// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2020, Broadcom */ /* * 8250-core based driver for Broadcom ns16550a UARTs * * This driver uses the standard 8250 driver core but adds additional * optional features including the ability to use a baud rate clock * mux for more accurate high speed baud rate selection and also * an optional DMA engine. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "8250.h" /* Register definitions for UART DMA block. Version 1.1 or later. */ #define UDMA_ARB_RX 0x00 #define UDMA_ARB_TX 0x04 #define UDMA_ARB_REQ 0x00000001 #define UDMA_ARB_GRANT 0x00000002 #define UDMA_RX_REVISION 0x00 #define UDMA_RX_REVISION_REQUIRED 0x00000101 #define UDMA_RX_CTRL 0x04 #define UDMA_RX_CTRL_BUF_CLOSE_MODE 0x00010000 #define UDMA_RX_CTRL_MASK_WR_DONE 0x00008000 #define UDMA_RX_CTRL_ENDIAN_OVERRIDE 0x00004000 #define UDMA_RX_CTRL_ENDIAN 0x00002000 #define UDMA_RX_CTRL_OE_IS_ERR 0x00001000 #define UDMA_RX_CTRL_PE_IS_ERR 0x00000800 #define UDMA_RX_CTRL_FE_IS_ERR 0x00000400 #define UDMA_RX_CTRL_NUM_BUF_USED_MASK 0x000003c0 #define UDMA_RX_CTRL_NUM_BUF_USED_SHIFT 6 #define UDMA_RX_CTRL_BUF_CLOSE_CLK_SEL_SYS 0x00000020 #define UDMA_RX_CTRL_BUF_CLOSE_ENA 0x00000010 #define UDMA_RX_CTRL_TIMEOUT_CLK_SEL_SYS 0x00000008 #define UDMA_RX_CTRL_TIMEOUT_ENA 0x00000004 #define UDMA_RX_CTRL_ABORT 0x00000002 #define UDMA_RX_CTRL_ENA 0x00000001 #define UDMA_RX_STATUS 0x08 #define UDMA_RX_STATUS_ACTIVE_BUF_MASK 0x0000000f #define UDMA_RX_TRANSFER_LEN 0x0c #define UDMA_RX_TRANSFER_TOTAL 0x10 #define UDMA_RX_BUFFER_SIZE 0x14 #define UDMA_RX_SRC_ADDR 0x18 #define UDMA_RX_TIMEOUT 0x1c #define UDMA_RX_BUFFER_CLOSE 0x20 #define UDMA_RX_BLOCKOUT_COUNTER 0x24 #define UDMA_RX_BUF0_PTR_LO 0x28 #define UDMA_RX_BUF0_PTR_HI 0x2c #define UDMA_RX_BUF0_STATUS 0x30 #define UDMA_RX_BUFX_STATUS_OVERRUN_ERR 0x00000010 #define UDMA_RX_BUFX_STATUS_FRAME_ERR 0x00000008 #define UDMA_RX_BUFX_STATUS_PARITY_ERR 0x00000004 #define UDMA_RX_BUFX_STATUS_CLOSE_EXPIRED 0x00000002 #define UDMA_RX_BUFX_STATUS_DATA_RDY 0x00000001 #define UDMA_RX_BUF0_DATA_LEN 0x34 #define UDMA_RX_BUF1_PTR_LO 0x38 #define UDMA_RX_BUF1_PTR_HI 0x3c #define UDMA_RX_BUF1_STATUS 0x40 #define UDMA_RX_BUF1_DATA_LEN 0x44 #define UDMA_TX_REVISION 0x00 #define UDMA_TX_REVISION_REQUIRED 0x00000101 #define UDMA_TX_CTRL 0x04 #define UDMA_TX_CTRL_ENDIAN_OVERRIDE 0x00000080 #define UDMA_TX_CTRL_ENDIAN 0x00000040 #define UDMA_TX_CTRL_NUM_BUF_USED_MASK 0x00000030 #define UDMA_TX_CTRL_NUM_BUF_USED_1 0x00000010 #define UDMA_TX_CTRL_ABORT 0x00000002 #define UDMA_TX_CTRL_ENA 0x00000001 #define UDMA_TX_DST_ADDR 0x08 #define UDMA_TX_BLOCKOUT_COUNTER 0x10 #define UDMA_TX_TRANSFER_LEN 0x14 #define UDMA_TX_TRANSFER_TOTAL 0x18 #define UDMA_TX_STATUS 0x20 #define UDMA_TX_BUF0_PTR_LO 0x24 #define UDMA_TX_BUF0_PTR_HI 0x28 #define UDMA_TX_BUF0_STATUS 0x2c #define UDMA_TX_BUFX_LAST 0x00000002 #define UDMA_TX_BUFX_EMPTY 0x00000001 #define UDMA_TX_BUF0_DATA_LEN 0x30 #define UDMA_TX_BUF0_DATA_SENT 0x34 #define UDMA_TX_BUF1_PTR_LO 0x38 #define UDMA_INTR_STATUS 0x00 #define UDMA_INTR_ARB_TX_GRANT 0x00040000 #define UDMA_INTR_ARB_RX_GRANT 0x00020000 #define UDMA_INTR_TX_ALL_EMPTY 0x00010000 #define UDMA_INTR_TX_EMPTY_BUF1 0x00008000 #define UDMA_INTR_TX_EMPTY_BUF0 0x00004000 #define UDMA_INTR_TX_ABORT 0x00002000 #define UDMA_INTR_TX_DONE 0x00001000 #define UDMA_INTR_RX_ERROR 0x00000800 #define UDMA_INTR_RX_TIMEOUT 0x00000400 #define UDMA_INTR_RX_READY_BUF7 0x00000200 #define UDMA_INTR_RX_READY_BUF6 0x00000100 #define UDMA_INTR_RX_READY_BUF5 0x00000080 #define UDMA_INTR_RX_READY_BUF4 0x00000040 #define UDMA_INTR_RX_READY_BUF3 0x00000020 #define UDMA_INTR_RX_READY_BUF2 0x00000010 #define UDMA_INTR_RX_READY_BUF1 0x00000008 #define UDMA_INTR_RX_READY_BUF0 0x00000004 #define UDMA_INTR_RX_READY_MASK 0x000003fc #define UDMA_INTR_RX_READY_SHIFT 2 #define UDMA_INTR_RX_ABORT 0x00000002 #define UDMA_INTR_RX_DONE 0x00000001 #define UDMA_INTR_SET 0x04 #define UDMA_INTR_CLEAR 0x08 #define UDMA_INTR_MASK_STATUS 0x0c #define UDMA_INTR_MASK_SET 0x10 #define UDMA_INTR_MASK_CLEAR 0x14 #define UDMA_RX_INTERRUPTS ( \ UDMA_INTR_RX_ERROR | \ UDMA_INTR_RX_TIMEOUT | \ UDMA_INTR_RX_READY_BUF0 | \ UDMA_INTR_RX_READY_BUF1 | \ UDMA_INTR_RX_READY_BUF2 | \ UDMA_INTR_RX_READY_BUF3 | \ UDMA_INTR_RX_READY_BUF4 | \ UDMA_INTR_RX_READY_BUF5 | \ UDMA_INTR_RX_READY_BUF6 | \ UDMA_INTR_RX_READY_BUF7 | \ UDMA_INTR_RX_ABORT | \ UDMA_INTR_RX_DONE) #define UDMA_RX_ERR_INTERRUPTS ( \ UDMA_INTR_RX_ERROR | \ UDMA_INTR_RX_TIMEOUT | \ UDMA_INTR_RX_ABORT | \ UDMA_INTR_RX_DONE) #define UDMA_TX_INTERRUPTS ( \ UDMA_INTR_TX_ABORT | \ UDMA_INTR_TX_DONE) #define UDMA_IS_RX_INTERRUPT(status) ((status) & UDMA_RX_INTERRUPTS) #define UDMA_IS_TX_INTERRUPT(status) ((status) & UDMA_TX_INTERRUPTS) /* Current devices have 8 sets of RX buffer registers */ #define UDMA_RX_BUFS_COUNT 8 #define UDMA_RX_BUFS_REG_OFFSET (UDMA_RX_BUF1_PTR_LO - UDMA_RX_BUF0_PTR_LO) #define UDMA_RX_BUFx_PTR_LO(x) (UDMA_RX_BUF0_PTR_LO + \ ((x) * UDMA_RX_BUFS_REG_OFFSET)) #define UDMA_RX_BUFx_PTR_HI(x) (UDMA_RX_BUF0_PTR_HI + \ ((x) * UDMA_RX_BUFS_REG_OFFSET)) #define UDMA_RX_BUFx_STATUS(x) (UDMA_RX_BUF0_STATUS + \ ((x) * UDMA_RX_BUFS_REG_OFFSET)) #define UDMA_RX_BUFx_DATA_LEN(x) (UDMA_RX_BUF0_DATA_LEN + \ ((x) * UDMA_RX_BUFS_REG_OFFSET)) /* Current devices have 2 sets of TX buffer registers */ #define UDMA_TX_BUFS_COUNT 2 #define UDMA_TX_BUFS_REG_OFFSET (UDMA_TX_BUF1_PTR_LO - UDMA_TX_BUF0_PTR_LO) #define UDMA_TX_BUFx_PTR_LO(x) (UDMA_TX_BUF0_PTR_LO + \ ((x) * UDMA_TX_BUFS_REG_OFFSET)) #define UDMA_TX_BUFx_PTR_HI(x) (UDMA_TX_BUF0_PTR_HI + \ ((x) * UDMA_TX_BUFS_REG_OFFSET)) #define UDMA_TX_BUFx_STATUS(x) (UDMA_TX_BUF0_STATUS + \ ((x) * UDMA_TX_BUFS_REG_OFFSET)) #define UDMA_TX_BUFx_DATA_LEN(x) (UDMA_TX_BUF0_DATA_LEN + \ ((x) * UDMA_TX_BUFS_REG_OFFSET)) #define UDMA_TX_BUFx_DATA_SENT(x) (UDMA_TX_BUF0_DATA_SENT + \ ((x) * UDMA_TX_BUFS_REG_OFFSET)) #define REGS_8250 0 #define REGS_DMA_RX 1 #define REGS_DMA_TX 2 #define REGS_DMA_ISR 3 #define REGS_DMA_ARB 4 #define REGS_MAX 5 #define TX_BUF_SIZE 4096 #define RX_BUF_SIZE 4096 #define RX_BUFS_COUNT 2 static const u32 brcmstb_rate_table[] = { 81 * HZ_PER_MHZ, 108 * HZ_PER_MHZ, 64 * HZ_PER_MHZ, /* Actually 64285715 for some chips */ 48 * HZ_PER_MHZ, }; static const u32 brcmstb_rate_table_7278[] = { 81 * HZ_PER_MHZ, 108 * HZ_PER_MHZ, 0, 48 * HZ_PER_MHZ, }; struct brcmuart_priv { int line; struct clk *baud_mux_clk; unsigned long default_mux_rate; u32 real_rates[ARRAY_SIZE(brcmstb_rate_table)]; const u32 *rate_table; ktime_t char_wait; struct uart_port *up; struct hrtimer hrt; bool shutdown; bool dma_enabled; struct uart_8250_dma dma; void __iomem *regs[REGS_MAX]; dma_addr_t rx_addr; void *rx_bufs; size_t rx_size; int rx_next_buf; dma_addr_t tx_addr; void *tx_buf; size_t tx_size; bool tx_running; bool rx_running; struct dentry *debugfs_dir; /* stats exposed through debugfs */ u64 dma_rx_partial_buf; u64 dma_rx_full_buf; u32 rx_bad_timeout_late_char; u32 rx_bad_timeout_no_char; u32 rx_missing_close_timeout; u32 rx_err; u32 rx_timeout; u32 rx_abort; u32 saved_mctrl; }; static struct dentry *brcmuart_debugfs_root; /* * Register access routines */ static u32 udma_readl(struct brcmuart_priv *priv, int reg_type, int offset) { return readl(priv->regs[reg_type] + offset); } static void udma_writel(struct brcmuart_priv *priv, int reg_type, int offset, u32 value) { writel(value, priv->regs[reg_type] + offset); } static void udma_set(struct brcmuart_priv *priv, int reg_type, int offset, u32 bits) { void __iomem *reg = priv->regs[reg_type] + offset; u32 value; value = readl(reg); value |= bits; writel(value, reg); } static void udma_unset(struct brcmuart_priv *priv, int reg_type, int offset, u32 bits) { void __iomem *reg = priv->regs[reg_type] + offset; u32 value; value = readl(reg); value &= ~bits; writel(value, reg); } /* * The UART DMA engine hardware can be used by multiple UARTS, but * only one at a time. Sharing is not currently supported so * the first UART to request the DMA engine will get it and any * subsequent requests by other UARTS will fail. */ static int brcmuart_arbitration(struct brcmuart_priv *priv, bool acquire) { u32 rx_grant; u32 tx_grant; int waits; int ret = 0; if (acquire) { udma_set(priv, REGS_DMA_ARB, UDMA_ARB_RX, UDMA_ARB_REQ); udma_set(priv, REGS_DMA_ARB, UDMA_ARB_TX, UDMA_ARB_REQ); waits = 1; while (1) { rx_grant = udma_readl(priv, REGS_DMA_ARB, UDMA_ARB_RX); tx_grant = udma_readl(priv, REGS_DMA_ARB, UDMA_ARB_TX); if (rx_grant & tx_grant & UDMA_ARB_GRANT) return 0; if (waits-- == 0) break; msleep(1); } ret = 1; } udma_unset(priv, REGS_DMA_ARB, UDMA_ARB_RX, UDMA_ARB_REQ); udma_unset(priv, REGS_DMA_ARB, UDMA_ARB_TX, UDMA_ARB_REQ); return ret; } static void brcmuart_init_dma_hardware(struct brcmuart_priv *priv) { u32 daddr; u32 value; int x; /* Start with all interrupts disabled */ udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_SET, 0xffffffff); udma_writel(priv, REGS_DMA_RX, UDMA_RX_BUFFER_SIZE, RX_BUF_SIZE); /* * Setup buffer close to happen when 32 character times have * elapsed since the last character was received. */ udma_writel(priv, REGS_DMA_RX, UDMA_RX_BUFFER_CLOSE, 16*10*32); value = (RX_BUFS_COUNT << UDMA_RX_CTRL_NUM_BUF_USED_SHIFT) | UDMA_RX_CTRL_BUF_CLOSE_MODE | UDMA_RX_CTRL_BUF_CLOSE_ENA; udma_writel(priv, REGS_DMA_RX, UDMA_RX_CTRL, value); udma_writel(priv, REGS_DMA_RX, UDMA_RX_BLOCKOUT_COUNTER, 0); daddr = priv->rx_addr; for (x = 0; x < RX_BUFS_COUNT; x++) { /* Set RX transfer length to 0 for unknown */ udma_writel(priv, REGS_DMA_RX, UDMA_RX_TRANSFER_LEN, 0); udma_writel(priv, REGS_DMA_RX, UDMA_RX_BUFx_PTR_LO(x), lower_32_bits(daddr)); udma_writel(priv, REGS_DMA_RX, UDMA_RX_BUFx_PTR_HI(x), upper_32_bits(daddr)); daddr += RX_BUF_SIZE; } daddr = priv->tx_addr; udma_writel(priv, REGS_DMA_TX, UDMA_TX_BUFx_PTR_LO(0), lower_32_bits(daddr)); udma_writel(priv, REGS_DMA_TX, UDMA_TX_BUFx_PTR_HI(0), upper_32_bits(daddr)); udma_writel(priv, REGS_DMA_TX, UDMA_TX_CTRL, UDMA_TX_CTRL_NUM_BUF_USED_1); /* clear all interrupts then enable them */ udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_CLEAR, 0xffffffff); udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_CLEAR, UDMA_RX_INTERRUPTS | UDMA_TX_INTERRUPTS); } static void start_rx_dma(struct uart_8250_port *p) { struct brcmuart_priv *priv = p->port.private_data; int x; udma_unset(priv, REGS_DMA_RX, UDMA_RX_CTRL, UDMA_RX_CTRL_ENA); /* Clear the RX ready bit for all buffers */ for (x = 0; x < RX_BUFS_COUNT; x++) udma_unset(priv, REGS_DMA_RX, UDMA_RX_BUFx_STATUS(x), UDMA_RX_BUFX_STATUS_DATA_RDY); /* always start with buffer 0 */ udma_unset(priv, REGS_DMA_RX, UDMA_RX_STATUS, UDMA_RX_STATUS_ACTIVE_BUF_MASK); priv->rx_next_buf = 0; udma_set(priv, REGS_DMA_RX, UDMA_RX_CTRL, UDMA_RX_CTRL_ENA); priv->rx_running = true; } static void stop_rx_dma(struct uart_8250_port *p) { struct brcmuart_priv *priv = p->port.private_data; /* If RX is running, set the RX ABORT */ if (priv->rx_running) udma_set(priv, REGS_DMA_RX, UDMA_RX_CTRL, UDMA_RX_CTRL_ABORT); } static int stop_tx_dma(struct uart_8250_port *p) { struct brcmuart_priv *priv = p->port.private_data; u32 value; /* If TX is running, set the TX ABORT */ value = udma_readl(priv, REGS_DMA_TX, UDMA_TX_CTRL); if (value & UDMA_TX_CTRL_ENA) udma_set(priv, REGS_DMA_TX, UDMA_TX_CTRL, UDMA_TX_CTRL_ABORT); priv->tx_running = false; return 0; } /* * NOTE: printk's in this routine will hang the system if this is * the console tty */ static int brcmuart_tx_dma(struct uart_8250_port *p) { struct brcmuart_priv *priv = p->port.private_data; struct tty_port *tport = &p->port.state->port; u32 tx_size; if (uart_tx_stopped(&p->port) || priv->tx_running || kfifo_is_empty(&tport->xmit_fifo)) { return 0; } priv->dma.tx_err = 0; tx_size = uart_fifo_out(&p->port, priv->tx_buf, UART_XMIT_SIZE); if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) uart_write_wakeup(&p->port); udma_writel(priv, REGS_DMA_TX, UDMA_TX_TRANSFER_LEN, tx_size); udma_writel(priv, REGS_DMA_TX, UDMA_TX_BUF0_DATA_LEN, tx_size); udma_unset(priv, REGS_DMA_TX, UDMA_TX_BUF0_STATUS, UDMA_TX_BUFX_EMPTY); udma_set(priv, REGS_DMA_TX, UDMA_TX_CTRL, UDMA_TX_CTRL_ENA); priv->tx_running = true; return 0; } static void brcmuart_rx_buf_done_isr(struct uart_port *up, int index) { struct brcmuart_priv *priv = up->private_data; struct tty_port *tty_port = &up->state->port; u32 status; u32 length; u32 copied; /* Make sure we're still in sync with the hardware */ status = udma_readl(priv, REGS_DMA_RX, UDMA_RX_BUFx_STATUS(index)); length = udma_readl(priv, REGS_DMA_RX, UDMA_RX_BUFx_DATA_LEN(index)); if ((status & UDMA_RX_BUFX_STATUS_DATA_RDY) == 0) { dev_err(up->dev, "RX done interrupt but DATA_RDY not found\n"); return; } if (status & (UDMA_RX_BUFX_STATUS_OVERRUN_ERR | UDMA_RX_BUFX_STATUS_FRAME_ERR | UDMA_RX_BUFX_STATUS_PARITY_ERR)) { if (status & UDMA_RX_BUFX_STATUS_OVERRUN_ERR) { up->icount.overrun++; dev_warn(up->dev, "RX OVERRUN Error\n"); } if (status & UDMA_RX_BUFX_STATUS_FRAME_ERR) { up->icount.frame++; dev_warn(up->dev, "RX FRAMING Error\n"); } if (status & UDMA_RX_BUFX_STATUS_PARITY_ERR) { up->icount.parity++; dev_warn(up->dev, "RX PARITY Error\n"); } } copied = (u32)tty_insert_flip_string( tty_port, priv->rx_bufs + (index * RX_BUF_SIZE), length); if (copied != length) { dev_warn(up->dev, "Flip buffer overrun of %d bytes\n", length - copied); up->icount.overrun += length - copied; } up->icount.rx += length; if (status & UDMA_RX_BUFX_STATUS_CLOSE_EXPIRED) priv->dma_rx_partial_buf++; else if (length != RX_BUF_SIZE) /* * This is a bug in the controller that doesn't cause * any problems but will be fixed in the future. */ priv->rx_missing_close_timeout++; else priv->dma_rx_full_buf++; tty_flip_buffer_push(tty_port); } static void brcmuart_rx_isr(struct uart_port *up, u32 rx_isr) { struct brcmuart_priv *priv = up->private_data; struct device *dev = up->dev; u32 rx_done_isr; u32 check_isr; rx_done_isr = (rx_isr & UDMA_INTR_RX_READY_MASK); while (rx_done_isr) { check_isr = UDMA_INTR_RX_READY_BUF0 << priv->rx_next_buf; if (check_isr & rx_done_isr) { brcmuart_rx_buf_done_isr(up, priv->rx_next_buf); } else { dev_err(dev, "RX buffer ready out of sequence, restarting RX DMA\n"); start_rx_dma(up_to_u8250p(up)); break; } if (rx_isr & UDMA_RX_ERR_INTERRUPTS) { if (rx_isr & UDMA_INTR_RX_ERROR) priv->rx_err++; if (rx_isr & UDMA_INTR_RX_TIMEOUT) { priv->rx_timeout++; dev_err(dev, "RX TIMEOUT Error\n"); } if (rx_isr & UDMA_INTR_RX_ABORT) priv->rx_abort++; priv->rx_running = false; } /* If not ABORT, re-enable RX buffer */ if (!(rx_isr & UDMA_INTR_RX_ABORT)) udma_unset(priv, REGS_DMA_RX, UDMA_RX_BUFx_STATUS(priv->rx_next_buf), UDMA_RX_BUFX_STATUS_DATA_RDY); rx_done_isr &= ~check_isr; priv->rx_next_buf++; if (priv->rx_next_buf == RX_BUFS_COUNT) priv->rx_next_buf = 0; } } static void brcmuart_tx_isr(struct uart_port *up, u32 isr) { struct brcmuart_priv *priv = up->private_data; struct device *dev = up->dev; struct uart_8250_port *port_8250 = up_to_u8250p(up); struct tty_port *tport = &port_8250->port.state->port; if (isr & UDMA_INTR_TX_ABORT) { if (priv->tx_running) dev_err(dev, "Unexpected TX_ABORT interrupt\n"); return; } priv->tx_running = false; if (!kfifo_is_empty(&tport->xmit_fifo) && !uart_tx_stopped(up)) brcmuart_tx_dma(port_8250); } static irqreturn_t brcmuart_isr(int irq, void *dev_id) { struct uart_port *up = dev_id; struct device *dev = up->dev; struct brcmuart_priv *priv = up->private_data; unsigned long flags; u32 interrupts; u32 rval; u32 tval; interrupts = udma_readl(priv, REGS_DMA_ISR, UDMA_INTR_STATUS); if (interrupts == 0) return IRQ_NONE; uart_port_lock_irqsave(up, &flags); /* Clear all interrupts */ udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_CLEAR, interrupts); rval = UDMA_IS_RX_INTERRUPT(interrupts); if (rval) brcmuart_rx_isr(up, rval); tval = UDMA_IS_TX_INTERRUPT(interrupts); if (tval) brcmuart_tx_isr(up, tval); if ((rval | tval) == 0) dev_warn(dev, "Spurious interrupt: 0x%x\n", interrupts); uart_port_unlock_irqrestore(up, flags); return IRQ_HANDLED; } static int brcmuart_startup(struct uart_port *port) { int res; struct uart_8250_port *up = up_to_u8250p(port); struct brcmuart_priv *priv = up->port.private_data; priv->shutdown = false; /* * prevent serial8250_do_startup() from allocating non-existent * DMA resources */ up->dma = NULL; res = serial8250_do_startup(port); if (!priv->dma_enabled) return res; /* * Disable the Receive Data Interrupt because the DMA engine * will handle this. * * Synchronize UART_IER access against the console. */ uart_port_lock_irq(port); up->ier &= ~UART_IER_RDI; serial_port_out(port, UART_IER, up->ier); uart_port_unlock_irq(port); priv->tx_running = false; priv->dma.rx_dma = NULL; priv->dma.tx_dma = brcmuart_tx_dma; up->dma = &priv->dma; brcmuart_init_dma_hardware(priv); start_rx_dma(up); return res; } static void brcmuart_shutdown(struct uart_port *port) { struct uart_8250_port *up = up_to_u8250p(port); struct brcmuart_priv *priv = up->port.private_data; unsigned long flags; uart_port_lock_irqsave(port, &flags); priv->shutdown = true; if (priv->dma_enabled) { stop_rx_dma(up); stop_tx_dma(up); /* disable all interrupts */ udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_SET, UDMA_RX_INTERRUPTS | UDMA_TX_INTERRUPTS); } /* * prevent serial8250_do_shutdown() from trying to free * DMA resources that we never alloc'd for this driver. */ up->dma = NULL; uart_port_unlock_irqrestore(port, flags); serial8250_do_shutdown(port); } /* * Not all clocks run at the exact specified rate, so set each requested * rate and then get the actual rate. */ static void init_real_clk_rates(struct device *dev, struct brcmuart_priv *priv) { int x; int rc; priv->default_mux_rate = clk_get_rate(priv->baud_mux_clk); for (x = 0; x < ARRAY_SIZE(priv->real_rates); x++) { if (priv->rate_table[x] == 0) { priv->real_rates[x] = 0; continue; } rc = clk_set_rate(priv->baud_mux_clk, priv->rate_table[x]); if (rc) { dev_err(dev, "Error selecting BAUD MUX clock for %u\n", priv->rate_table[x]); priv->real_rates[x] = priv->rate_table[x]; } else { priv->real_rates[x] = clk_get_rate(priv->baud_mux_clk); } } clk_set_rate(priv->baud_mux_clk, priv->default_mux_rate); } static u32 find_quot(struct device *dev, u32 freq, u32 baud, u32 *percent) { u32 quot; u32 rate; u64 hires_rate; u64 hires_baud; u64 hires_err; rate = freq / 16; quot = DIV_ROUND_CLOSEST(rate, baud); if (!quot) return 0; /* increase resolution to get xx.xx percent */ hires_rate = div_u64((u64)rate * 10000, (u64)quot); hires_baud = (u64)baud * 10000; /* get the delta */ if (hires_rate > hires_baud) hires_err = (hires_rate - hires_baud); else hires_err = (hires_baud - hires_rate); *percent = (unsigned long)DIV_ROUND_CLOSEST_ULL(hires_err, baud); dev_dbg(dev, "Baud rate: %u, MUX Clk: %u, Error: %u.%u%%\n", baud, freq, *percent / 100, *percent % 100); return quot; } static void set_clock_mux(struct uart_port *up, struct brcmuart_priv *priv, u32 baud) { u32 percent; u32 best_percent = UINT_MAX; u32 quot; u32 freq; u32 best_quot = 1; u32 best_freq = 0; int rc; int i; int real_baud; /* If the Baud Mux Clock was not specified, just return */ if (priv->baud_mux_clk == NULL) return; /* Try default_mux_rate first */ quot = find_quot(up->dev, priv->default_mux_rate, baud, &percent); if (quot) { best_percent = percent; best_freq = priv->default_mux_rate; best_quot = quot; } /* If more than 1% error, find the closest match for specified baud */ if (best_percent > 100) { for (i = 0; i < ARRAY_SIZE(priv->real_rates); i++) { freq = priv->real_rates[i]; if (freq == 0 || freq == priv->default_mux_rate) continue; quot = find_quot(up->dev, freq, baud, &percent); if (!quot) continue; if (percent < best_percent) { best_percent = percent; best_freq = freq; best_quot = quot; } } } if (!best_freq) { dev_err(up->dev, "Error, %d BAUD rate is too fast.\n", baud); return; } rc = clk_set_rate(priv->baud_mux_clk, best_freq); if (rc) dev_err(up->dev, "Error selecting BAUD MUX clock\n"); /* Error over 3 percent will cause data errors */ if (best_percent > 300) dev_err(up->dev, "Error, baud: %d has %u.%u%% error\n", baud, percent / 100, percent % 100); real_baud = best_freq / 16 / best_quot; dev_dbg(up->dev, "Selecting BAUD MUX rate: %u\n", best_freq); dev_dbg(up->dev, "Requested baud: %u, Actual baud: %u\n", baud, real_baud); /* calc nanoseconds for 1.5 characters time at the given baud rate */ i = NSEC_PER_SEC / real_baud / 10; i += (i / 2); priv->char_wait = ns_to_ktime(i); up->uartclk = best_freq; } static void brcmstb_set_termios(struct uart_port *up, struct ktermios *termios, const struct ktermios *old) { struct uart_8250_port *p8250 = up_to_u8250p(up); struct brcmuart_priv *priv = up->private_data; if (priv->dma_enabled) stop_rx_dma(p8250); set_clock_mux(up, priv, tty_termios_baud_rate(termios)); serial8250_do_set_termios(up, termios, old); if (p8250->mcr & UART_MCR_AFE) p8250->port.status |= UPSTAT_AUTOCTS; if (priv->dma_enabled) start_rx_dma(p8250); } static int brcmuart_handle_irq(struct uart_port *p) { unsigned int iir = serial_port_in(p, UART_IIR); struct brcmuart_priv *priv = p->private_data; struct uart_8250_port *up = up_to_u8250p(p); unsigned int status; unsigned long flags; unsigned int ier; unsigned int mcr; int handled = 0; /* * There's a bug in some 8250 cores where we get a timeout * interrupt but there is no data ready. */ if (((iir & UART_IIR_ID) == UART_IIR_RX_TIMEOUT) && !(priv->shutdown)) { uart_port_lock_irqsave(p, &flags); status = serial_port_in(p, UART_LSR); if ((status & UART_LSR_DR) == 0) { ier = serial_port_in(p, UART_IER); /* * if Receive Data Interrupt is enabled and * we're uing hardware flow control, deassert * RTS and wait for any chars in the pipeline to * arrive and then check for DR again. */ if ((ier & UART_IER_RDI) && (up->mcr & UART_MCR_AFE)) { ier &= ~(UART_IER_RLSI | UART_IER_RDI); serial_port_out(p, UART_IER, ier); mcr = serial_port_in(p, UART_MCR); mcr &= ~UART_MCR_RTS; serial_port_out(p, UART_MCR, mcr); hrtimer_start(&priv->hrt, priv->char_wait, HRTIMER_MODE_REL); } else { serial_port_in(p, UART_RX); } handled = 1; } uart_port_unlock_irqrestore(p, flags); if (handled) return 1; } return serial8250_handle_irq(p, iir); } static enum hrtimer_restart brcmuart_hrtimer_func(struct hrtimer *t) { struct brcmuart_priv *priv = container_of(t, struct brcmuart_priv, hrt); struct uart_port *p = priv->up; struct uart_8250_port *up = up_to_u8250p(p); unsigned int status; unsigned long flags; if (priv->shutdown) return HRTIMER_NORESTART; uart_port_lock_irqsave(p, &flags); status = serial_port_in(p, UART_LSR); /* * If a character did not arrive after the timeout, clear the false * receive timeout. */ if ((status & UART_LSR_DR) == 0) { serial_port_in(p, UART_RX); priv->rx_bad_timeout_no_char++; } else { priv->rx_bad_timeout_late_char++; } /* re-enable receive unless upper layer has disabled it */ if ((up->ier & (UART_IER_RLSI | UART_IER_RDI)) == (UART_IER_RLSI | UART_IER_RDI)) { status = serial_port_in(p, UART_IER); status |= (UART_IER_RLSI | UART_IER_RDI); serial_port_out(p, UART_IER, status); status = serial_port_in(p, UART_MCR); status |= UART_MCR_RTS; serial_port_out(p, UART_MCR, status); } uart_port_unlock_irqrestore(p, flags); return HRTIMER_NORESTART; } static const struct of_device_id brcmuart_dt_ids[] = { { .compatible = "brcm,bcm7278-uart", .data = brcmstb_rate_table_7278, }, { .compatible = "brcm,bcm7271-uart", .data = brcmstb_rate_table, }, {}, }; MODULE_DEVICE_TABLE(of, brcmuart_dt_ids); static void brcmuart_free_bufs(struct device *dev, struct brcmuart_priv *priv) { if (priv->rx_bufs) dma_free_coherent(dev, priv->rx_size, priv->rx_bufs, priv->rx_addr); if (priv->tx_buf) dma_free_coherent(dev, priv->tx_size, priv->tx_buf, priv->tx_addr); } static void brcmuart_throttle(struct uart_port *port) { struct brcmuart_priv *priv = port->private_data; udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_SET, UDMA_RX_INTERRUPTS); } static void brcmuart_unthrottle(struct uart_port *port) { struct brcmuart_priv *priv = port->private_data; udma_writel(priv, REGS_DMA_ISR, UDMA_INTR_MASK_CLEAR, UDMA_RX_INTERRUPTS); } static int debugfs_stats_show(struct seq_file *s, void *unused) { struct brcmuart_priv *priv = s->private; seq_printf(s, "rx_err:\t\t\t\t%u\n", priv->rx_err); seq_printf(s, "rx_timeout:\t\t\t%u\n", priv->rx_timeout); seq_printf(s, "rx_abort:\t\t\t%u\n", priv->rx_abort); seq_printf(s, "rx_bad_timeout_late_char:\t%u\n", priv->rx_bad_timeout_late_char); seq_printf(s, "rx_bad_timeout_no_char:\t\t%u\n", priv->rx_bad_timeout_no_char); seq_printf(s, "rx_missing_close_timeout:\t%u\n", priv->rx_missing_close_timeout); if (priv->dma_enabled) { seq_printf(s, "dma_rx_partial_buf:\t\t%llu\n", priv->dma_rx_partial_buf); seq_printf(s, "dma_rx_full_buf:\t\t%llu\n", priv->dma_rx_full_buf); } return 0; } DEFINE_SHOW_ATTRIBUTE(debugfs_stats); static void brcmuart_init_debugfs(struct brcmuart_priv *priv, const char *device) { priv->debugfs_dir = debugfs_create_dir(device, brcmuart_debugfs_root); debugfs_create_file("stats", 0444, priv->debugfs_dir, priv, &debugfs_stats_fops); } static int brcmuart_probe(struct platform_device *pdev) { struct resource *regs; const struct of_device_id *of_id = NULL; struct uart_8250_port *new_port; struct device *dev = &pdev->dev; struct brcmuart_priv *priv; struct clk *baud_mux_clk; struct uart_8250_port up; void __iomem *membase = NULL; resource_size_t mapbase = 0; int ret; int x; int dma_irq; static const char * const reg_names[REGS_MAX] = { "uart", "dma_rx", "dma_tx", "dma_intr2", "dma_arb" }; priv = devm_kzalloc(dev, sizeof(struct brcmuart_priv), GFP_KERNEL); if (!priv) return -ENOMEM; of_id = of_match_node(brcmuart_dt_ids, dev->of_node); if (!of_id || !of_id->data) priv->rate_table = brcmstb_rate_table; else priv->rate_table = of_id->data; for (x = 0; x < REGS_MAX; x++) { regs = platform_get_resource_byname(pdev, IORESOURCE_MEM, reg_names[x]); if (!regs) break; priv->regs[x] = devm_ioremap(dev, regs->start, resource_size(regs)); if (!priv->regs[x]) return -ENOMEM; if (x == REGS_8250) { mapbase = regs->start; membase = priv->regs[x]; } } /* We should have just the uart base registers or all the registers */ if (x != 1 && x != REGS_MAX) return dev_err_probe(dev, -EINVAL, "%s registers not specified\n", reg_names[x]); /* if the DMA registers were specified, try to enable DMA */ if (x > REGS_DMA_RX) { if (brcmuart_arbitration(priv, 1) == 0) { u32 txrev = 0; u32 rxrev = 0; txrev = udma_readl(priv, REGS_DMA_RX, UDMA_RX_REVISION); rxrev = udma_readl(priv, REGS_DMA_TX, UDMA_TX_REVISION); if ((txrev >= UDMA_TX_REVISION_REQUIRED) && (rxrev >= UDMA_RX_REVISION_REQUIRED)) { /* Enable the use of the DMA hardware */ priv->dma_enabled = true; } else { brcmuart_arbitration(priv, 0); dev_err(dev, "Unsupported DMA Hardware Revision\n"); } } else { dev_err(dev, "Timeout arbitrating for UART DMA hardware\n"); } } dev_dbg(dev, "DMA is %senabled\n", priv->dma_enabled ? "" : "not "); memset(&up, 0, sizeof(up)); up.port.type = PORT_BCM7271; up.port.dev = dev; up.port.mapbase = mapbase; up.port.membase = membase; up.port.handle_irq = brcmuart_handle_irq; up.port.flags = UPF_BOOT_AUTOCONF | UPF_FIXED_PORT | UPF_FIXED_TYPE; up.port.private_data = priv; ret = uart_read_port_properties(&up.port); if (ret) goto release_dma; up.port.regshift = 2; up.port.iotype = device_is_big_endian(dev) ? UPIO_MEM32BE : UPIO_MEM32; /* See if a Baud clock has been specified */ baud_mux_clk = devm_clk_get_optional_enabled(dev, "sw_baud"); ret = PTR_ERR_OR_ZERO(baud_mux_clk); if (ret) goto release_dma; if (baud_mux_clk) { dev_dbg(dev, "BAUD MUX clock found\n"); priv->baud_mux_clk = baud_mux_clk; init_real_clk_rates(dev, priv); up.port.uartclk = priv->default_mux_rate; } else { dev_dbg(dev, "BAUD MUX clock not specified\n"); } /* setup HR timer */ hrtimer_init(&priv->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); priv->hrt.function = brcmuart_hrtimer_func; up.port.shutdown = brcmuart_shutdown; up.port.startup = brcmuart_startup; up.port.throttle = brcmuart_throttle; up.port.unthrottle = brcmuart_unthrottle; up.port.set_termios = brcmstb_set_termios; if (priv->dma_enabled) { priv->rx_size = RX_BUF_SIZE * RX_BUFS_COUNT; priv->rx_bufs = dma_alloc_coherent(dev, priv->rx_size, &priv->rx_addr, GFP_KERNEL); if (!priv->rx_bufs) { ret = -ENOMEM; goto err; } priv->tx_size = UART_XMIT_SIZE; priv->tx_buf = dma_alloc_coherent(dev, priv->tx_size, &priv->tx_addr, GFP_KERNEL); if (!priv->tx_buf) { ret = -ENOMEM; goto err; } } ret = serial8250_register_8250_port(&up); if (ret < 0) { dev_err_probe(dev, ret, "unable to register 8250 port\n"); goto err; } priv->line = ret; new_port = serial8250_get_port(ret); priv->up = &new_port->port; if (priv->dma_enabled) { dma_irq = platform_get_irq_byname(pdev, "dma"); if (dma_irq < 0) { ret = dev_err_probe(dev, dma_irq, "no IRQ resource info\n"); goto err1; } ret = devm_request_irq(dev, dma_irq, brcmuart_isr, IRQF_SHARED, "uart DMA irq", &new_port->port); if (ret) { dev_err_probe(dev, ret, "unable to register IRQ handler\n"); goto err1; } } platform_set_drvdata(pdev, priv); brcmuart_init_debugfs(priv, dev_name(&pdev->dev)); return 0; err1: serial8250_unregister_port(priv->line); err: brcmuart_free_bufs(dev, priv); release_dma: if (priv->dma_enabled) brcmuart_arbitration(priv, 0); return ret; } static void brcmuart_remove(struct platform_device *pdev) { struct brcmuart_priv *priv = platform_get_drvdata(pdev); debugfs_remove_recursive(priv->debugfs_dir); hrtimer_cancel(&priv->hrt); serial8250_unregister_port(priv->line); brcmuart_free_bufs(&pdev->dev, priv); if (priv->dma_enabled) brcmuart_arbitration(priv, 0); } static int __maybe_unused brcmuart_suspend(struct device *dev) { struct brcmuart_priv *priv = dev_get_drvdata(dev); struct uart_8250_port *up = serial8250_get_port(priv->line); struct uart_port *port = &up->port; unsigned long flags; /* * This will prevent resume from enabling RTS before the * baud rate has been restored. */ uart_port_lock_irqsave(port, &flags); priv->saved_mctrl = port->mctrl; port->mctrl &= ~TIOCM_RTS; uart_port_unlock_irqrestore(port, flags); serial8250_suspend_port(priv->line); clk_disable_unprepare(priv->baud_mux_clk); return 0; } static int __maybe_unused brcmuart_resume(struct device *dev) { struct brcmuart_priv *priv = dev_get_drvdata(dev); struct uart_8250_port *up = serial8250_get_port(priv->line); struct uart_port *port = &up->port; unsigned long flags; int ret; ret = clk_prepare_enable(priv->baud_mux_clk); if (ret) dev_err(dev, "Error enabling BAUD MUX clock\n"); /* * The hardware goes back to it's default after suspend * so get the "clk" back in sync. */ ret = clk_set_rate(priv->baud_mux_clk, priv->default_mux_rate); if (ret) dev_err(dev, "Error restoring default BAUD MUX clock\n"); if (priv->dma_enabled) { if (brcmuart_arbitration(priv, 1)) { dev_err(dev, "Timeout arbitrating for DMA hardware on resume\n"); return(-EBUSY); } brcmuart_init_dma_hardware(priv); start_rx_dma(serial8250_get_port(priv->line)); } serial8250_resume_port(priv->line); if (priv->saved_mctrl & TIOCM_RTS) { /* Restore RTS */ uart_port_lock_irqsave(port, &flags); port->mctrl |= TIOCM_RTS; port->ops->set_mctrl(port, port->mctrl); uart_port_unlock_irqrestore(port, flags); } return 0; } static const struct dev_pm_ops brcmuart_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(brcmuart_suspend, brcmuart_resume) }; static struct platform_driver brcmuart_platform_driver = { .driver = { .name = "bcm7271-uart", .pm = &brcmuart_dev_pm_ops, .of_match_table = brcmuart_dt_ids, }, .probe = brcmuart_probe, .remove = brcmuart_remove, }; static int __init brcmuart_init(void) { int ret; brcmuart_debugfs_root = debugfs_create_dir( brcmuart_platform_driver.driver.name, NULL); ret = platform_driver_register(&brcmuart_platform_driver); if (ret) { debugfs_remove_recursive(brcmuart_debugfs_root); return ret; } return 0; } module_init(brcmuart_init); static void __exit brcmuart_deinit(void) { platform_driver_unregister(&brcmuart_platform_driver); debugfs_remove_recursive(brcmuart_debugfs_root); } module_exit(brcmuart_deinit); MODULE_AUTHOR("Al Cooper"); MODULE_DESCRIPTION("Broadcom NS16550A compatible serial port driver"); MODULE_LICENSE("GPL v2");