// SPDX-License-Identifier: GPL-2.0 /* * Driver for Comtrol RocketPort EXPRESS/INFINITY cards * * Copyright (C) 2012 Kevin Cernekee * * Inspired by, and loosely based on: * * ar933x_uart.c * Copyright (C) 2011 Gabor Juhos * * rocketport_infinity_express-linux-1.20.tar.gz * Copyright (C) 2004-2011 Comtrol, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "rp2" #define RP2_FW_NAME "rp2.fw" #define RP2_UCODE_BYTES 0x3f #define PORTS_PER_ASIC 16 #define ALL_PORTS_MASK (BIT(PORTS_PER_ASIC) - 1) #define UART_CLOCK 44236800 #define DEFAULT_BAUD_DIV (UART_CLOCK / (9600 * 16)) #define FIFO_SIZE 512 /* BAR0 registers */ #define RP2_FPGA_CTL0 0x110 #define RP2_FPGA_CTL1 0x11c #define RP2_IRQ_MASK 0x1ec #define RP2_IRQ_MASK_EN_m BIT(0) #define RP2_IRQ_STATUS 0x1f0 /* BAR1 registers */ #define RP2_ASIC_SPACING 0x1000 #define RP2_ASIC_OFFSET(i) ((i) << ilog2(RP2_ASIC_SPACING)) #define RP2_PORT_BASE 0x000 #define RP2_PORT_SPACING 0x040 #define RP2_UCODE_BASE 0x400 #define RP2_UCODE_SPACING 0x80 #define RP2_CLK_PRESCALER 0xc00 #define RP2_CH_IRQ_STAT 0xc04 #define RP2_CH_IRQ_MASK 0xc08 #define RP2_ASIC_IRQ 0xd00 #define RP2_ASIC_IRQ_EN_m BIT(20) #define RP2_GLOBAL_CMD 0xd0c #define RP2_ASIC_CFG 0xd04 /* port registers */ #define RP2_DATA_DWORD 0x000 #define RP2_DATA_BYTE 0x008 #define RP2_DATA_BYTE_ERR_PARITY_m BIT(8) #define RP2_DATA_BYTE_ERR_OVERRUN_m BIT(9) #define RP2_DATA_BYTE_ERR_FRAMING_m BIT(10) #define RP2_DATA_BYTE_BREAK_m BIT(11) /* This lets uart_insert_char() drop bytes received on a !CREAD port */ #define RP2_DUMMY_READ BIT(16) #define RP2_DATA_BYTE_EXCEPTION_MASK (RP2_DATA_BYTE_ERR_PARITY_m | \ RP2_DATA_BYTE_ERR_OVERRUN_m | \ RP2_DATA_BYTE_ERR_FRAMING_m | \ RP2_DATA_BYTE_BREAK_m) #define RP2_RX_FIFO_COUNT 0x00c #define RP2_TX_FIFO_COUNT 0x00e #define RP2_CHAN_STAT 0x010 #define RP2_CHAN_STAT_RXDATA_m BIT(0) #define RP2_CHAN_STAT_DCD_m BIT(3) #define RP2_CHAN_STAT_DSR_m BIT(4) #define RP2_CHAN_STAT_CTS_m BIT(5) #define RP2_CHAN_STAT_RI_m BIT(6) #define RP2_CHAN_STAT_OVERRUN_m BIT(13) #define RP2_CHAN_STAT_DSR_CHANGED_m BIT(16) #define RP2_CHAN_STAT_CTS_CHANGED_m BIT(17) #define RP2_CHAN_STAT_CD_CHANGED_m BIT(18) #define RP2_CHAN_STAT_RI_CHANGED_m BIT(22) #define RP2_CHAN_STAT_TXEMPTY_m BIT(25) #define RP2_CHAN_STAT_MS_CHANGED_MASK (RP2_CHAN_STAT_DSR_CHANGED_m | \ RP2_CHAN_STAT_CTS_CHANGED_m | \ RP2_CHAN_STAT_CD_CHANGED_m | \ RP2_CHAN_STAT_RI_CHANGED_m) #define RP2_TXRX_CTL 0x014 #define RP2_TXRX_CTL_MSRIRQ_m BIT(0) #define RP2_TXRX_CTL_RXIRQ_m BIT(2) #define RP2_TXRX_CTL_RX_TRIG_s 3 #define RP2_TXRX_CTL_RX_TRIG_m (0x3 << RP2_TXRX_CTL_RX_TRIG_s) #define RP2_TXRX_CTL_RX_TRIG_1 (0x1 << RP2_TXRX_CTL_RX_TRIG_s) #define RP2_TXRX_CTL_RX_TRIG_256 (0x2 << RP2_TXRX_CTL_RX_TRIG_s) #define RP2_TXRX_CTL_RX_TRIG_448 (0x3 << RP2_TXRX_CTL_RX_TRIG_s) #define RP2_TXRX_CTL_RX_EN_m BIT(5) #define RP2_TXRX_CTL_RTSFLOW_m BIT(6) #define RP2_TXRX_CTL_DTRFLOW_m BIT(7) #define RP2_TXRX_CTL_TX_TRIG_s 16 #define RP2_TXRX_CTL_TX_TRIG_m (0x3 << RP2_TXRX_CTL_RX_TRIG_s) #define RP2_TXRX_CTL_DSRFLOW_m BIT(18) #define RP2_TXRX_CTL_TXIRQ_m BIT(19) #define RP2_TXRX_CTL_CTSFLOW_m BIT(23) #define RP2_TXRX_CTL_TX_EN_m BIT(24) #define RP2_TXRX_CTL_RTS_m BIT(25) #define RP2_TXRX_CTL_DTR_m BIT(26) #define RP2_TXRX_CTL_LOOP_m BIT(27) #define RP2_TXRX_CTL_BREAK_m BIT(28) #define RP2_TXRX_CTL_CMSPAR_m BIT(29) #define RP2_TXRX_CTL_nPARODD_m BIT(30) #define RP2_TXRX_CTL_PARENB_m BIT(31) #define RP2_UART_CTL 0x018 #define RP2_UART_CTL_MODE_s 0 #define RP2_UART_CTL_MODE_m (0x7 << RP2_UART_CTL_MODE_s) #define RP2_UART_CTL_MODE_rs232 (0x1 << RP2_UART_CTL_MODE_s) #define RP2_UART_CTL_FLUSH_RX_m BIT(3) #define RP2_UART_CTL_FLUSH_TX_m BIT(4) #define RP2_UART_CTL_RESET_CH_m BIT(5) #define RP2_UART_CTL_XMIT_EN_m BIT(6) #define RP2_UART_CTL_DATABITS_s 8 #define RP2_UART_CTL_DATABITS_m (0x3 << RP2_UART_CTL_DATABITS_s) #define RP2_UART_CTL_DATABITS_8 (0x3 << RP2_UART_CTL_DATABITS_s) #define RP2_UART_CTL_DATABITS_7 (0x2 << RP2_UART_CTL_DATABITS_s) #define RP2_UART_CTL_DATABITS_6 (0x1 << RP2_UART_CTL_DATABITS_s) #define RP2_UART_CTL_DATABITS_5 (0x0 << RP2_UART_CTL_DATABITS_s) #define RP2_UART_CTL_STOPBITS_m BIT(10) #define RP2_BAUD 0x01c /* ucode registers */ #define RP2_TX_SWFLOW 0x02 #define RP2_TX_SWFLOW_ena 0x81 #define RP2_TX_SWFLOW_dis 0x9d #define RP2_RX_SWFLOW 0x0c #define RP2_RX_SWFLOW_ena 0x81 #define RP2_RX_SWFLOW_dis 0x8d #define RP2_RX_FIFO 0x37 #define RP2_RX_FIFO_ena 0x08 #define RP2_RX_FIFO_dis 0x81 static struct uart_driver rp2_uart_driver = { .owner = THIS_MODULE, .driver_name = DRV_NAME, .dev_name = "ttyRP", .nr = CONFIG_SERIAL_RP2_NR_UARTS, }; struct rp2_card; struct rp2_uart_port { struct uart_port port; int idx; struct rp2_card *card; void __iomem *asic_base; void __iomem *base; void __iomem *ucode; }; struct rp2_card { struct pci_dev *pdev; struct rp2_uart_port *ports; int n_ports; int initialized_ports; int minor_start; int smpte; void __iomem *bar0; void __iomem *bar1; spinlock_t card_lock; }; #define RP_ID(prod) PCI_VDEVICE(RP, (prod)) #define RP_CAP(ports, smpte) (((ports) << 8) | ((smpte) << 0)) static inline void rp2_decode_cap(const struct pci_device_id *id, int *ports, int *smpte) { *ports = id->driver_data >> 8; *smpte = id->driver_data & 0xff; } static DEFINE_SPINLOCK(rp2_minor_lock); static int rp2_minor_next; static int rp2_alloc_ports(int n_ports) { int ret = -ENOSPC; spin_lock(&rp2_minor_lock); if (rp2_minor_next + n_ports <= CONFIG_SERIAL_RP2_NR_UARTS) { /* sorry, no support for hot unplugging individual cards */ ret = rp2_minor_next; rp2_minor_next += n_ports; } spin_unlock(&rp2_minor_lock); return ret; } static inline struct rp2_uart_port *port_to_up(struct uart_port *port) { return container_of(port, struct rp2_uart_port, port); } static void rp2_rmw(struct rp2_uart_port *up, int reg, u32 clr_bits, u32 set_bits) { u32 tmp = readl(up->base + reg); tmp &= ~clr_bits; tmp |= set_bits; writel(tmp, up->base + reg); } static void rp2_rmw_clr(struct rp2_uart_port *up, int reg, u32 val) { rp2_rmw(up, reg, val, 0); } static void rp2_rmw_set(struct rp2_uart_port *up, int reg, u32 val) { rp2_rmw(up, reg, 0, val); } static void rp2_mask_ch_irq(struct rp2_uart_port *up, int ch_num, int is_enabled) { unsigned long flags, irq_mask; spin_lock_irqsave(&up->card->card_lock, flags); irq_mask = readl(up->asic_base + RP2_CH_IRQ_MASK); if (is_enabled) irq_mask &= ~BIT(ch_num); else irq_mask |= BIT(ch_num); writel(irq_mask, up->asic_base + RP2_CH_IRQ_MASK); spin_unlock_irqrestore(&up->card->card_lock, flags); } static unsigned int rp2_uart_tx_empty(struct uart_port *port) { struct rp2_uart_port *up = port_to_up(port); unsigned long tx_fifo_bytes, flags; /* * This should probably check the transmitter, not the FIFO. * But the TXEMPTY bit doesn't seem to work unless the TX IRQ is * enabled. */ uart_port_lock_irqsave(&up->port, &flags); tx_fifo_bytes = readw(up->base + RP2_TX_FIFO_COUNT); uart_port_unlock_irqrestore(&up->port, flags); return tx_fifo_bytes ? 0 : TIOCSER_TEMT; } static unsigned int rp2_uart_get_mctrl(struct uart_port *port) { struct rp2_uart_port *up = port_to_up(port); u32 status; status = readl(up->base + RP2_CHAN_STAT); return ((status & RP2_CHAN_STAT_DCD_m) ? TIOCM_CAR : 0) | ((status & RP2_CHAN_STAT_DSR_m) ? TIOCM_DSR : 0) | ((status & RP2_CHAN_STAT_CTS_m) ? TIOCM_CTS : 0) | ((status & RP2_CHAN_STAT_RI_m) ? TIOCM_RI : 0); } static void rp2_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) { rp2_rmw(port_to_up(port), RP2_TXRX_CTL, RP2_TXRX_CTL_DTR_m | RP2_TXRX_CTL_RTS_m | RP2_TXRX_CTL_LOOP_m, ((mctrl & TIOCM_DTR) ? RP2_TXRX_CTL_DTR_m : 0) | ((mctrl & TIOCM_RTS) ? RP2_TXRX_CTL_RTS_m : 0) | ((mctrl & TIOCM_LOOP) ? RP2_TXRX_CTL_LOOP_m : 0)); } static void rp2_uart_start_tx(struct uart_port *port) { rp2_rmw_set(port_to_up(port), RP2_TXRX_CTL, RP2_TXRX_CTL_TXIRQ_m); } static void rp2_uart_stop_tx(struct uart_port *port) { rp2_rmw_clr(port_to_up(port), RP2_TXRX_CTL, RP2_TXRX_CTL_TXIRQ_m); } static void rp2_uart_stop_rx(struct uart_port *port) { rp2_rmw_clr(port_to_up(port), RP2_TXRX_CTL, RP2_TXRX_CTL_RXIRQ_m); } static void rp2_uart_break_ctl(struct uart_port *port, int break_state) { unsigned long flags; uart_port_lock_irqsave(port, &flags); rp2_rmw(port_to_up(port), RP2_TXRX_CTL, RP2_TXRX_CTL_BREAK_m, break_state ? RP2_TXRX_CTL_BREAK_m : 0); uart_port_unlock_irqrestore(port, flags); } static void rp2_uart_enable_ms(struct uart_port *port) { rp2_rmw_set(port_to_up(port), RP2_TXRX_CTL, RP2_TXRX_CTL_MSRIRQ_m); } static void __rp2_uart_set_termios(struct rp2_uart_port *up, unsigned long cfl, unsigned long ifl, unsigned int baud_div) { /* baud rate divisor (calculated elsewhere). 0 = divide-by-1 */ writew(baud_div - 1, up->base + RP2_BAUD); /* data bits and stop bits */ rp2_rmw(up, RP2_UART_CTL, RP2_UART_CTL_STOPBITS_m | RP2_UART_CTL_DATABITS_m, ((cfl & CSTOPB) ? RP2_UART_CTL_STOPBITS_m : 0) | (((cfl & CSIZE) == CS8) ? RP2_UART_CTL_DATABITS_8 : 0) | (((cfl & CSIZE) == CS7) ? RP2_UART_CTL_DATABITS_7 : 0) | (((cfl & CSIZE) == CS6) ? RP2_UART_CTL_DATABITS_6 : 0) | (((cfl & CSIZE) == CS5) ? RP2_UART_CTL_DATABITS_5 : 0)); /* parity and hardware flow control */ rp2_rmw(up, RP2_TXRX_CTL, RP2_TXRX_CTL_PARENB_m | RP2_TXRX_CTL_nPARODD_m | RP2_TXRX_CTL_CMSPAR_m | RP2_TXRX_CTL_DTRFLOW_m | RP2_TXRX_CTL_DSRFLOW_m | RP2_TXRX_CTL_RTSFLOW_m | RP2_TXRX_CTL_CTSFLOW_m, ((cfl & PARENB) ? RP2_TXRX_CTL_PARENB_m : 0) | ((cfl & PARODD) ? 0 : RP2_TXRX_CTL_nPARODD_m) | ((cfl & CMSPAR) ? RP2_TXRX_CTL_CMSPAR_m : 0) | ((cfl & CRTSCTS) ? (RP2_TXRX_CTL_RTSFLOW_m | RP2_TXRX_CTL_CTSFLOW_m) : 0)); /* XON/XOFF software flow control */ writeb((ifl & IXON) ? RP2_TX_SWFLOW_ena : RP2_TX_SWFLOW_dis, up->ucode + RP2_TX_SWFLOW); writeb((ifl & IXOFF) ? RP2_RX_SWFLOW_ena : RP2_RX_SWFLOW_dis, up->ucode + RP2_RX_SWFLOW); } static void rp2_uart_set_termios(struct uart_port *port, struct ktermios *new, const struct ktermios *old) { struct rp2_uart_port *up = port_to_up(port); unsigned long flags; unsigned int baud, baud_div; baud = uart_get_baud_rate(port, new, old, 0, port->uartclk / 16); baud_div = uart_get_divisor(port, baud); if (tty_termios_baud_rate(new)) tty_termios_encode_baud_rate(new, baud, baud); uart_port_lock_irqsave(port, &flags); /* ignore all characters if CREAD is not set */ port->ignore_status_mask = (new->c_cflag & CREAD) ? 0 : RP2_DUMMY_READ; __rp2_uart_set_termios(up, new->c_cflag, new->c_iflag, baud_div); uart_update_timeout(port, new->c_cflag, baud); uart_port_unlock_irqrestore(port, flags); } static void rp2_rx_chars(struct rp2_uart_port *up) { u16 bytes = readw(up->base + RP2_RX_FIFO_COUNT); struct tty_port *port = &up->port.state->port; for (; bytes != 0; bytes--) { u32 byte = readw(up->base + RP2_DATA_BYTE) | RP2_DUMMY_READ; u8 ch = byte & 0xff; if (likely(!(byte & RP2_DATA_BYTE_EXCEPTION_MASK))) { if (!uart_handle_sysrq_char(&up->port, ch)) uart_insert_char(&up->port, byte, 0, ch, TTY_NORMAL); } else { u8 flag = TTY_NORMAL; if (byte & RP2_DATA_BYTE_BREAK_m) flag = TTY_BREAK; else if (byte & RP2_DATA_BYTE_ERR_FRAMING_m) flag = TTY_FRAME; else if (byte & RP2_DATA_BYTE_ERR_PARITY_m) flag = TTY_PARITY; uart_insert_char(&up->port, byte, RP2_DATA_BYTE_ERR_OVERRUN_m, ch, flag); } up->port.icount.rx++; } tty_flip_buffer_push(port); } static void rp2_tx_chars(struct rp2_uart_port *up) { u8 ch; uart_port_tx_limited(&up->port, ch, FIFO_SIZE - readw(up->base + RP2_TX_FIFO_COUNT), true, writeb(ch, up->base + RP2_DATA_BYTE), ({})); } static void rp2_ch_interrupt(struct rp2_uart_port *up) { u32 status; uart_port_lock(&up->port); /* * The IRQ status bits are clear-on-write. Other status bits in * this register aren't, so it's harmless to write to them. */ status = readl(up->base + RP2_CHAN_STAT); writel(status, up->base + RP2_CHAN_STAT); if (status & RP2_CHAN_STAT_RXDATA_m) rp2_rx_chars(up); if (status & RP2_CHAN_STAT_TXEMPTY_m) rp2_tx_chars(up); if (status & RP2_CHAN_STAT_MS_CHANGED_MASK) wake_up_interruptible(&up->port.state->port.delta_msr_wait); uart_port_unlock(&up->port); } static int rp2_asic_interrupt(struct rp2_card *card, unsigned int asic_id) { void __iomem *base = card->bar1 + RP2_ASIC_OFFSET(asic_id); int ch, handled = 0; unsigned long status = readl(base + RP2_CH_IRQ_STAT) & ~readl(base + RP2_CH_IRQ_MASK); for_each_set_bit(ch, &status, PORTS_PER_ASIC) { rp2_ch_interrupt(&card->ports[ch]); handled++; } return handled; } static irqreturn_t rp2_uart_interrupt(int irq, void *dev_id) { struct rp2_card *card = dev_id; int handled; handled = rp2_asic_interrupt(card, 0); if (card->n_ports >= PORTS_PER_ASIC) handled += rp2_asic_interrupt(card, 1); return handled ? IRQ_HANDLED : IRQ_NONE; } static inline void rp2_flush_fifos(struct rp2_uart_port *up) { rp2_rmw_set(up, RP2_UART_CTL, RP2_UART_CTL_FLUSH_RX_m | RP2_UART_CTL_FLUSH_TX_m); readl(up->base + RP2_UART_CTL); udelay(10); rp2_rmw_clr(up, RP2_UART_CTL, RP2_UART_CTL_FLUSH_RX_m | RP2_UART_CTL_FLUSH_TX_m); } static int rp2_uart_startup(struct uart_port *port) { struct rp2_uart_port *up = port_to_up(port); rp2_flush_fifos(up); rp2_rmw(up, RP2_TXRX_CTL, RP2_TXRX_CTL_MSRIRQ_m, RP2_TXRX_CTL_RXIRQ_m); rp2_rmw(up, RP2_TXRX_CTL, RP2_TXRX_CTL_RX_TRIG_m, RP2_TXRX_CTL_RX_TRIG_1); rp2_rmw(up, RP2_CHAN_STAT, 0, 0); rp2_mask_ch_irq(up, up->idx, 1); return 0; } static void rp2_uart_shutdown(struct uart_port *port) { struct rp2_uart_port *up = port_to_up(port); unsigned long flags; rp2_uart_break_ctl(port, 0); uart_port_lock_irqsave(port, &flags); rp2_mask_ch_irq(up, up->idx, 0); rp2_rmw(up, RP2_CHAN_STAT, 0, 0); uart_port_unlock_irqrestore(port, flags); } static const char *rp2_uart_type(struct uart_port *port) { return (port->type == PORT_RP2) ? "RocketPort 2 UART" : NULL; } static void rp2_uart_release_port(struct uart_port *port) { /* Nothing to release ... */ } static int rp2_uart_request_port(struct uart_port *port) { /* UARTs always present */ return 0; } static void rp2_uart_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) port->type = PORT_RP2; } static int rp2_uart_verify_port(struct uart_port *port, struct serial_struct *ser) { if (ser->type != PORT_UNKNOWN && ser->type != PORT_RP2) return -EINVAL; return 0; } static const struct uart_ops rp2_uart_ops = { .tx_empty = rp2_uart_tx_empty, .set_mctrl = rp2_uart_set_mctrl, .get_mctrl = rp2_uart_get_mctrl, .stop_tx = rp2_uart_stop_tx, .start_tx = rp2_uart_start_tx, .stop_rx = rp2_uart_stop_rx, .enable_ms = rp2_uart_enable_ms, .break_ctl = rp2_uart_break_ctl, .startup = rp2_uart_startup, .shutdown = rp2_uart_shutdown, .set_termios = rp2_uart_set_termios, .type = rp2_uart_type, .release_port = rp2_uart_release_port, .request_port = rp2_uart_request_port, .config_port = rp2_uart_config_port, .verify_port = rp2_uart_verify_port, }; static void rp2_reset_asic(struct rp2_card *card, unsigned int asic_id) { void __iomem *base = card->bar1 + RP2_ASIC_OFFSET(asic_id); u32 clk_cfg; writew(1, base + RP2_GLOBAL_CMD); msleep(100); readw(base + RP2_GLOBAL_CMD); writel(0, base + RP2_CLK_PRESCALER); /* TDM clock configuration */ clk_cfg = readw(base + RP2_ASIC_CFG); clk_cfg = (clk_cfg & ~BIT(8)) | BIT(9); writew(clk_cfg, base + RP2_ASIC_CFG); /* IRQ routing */ writel(ALL_PORTS_MASK, base + RP2_CH_IRQ_MASK); writel(RP2_ASIC_IRQ_EN_m, base + RP2_ASIC_IRQ); } static void rp2_init_card(struct rp2_card *card) { writel(4, card->bar0 + RP2_FPGA_CTL0); writel(0, card->bar0 + RP2_FPGA_CTL1); rp2_reset_asic(card, 0); if (card->n_ports >= PORTS_PER_ASIC) rp2_reset_asic(card, 1); writel(RP2_IRQ_MASK_EN_m, card->bar0 + RP2_IRQ_MASK); } static void rp2_init_port(struct rp2_uart_port *up, const struct firmware *fw) { int i; writel(RP2_UART_CTL_RESET_CH_m, up->base + RP2_UART_CTL); readl(up->base + RP2_UART_CTL); udelay(1); writel(0, up->base + RP2_TXRX_CTL); writel(0, up->base + RP2_UART_CTL); readl(up->base + RP2_UART_CTL); udelay(1); rp2_flush_fifos(up); for (i = 0; i < min_t(int, fw->size, RP2_UCODE_BYTES); i++) writeb(fw->data[i], up->ucode + i); __rp2_uart_set_termios(up, CS8 | CREAD | CLOCAL, 0, DEFAULT_BAUD_DIV); rp2_uart_set_mctrl(&up->port, 0); writeb(RP2_RX_FIFO_ena, up->ucode + RP2_RX_FIFO); rp2_rmw(up, RP2_UART_CTL, RP2_UART_CTL_MODE_m, RP2_UART_CTL_XMIT_EN_m | RP2_UART_CTL_MODE_rs232); rp2_rmw_set(up, RP2_TXRX_CTL, RP2_TXRX_CTL_TX_EN_m | RP2_TXRX_CTL_RX_EN_m); } static void rp2_remove_ports(struct rp2_card *card) { int i; for (i = 0; i < card->initialized_ports; i++) uart_remove_one_port(&rp2_uart_driver, &card->ports[i].port); card->initialized_ports = 0; } static int rp2_load_firmware(struct rp2_card *card, const struct firmware *fw) { resource_size_t phys_base; int i, rc = 0; phys_base = pci_resource_start(card->pdev, 1); for (i = 0; i < card->n_ports; i++) { struct rp2_uart_port *rp = &card->ports[i]; struct uart_port *p; int j = (unsigned)i % PORTS_PER_ASIC; rp->asic_base = card->bar1; rp->base = card->bar1 + RP2_PORT_BASE + j*RP2_PORT_SPACING; rp->ucode = card->bar1 + RP2_UCODE_BASE + j*RP2_UCODE_SPACING; rp->card = card; rp->idx = j; p = &rp->port; p->line = card->minor_start + i; p->dev = &card->pdev->dev; p->type = PORT_RP2; p->iotype = UPIO_MEM32; p->uartclk = UART_CLOCK; p->regshift = 2; p->fifosize = FIFO_SIZE; p->ops = &rp2_uart_ops; p->irq = card->pdev->irq; p->membase = rp->base; p->mapbase = phys_base + RP2_PORT_BASE + j*RP2_PORT_SPACING; if (i >= PORTS_PER_ASIC) { rp->asic_base += RP2_ASIC_SPACING; rp->base += RP2_ASIC_SPACING; rp->ucode += RP2_ASIC_SPACING; p->mapbase += RP2_ASIC_SPACING; } rp2_init_port(rp, fw); rc = uart_add_one_port(&rp2_uart_driver, p); if (rc) { dev_err(&card->pdev->dev, "error registering port %d: %d\n", i, rc); rp2_remove_ports(card); break; } card->initialized_ports++; } return rc; } static int rp2_probe(struct pci_dev *pdev, const struct pci_device_id *id) { const struct firmware *fw; struct rp2_card *card; struct rp2_uart_port *ports; int rc; card = devm_kzalloc(&pdev->dev, sizeof(*card), GFP_KERNEL); if (!card) return -ENOMEM; pci_set_drvdata(pdev, card); spin_lock_init(&card->card_lock); rc = pcim_enable_device(pdev); if (rc) return rc; rc = pcim_request_all_regions(pdev, DRV_NAME); if (rc) return rc; card->bar0 = pcim_iomap(pdev, 0, 0); if (!card->bar0) return -ENOMEM; card->bar1 = pcim_iomap(pdev, 1, 0); if (!card->bar1) return -ENOMEM; card->pdev = pdev; rp2_decode_cap(id, &card->n_ports, &card->smpte); dev_info(&pdev->dev, "found new card with %d ports\n", card->n_ports); card->minor_start = rp2_alloc_ports(card->n_ports); if (card->minor_start < 0) { dev_err(&pdev->dev, "too many ports (try increasing CONFIG_SERIAL_RP2_NR_UARTS)\n"); return -EINVAL; } rp2_init_card(card); ports = devm_kcalloc(&pdev->dev, card->n_ports, sizeof(*ports), GFP_KERNEL); if (!ports) return -ENOMEM; card->ports = ports; rc = request_firmware(&fw, RP2_FW_NAME, &pdev->dev); if (rc < 0) { dev_err(&pdev->dev, "cannot find '%s' firmware image\n", RP2_FW_NAME); return rc; } rc = rp2_load_firmware(card, fw); release_firmware(fw); if (rc < 0) return rc; rc = devm_request_irq(&pdev->dev, pdev->irq, rp2_uart_interrupt, IRQF_SHARED, DRV_NAME, card); if (rc) return rc; return 0; } static void rp2_remove(struct pci_dev *pdev) { struct rp2_card *card = pci_get_drvdata(pdev); rp2_remove_ports(card); } static const struct pci_device_id rp2_pci_tbl[] = { /* RocketPort INFINITY cards */ { RP_ID(0x0040), RP_CAP(8, 0) }, /* INF Octa, RJ45, selectable */ { RP_ID(0x0041), RP_CAP(32, 0) }, /* INF 32, ext interface */ { RP_ID(0x0042), RP_CAP(8, 0) }, /* INF Octa, ext interface */ { RP_ID(0x0043), RP_CAP(16, 0) }, /* INF 16, ext interface */ { RP_ID(0x0044), RP_CAP(4, 0) }, /* INF Quad, DB, selectable */ { RP_ID(0x0045), RP_CAP(8, 0) }, /* INF Octa, DB, selectable */ { RP_ID(0x0046), RP_CAP(4, 0) }, /* INF Quad, ext interface */ { RP_ID(0x0047), RP_CAP(4, 0) }, /* INF Quad, RJ45 */ { RP_ID(0x004a), RP_CAP(4, 0) }, /* INF Plus, Quad */ { RP_ID(0x004b), RP_CAP(8, 0) }, /* INF Plus, Octa */ { RP_ID(0x004c), RP_CAP(8, 0) }, /* INF III, Octa */ { RP_ID(0x004d), RP_CAP(4, 0) }, /* INF III, Quad */ { RP_ID(0x004e), RP_CAP(2, 0) }, /* INF Plus, 2, RS232 */ { RP_ID(0x004f), RP_CAP(2, 1) }, /* INF Plus, 2, SMPTE */ { RP_ID(0x0050), RP_CAP(4, 0) }, /* INF Plus, Quad, RJ45 */ { RP_ID(0x0051), RP_CAP(8, 0) }, /* INF Plus, Octa, RJ45 */ { RP_ID(0x0052), RP_CAP(8, 1) }, /* INF Octa, SMPTE */ /* RocketPort EXPRESS cards */ { RP_ID(0x0060), RP_CAP(8, 0) }, /* EXP Octa, RJ45, selectable */ { RP_ID(0x0061), RP_CAP(32, 0) }, /* EXP 32, ext interface */ { RP_ID(0x0062), RP_CAP(8, 0) }, /* EXP Octa, ext interface */ { RP_ID(0x0063), RP_CAP(16, 0) }, /* EXP 16, ext interface */ { RP_ID(0x0064), RP_CAP(4, 0) }, /* EXP Quad, DB, selectable */ { RP_ID(0x0065), RP_CAP(8, 0) }, /* EXP Octa, DB, selectable */ { RP_ID(0x0066), RP_CAP(4, 0) }, /* EXP Quad, ext interface */ { RP_ID(0x0067), RP_CAP(4, 0) }, /* EXP Quad, RJ45 */ { RP_ID(0x0068), RP_CAP(8, 0) }, /* EXP Octa, RJ11 */ { RP_ID(0x0072), RP_CAP(8, 1) }, /* EXP Octa, SMPTE */ { } }; MODULE_DEVICE_TABLE(pci, rp2_pci_tbl); static struct pci_driver rp2_pci_driver = { .name = DRV_NAME, .id_table = rp2_pci_tbl, .probe = rp2_probe, .remove = rp2_remove, }; static int __init rp2_uart_init(void) { int rc; rc = uart_register_driver(&rp2_uart_driver); if (rc) return rc; rc = pci_register_driver(&rp2_pci_driver); if (rc) { uart_unregister_driver(&rp2_uart_driver); return rc; } return 0; } static void __exit rp2_uart_exit(void) { pci_unregister_driver(&rp2_pci_driver); uart_unregister_driver(&rp2_uart_driver); } module_init(rp2_uart_init); module_exit(rp2_uart_exit); MODULE_DESCRIPTION("Comtrol RocketPort EXPRESS/INFINITY driver"); MODULE_AUTHOR("Kevin Cernekee "); MODULE_LICENSE("GPL v2"); MODULE_FIRMWARE(RP2_FW_NAME);