pmic_arb->wr_base)) return PTR_ERR(pmic_arb->wr_base); return 0; } static int pmic_arb_get_core_resources_v2(struct platform_device *pdev, void __iomem *core) { struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev); pmic_arb->core = core; pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS; return pmic_arb_get_obsrvr_chnls_v2(pdev); } static int pmic_arb_ppid_to_apid_v2(struct spmi_pmic_arb_bus *bus, u16 ppid) { u16 apid_valid; apid_valid = bus->ppid_to_apid[ppid]; if (!(apid_valid & PMIC_ARB_APID_VALID)) apid_valid = pmic_arb_find_apid(bus, ppid); if (!(apid_valid & PMIC_ARB_APID_VALID)) return -ENODEV; return apid_valid & ~PMIC_ARB_APID_VALID; } static int pmic_arb_read_apid_map_v5(struct spmi_pmic_arb_bus *bus) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; struct apid_data *apidd; struct apid_data *prev_apidd; u16 i, apid, ppid, apid_max; bool valid, is_irq_ee; u32 regval, offset; /* * In order to allow multiple EEs to write to a single PPID in arbiter * version 5 and 7, there is more than one APID mapped to each PPID. * The owner field for each of these mappings specifies the EE which is * allowed to write to the APID. The owner of the last (highest) APID * which has the IRQ owner bit set for a given PPID will receive * interrupts from the PPID. * * In arbiter version 7, the APID numbering space is divided between * the primary bus (0) and secondary bus (1) such that: * APID = 0 to N-1 are assigned to the primary bus * APID = N to N+M-1 are assigned to the secondary bus * where N = number of APIDs supported by the primary bus and * M = number of APIDs supported by the secondary bus */ apidd = &bus->apid_data[bus->base_apid]; apid_max = bus->base_apid + bus->apid_count; for (i = bus->base_apid; i < apid_max; i++, apidd++) { offset = pmic_arb->ver_ops->apid_map_offset(i); if (offset >= pmic_arb->core_size) break; regval = readl_relaxed(pmic_arb->core + offset); if (!regval) continue; ppid = (regval >> 8) & PMIC_ARB_PPID_MASK; is_irq_ee = PMIC_ARB_CHAN_IS_IRQ_OWNER(regval); regval = readl_relaxed(pmic_arb->ver_ops->apid_owner(bus, i)); apidd->write_ee = SPMI_OWNERSHIP_PERIPH2OWNER(regval); apidd->irq_ee = is_irq_ee ? apidd->write_ee : INVALID_EE; valid = bus->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID; apid = bus->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID; prev_apidd = &bus->apid_data[apid]; if (!valid || apidd->write_ee == pmic_arb->ee) { /* First PPID mapping or one for this EE */ bus->ppid_to_apid[ppid] = i | PMIC_ARB_APID_VALID; } else if (valid && is_irq_ee && prev_apidd->write_ee == pmic_arb->ee) { /* * Duplicate PPID mapping after the one for this EE; * override the irq owner */ prev_apidd->irq_ee = apidd->irq_ee; } apidd->ppid = ppid; bus->last_apid = i; } /* Dump the mapping table for debug purposes. */ dev_dbg(&bus->spmic->dev, "PPID APID Write-EE IRQ-EE\n"); for (ppid = 0; ppid < PMIC_ARB_MAX_PPID; ppid++) { apid = bus->ppid_to_apid[ppid]; if (apid & PMIC_ARB_APID_VALID) { apid &= ~PMIC_ARB_APID_VALID; apidd = &bus->apid_data[apid]; dev_dbg(&bus->spmic->dev, "%#03X %3u %2u %2u\n", ppid, apid, apidd->write_ee, apidd->irq_ee); } } return 0; } static int pmic_arb_ppid_to_apid_v5(struct spmi_pmic_arb_bus *bus, u16 ppid) { if (!(bus->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID)) return -ENODEV; return bus->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID; } /* v2 offset per ppid and per ee */ static int pmic_arb_offset_v2(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u16 apid; u16 ppid; int rc; ppid = sid << 8 | ((addr >> 8) & 0xFF); rc = pmic_arb_ppid_to_apid_v2(bus, ppid); if (rc < 0) return rc; apid = rc; return 0x1000 * pmic_arb->ee + 0x8000 * apid; } static int pmic_arb_init_apid_v5(struct spmi_pmic_arb_bus *bus, int index) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; int ret; if (index) { dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n", index); return -EINVAL; } bus->base_apid = 0; bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) & PMIC_ARB_FEATURES_PERIPH_MASK; if (bus->base_apid + bus->apid_count > pmic_arb->max_periphs) { dev_err(&bus->spmic->dev, "Unsupported APID count %d detected\n", bus->base_apid + bus->apid_count); return -EINVAL; } ret = pmic_arb_init_apid_min_max(bus); if (ret) return ret; ret = pmic_arb_read_apid_map_v5(bus); if (ret) { dev_err(&bus->spmic->dev, "could not read APID->PPID mapping table, rc= %d\n", ret); return ret; } return 0; } /* * v5 offset per ee and per apid for observer channels and per apid for * read/write channels. */ static int pmic_arb_offset_v5(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u16 apid; int rc; u32 offset = 0; u16 ppid = (sid << 8) | (addr >> 8); rc = pmic_arb_ppid_to_apid_v5(bus, ppid); if (rc < 0) return rc; apid = rc; switch (ch_type) { case PMIC_ARB_CHANNEL_OBS: offset = 0x10000 * pmic_arb->ee + 0x80 * apid; break; case PMIC_ARB_CHANNEL_RW: if (bus->apid_data[apid].write_ee != pmic_arb->ee) { dev_err(&bus->spmic->dev, "disallowed SPMI write to sid=%u, addr=0x%04X\n", sid, addr); return -EPERM; } offset = 0x10000 * apid; break; } return offset; } static int pmic_arb_get_core_resources_v7(struct platform_device *pdev, void __iomem *core) { struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev); pmic_arb->core = core; pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS_V7; return pmic_arb_get_obsrvr_chnls_v2(pdev); } /* * Only v7 supports 2 buses. Each bus will get a different apid count, read * from different registers. */ static int pmic_arb_init_apid_v7(struct spmi_pmic_arb_bus *bus, int index) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; int ret; if (index == 0) { bus->base_apid = 0; bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) & PMIC_ARB_FEATURES_PERIPH_MASK; } else if (index == 1) { bus->base_apid = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) & PMIC_ARB_FEATURES_PERIPH_MASK; bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES1) & PMIC_ARB_FEATURES_PERIPH_MASK; } else { dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n", bus->id); return -EINVAL; } if (bus->base_apid + bus->apid_count > pmic_arb->max_periphs) { dev_err(&bus->spmic->dev, "Unsupported APID count %d detected\n", bus->base_apid + bus->apid_count); return -EINVAL; } ret = pmic_arb_init_apid_min_max(bus); if (ret) return ret; ret = pmic_arb_read_apid_map_v5(bus); if (ret) { dev_err(&bus->spmic->dev, "could not read APID->PPID mapping table, rc= %d\n", ret); return ret; } return 0; } /* * v7 offset per ee and per apid for observer channels and per apid for * read/write channels. */ static int pmic_arb_offset_v7(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr, enum pmic_arb_channel ch_type) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; u16 apid; int rc; u32 offset = 0; u16 ppid = (sid << 8) | (addr >> 8); rc = pmic_arb->ver_ops->ppid_to_apid(bus, ppid); if (rc < 0) return rc; apid = rc; switch (ch_type) { case PMIC_ARB_CHANNEL_OBS: offset = 0x8000 * pmic_arb->ee + 0x20 * apid; break; case PMIC_ARB_CHANNEL_RW: if (bus->apid_data[apid].write_ee != pmic_arb->ee) { dev_err(&bus->spmic->dev, "disallowed SPMI write to sid=%u, addr=0x%04X\n", sid, addr); return -EPERM; } offset = 0x1000 * apid; break; } return offset; } static u32 pmic_arb_fmt_cmd_v1(u8 opc, u8 sid, u16 addr, u8 bc) { return (opc << 27) | ((sid & 0xf) << 20) | (addr << 4) | (bc & 0x7); } static u32 pmic_arb_fmt_cmd_v2(u8 opc, u8 sid, u16 addr, u8 bc) { return (opc << 27) | ((addr & 0xff) << 4) | (bc & 0x7); } static void __iomem * pmic_arb_owner_acc_status_v1(struct spmi_pmic_arb_bus *bus, u8 m, u16 n) { return bus->intr + 0x20 * m + 0x4 * n; } static void __iomem * pmic_arb_owner_acc_status_v2(struct spmi_pmic_arb_bus *bus, u8 m, u16 n) { return bus->intr + 0x100000 + 0x1000 * m + 0x4 * n; } static void __iomem * pmic_arb_owner_acc_status_v3(struct spmi_pmic_arb_bus *bus, u8 m, u16 n) { return bus->intr + 0x200000 + 0x1000 * m + 0x4 * n; } static void __iomem * pmic_arb_owner_acc_status_v5(struct spmi_pmic_arb_bus *bus, u8 m, u16 n) { return bus->intr + 0x10000 * m + 0x4 * n; } static void __iomem * pmic_arb_owner_acc_status_v7(struct spmi_pmic_arb_bus *bus, u8 m, u16 n) { return bus->intr + 0x1000 * m + 0x4 * n; } static void __iomem * pmic_arb_acc_enable_v1(struct spmi_pmic_arb_bus *bus, u16 n) { return bus->intr + 0x200 + 0x4 * n; } static void __iomem * pmic_arb_acc_enable_v2(struct spmi_pmic_arb_bus *bus, u16 n) { return bus->intr + 0x1000 * n; } static void __iomem * pmic_arb_acc_enable_v5(struct spmi_pmic_arb_bus *bus, u16 n) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; return pmic_arb->wr_base + 0x100 + 0x10000 * n; } static void __iomem * pmic_arb_acc_enable_v7(struct spmi_pmic_arb_bus *bus, u16 n) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; return pmic_arb->wr_base + 0x100 + 0x1000 * n; } static void __iomem * pmic_arb_irq_status_v1(struct spmi_pmic_arb_bus *bus, u16 n) { return bus->intr + 0x600 + 0x4 * n; } static void __iomem * pmic_arb_irq_status_v2(struct spmi_pmic_arb_bus *bus, u16 n) { return bus->intr + 0x4 + 0x1000 * n; } static void __iomem * pmic_arb_irq_status_v5(struct spmi_pmic_arb_bus *bus, u16 n) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; return pmic_arb->wr_base + 0x104 + 0x10000 * n; } static void __iomem * pmic_arb_irq_status_v7(struct spmi_pmic_arb_bus *bus, u16 n) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; return pmic_arb->wr_base + 0x104 + 0x1000 * n; } static void __iomem * pmic_arb_irq_clear_v1(struct spmi_pmic_arb_bus *bus, u16 n) { return bus->intr + 0xA00 + 0x4 * n; } static void __iomem * pmic_arb_irq_clear_v2(struct spmi_pmic_arb_bus *bus, u16 n) { return bus->intr + 0x8 + 0x1000 * n; } static void __iomem * pmic_arb_irq_clear_v5(struct spmi_pmic_arb_bus *bus, u16 n) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; return pmic_arb->wr_base + 0x108 + 0x10000 * n; } static void __iomem * pmic_arb_irq_clear_v7(struct spmi_pmic_arb_bus *bus, u16 n) { struct spmi_pmic_arb *pmic_arb = bus->pmic_arb; return pmic_arb->wr_base + 0x108 + 0x1000 * n; } static u32 pmic_arb_apid_map_offset_v2(u16 n) { return 0x800 + 0x4 * n; } static u32 pmic_arb_apid_map_offset_v5(u16 n) { return 0x900 + 0x4 * n; } static u32 pmic_arb_apid_map_offset_v7(u16 n) { return 0x2000 + 0x4 * n; } static void __iomem * pmic_arb_apid_owner_v2(struct spmi_pmic_arb_bus *bus, u16 n) { return bus->cnfg + 0x700 + 0x4 * n; } /* * For arbiter version 7, APID ownership table registers have independent * numbering space for each SPMI bus instance, so each is indexed starting from * 0. */ static void __iomem * pmic_arb_apid_owner_v7(struct spmi_pmic_arb_bus *bus, u16 n) { return bus->cnfg + 0x4 * (n - bus->base_apid); } static const struct pmic_arb_ver_ops pmic_arb_v1 = { .ver_str = "v1", .get_core_resources = pmic_arb_get_core_resources_v1, .init_apid = pmic_arb_init_apid_v1, .ppid_to_apid = pmic_arb_ppid_to_apid_v1, .non_data_cmd = pmic_arb_non_data_cmd_v1, .offset = pmic_arb_offset_v1, .fmt_cmd = pmic_arb_fmt_cmd_v1, .owner_acc_status = pmic_arb_owner_acc_status_v1, .acc_enable = pmic_arb_acc_enable_v1, .irq_status = pmic_arb_irq_status_v1, .irq_clear = pmic_arb_irq_clear_v1, .apid_map_offset = pmic_arb_apid_map_offset_v2, .apid_owner = pmic_arb_apid_owner_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v2 = { .ver_str = "v2", .get_core_resources = pmic_arb_get_core_resources_v2, .init_apid = pmic_arb_init_apid_v1, .ppid_to_apid = pmic_arb_ppid_to_apid_v2, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v2, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v2, .acc_enable = pmic_arb_acc_enable_v2, .irq_status = pmic_arb_irq_status_v2, .irq_clear = pmic_arb_irq_clear_v2, .apid_map_offset = pmic_arb_apid_map_offset_v2, .apid_owner = pmic_arb_apid_owner_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v3 = { .ver_str = "v3", .get_core_resources = pmic_arb_get_core_resources_v2, .init_apid = pmic_arb_init_apid_v1, .ppid_to_apid = pmic_arb_ppid_to_apid_v2, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v2, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v3, .acc_enable = pmic_arb_acc_enable_v2, .irq_status = pmic_arb_irq_status_v2, .irq_clear = pmic_arb_irq_clear_v2, .apid_map_offset = pmic_arb_apid_map_offset_v2, .apid_owner = pmic_arb_apid_owner_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v5 = { .ver_str = "v5", .get_core_resources = pmic_arb_get_core_resources_v2, .init_apid = pmic_arb_init_apid_v5, .ppid_to_apid = pmic_arb_ppid_to_apid_v5, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v5, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v5, .acc_enable = pmic_arb_acc_enable_v5, .irq_status = pmic_arb_irq_status_v5, .irq_clear = pmic_arb_irq_clear_v5, .apid_map_offset = pmic_arb_apid_map_offset_v5, .apid_owner = pmic_arb_apid_owner_v2, }; static const struct pmic_arb_ver_ops pmic_arb_v7 = { .ver_str = "v7", .get_core_resources = pmic_arb_get_core_resources_v7, .init_apid = pmic_arb_init_apid_v7, .ppid_to_apid = pmic_arb_ppid_to_apid_v5, .non_data_cmd = pmic_arb_non_data_cmd_v2, .offset = pmic_arb_offset_v7, .fmt_cmd = pmic_arb_fmt_cmd_v2, .owner_acc_status = pmic_arb_owner_acc_status_v7, .acc_enable = pmic_arb_acc_enable_v7, .irq_status = pmic_arb_irq_status_v7, .irq_clear = pmic_arb_irq_clear_v7, .apid_map_offset = pmic_arb_apid_map_offset_v7, .apid_owner = pmic_arb_apid_owner_v7, }; static const struct irq_domain_ops pmic_arb_irq_domain_ops = { .activate = qpnpint_irq_domain_activate, .alloc = qpnpint_irq_domain_alloc, .free = irq_domain_free_irqs_common, .translate = qpnpint_irq_domain_translate, }; static int spmi_pmic_arb_bus_init(struct platform_device *pdev, struct device_node *node, struct spmi_pmic_arb *pmic_arb) { int bus_index = pmic_arb->buses_available; struct spmi_pmic_arb_bus *bus; struct device *dev = &pdev->dev; struct spmi_controller *ctrl; void __iomem *intr; void __iomem *cnfg; int index, ret; int irq; ctrl = devm_spmi_controller_alloc(dev, sizeof(*bus)); if (IS_ERR(ctrl)) return PTR_ERR(ctrl); ctrl->cmd = pmic_arb_cmd; ctrl->read_cmd = pmic_arb_read_cmd; ctrl->write_cmd = pmic_arb_write_cmd; bus = spmi_controller_get_drvdata(ctrl); pmic_arb->buses[bus_index] = bus; raw_spin_lock_init(&bus->lock); bus->ppid_to_apid = devm_kcalloc(dev, PMIC_ARB_MAX_PPID, sizeof(*bus->ppid_to_apid), GFP_KERNEL); if (!bus->ppid_to_apid) return -ENOMEM; bus->apid_data = devm_kcalloc(dev, pmic_arb->max_periphs, sizeof(*bus->apid_data), GFP_KERNEL); if (!bus->apid_data) return -ENOMEM; index = of_property_match_string(node, "reg-names", "cnfg"); if (index < 0) { dev_err(dev, "cnfg reg region missing\n"); return -EINVAL; } cnfg = devm_of_iomap(dev, node, index, NULL); if (IS_ERR(cnfg)) return PTR_ERR(cnfg); index = of_property_match_string(node, "reg-names", "intr"); if (index < 0) { dev_err(dev, "intr reg region missing\n"); return -EINVAL; } intr = devm_of_iomap(dev, node, index, NULL); if (IS_ERR(intr)) return PTR_ERR(intr); irq = of_irq_get_byname(node, "periph_irq"); if (irq <= 0) return irq ?: -ENXIO; bus->pmic_arb = pmic_arb; bus->intr = intr; bus->cnfg = cnfg; bus->irq = irq; bus->spmic = ctrl; bus->id = bus_index; ret = pmic_arb->ver_ops->init_apid(bus, bus_index); if (ret) return ret; dev_dbg(&pdev->dev, "adding irq domain for bus %d\n", bus_index); bus->domain = irq_domain_add_tree(node, &pmic_arb_irq_domain_ops, bus); if (!bus->domain) { dev_err(&pdev->dev, "unable to create irq_domain\n"); return -ENOMEM; } irq_set_chained_handler_and_data(bus->irq, pmic_arb_chained_irq, bus); ctrl->dev.of_node = node; dev_set_name(&ctrl->dev, "spmi-%d", bus_index); ret = devm_spmi_controller_add(dev, ctrl); if (ret) return ret; pmic_arb->buses_available++; return 0; } static int spmi_pmic_arb_register_buses(struct spmi_pmic_arb *pmic_arb, struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; int ret; /* legacy mode doesn't provide child node for the bus */ if (of_device_is_compatible(node, "qcom,spmi-pmic-arb")) return spmi_pmic_arb_bus_init(pdev, node, pmic_arb); for_each_available_child_of_node_scoped(node, child) { if (of_node_name_eq(child, "spmi")) { ret = spmi_pmic_arb_bus_init(pdev, child, pmic_arb); if (ret) return ret; } } return ret; } static void spmi_pmic_arb_deregister_buses(struct spmi_pmic_arb *pmic_arb) { int i; for (i = 0; i < pmic_arb->buses_available; i++) { struct spmi_pmic_arb_bus *bus = pmic_arb->buses[i]; irq_set_chained_handler_and_data(bus->irq, NULL, NULL); irq_domain_remove(bus->domain); } } static int spmi_pmic_arb_probe(struct platform_device *pdev) { struct spmi_pmic_arb *pmic_arb; struct device *dev = &pdev->dev; struct resource *res; void __iomem *core; u32 channel, ee, hw_ver; int err; pmic_arb = devm_kzalloc(dev, sizeof(*pmic_arb), GFP_KERNEL); if (!pmic_arb) return -ENOMEM; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core"); core = devm_ioremap(dev, res->start, resource_size(res)); if (!core) return -ENOMEM; pmic_arb->core_size = resource_size(res); platform_set_drvdata(pdev, pmic_arb); hw_ver = readl_relaxed(core + PMIC_ARB_VERSION); if (hw_ver < PMIC_ARB_VERSION_V2_MIN) pmic_arb->ver_ops = &pmic_arb_v1; else if (hw_ver < PMIC_ARB_VERSION_V3_MIN) pmic_arb->ver_ops = &pmic_arb_v2; else if (hw_ver < PMIC_ARB_VERSION_V5_MIN) pmic_arb->ver_ops = &pmic_arb_v3; else if (hw_ver < PMIC_ARB_VERSION_V7_MIN) pmic_arb->ver_ops = &pmic_arb_v5; else pmic_arb->ver_ops = &pmic_arb_v7; err = pmic_arb->ver_ops->get_core_resources(pdev, core); if (err) return err; dev_info(dev, "PMIC arbiter version %s (0x%x)\n", pmic_arb->ver_ops->ver_str, hw_ver); err = of_property_read_u32(pdev->dev.of_node, "qcom,channel", &channel); if (err) { dev_err(&pdev->dev, "channel unspecified.\n"); return err; } if (channel > 5) { dev_err(&pdev->dev, "invalid channel (%u) specified.\n", channel); return -EINVAL; } pmic_arb->channel = channel; err = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &ee); if (err) { dev_err(&pdev->dev, "EE unspecified.\n"); return err; } if (ee > 5) { dev_err(&pdev->dev, "invalid EE (%u) specified\n", ee); return -EINVAL; } pmic_arb->ee = ee; return spmi_pmic_arb_register_buses(pmic_arb, pdev); } static void spmi_pmic_arb_remove(struct platform_device *pdev) { struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev); spmi_pmic_arb_deregister_buses(pmic_arb); } static const struct of_device_id spmi_pmic_arb_match_table[] = { { .compatible = "qcom,spmi-pmic-arb", }, { .compatible = "qcom,x1e80100-spmi-pmic-arb", }, {}, }; MODULE_DEVICE_TABLE(of, spmi_pmic_arb_match_table); static struct platform_driver spmi_pmic_arb_driver = { .probe = spmi_pmic_arb_probe, .remove = spmi_pmic_arb_remove, .driver = { .name = "spmi_pmic_arb", .of_match_table = spmi_pmic_arb_match_table, }, }; module_platform_driver(spmi_pmic_arb_driver); MODULE_DESCRIPTION("Qualcomm MSM SPMI Controller (PMIC Arbiter) driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:spmi_pmic_arb");