// SPDX-License-Identifier: GPL-2.0 /* * PolarFire SoC (MPFS) MUSB Glue Layer * * Copyright (c) 2020-2022 Microchip Corporation. All rights reserved. * Based on {omap2430,tusb6010,ux500}.c * */ #include #include #include #include #include #include #include #include #include #include "musb_core.h" #include "musb_dma.h" #define MPFS_MUSB_MAX_EP_NUM 8 #define MPFS_MUSB_RAM_BITS 12 struct mpfs_glue { struct device *dev; struct platform_device *musb; struct platform_device *phy; struct clk *clk; }; static struct musb_fifo_cfg mpfs_musb_mode_cfg[] = { { .hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512, }, { .hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512, }, { .hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 512, }, { .hw_ep_num = 2, .style = FIFO_RX, .maxpacket = 512, }, { .hw_ep_num = 3, .style = FIFO_TX, .maxpacket = 512, }, { .hw_ep_num = 3, .style = FIFO_RX, .maxpacket = 512, }, { .hw_ep_num = 4, .style = FIFO_TX, .maxpacket = 1024, }, { .hw_ep_num = 4, .style = FIFO_RX, .maxpacket = 4096, }, }; static const struct musb_hdrc_config mpfs_musb_hdrc_config = { .fifo_cfg = mpfs_musb_mode_cfg, .fifo_cfg_size = ARRAY_SIZE(mpfs_musb_mode_cfg), .multipoint = true, .dyn_fifo = true, .num_eps = MPFS_MUSB_MAX_EP_NUM, .ram_bits = MPFS_MUSB_RAM_BITS, }; static void mpfs_musb_set_vbus(struct musb *musb, int is_on) { u8 devctl; /* * HDRC controls CPEN, but beware current surges during device * connect. They can trigger transient overcurrent conditions * that must be ignored. */ devctl = musb_readb(musb->mregs, MUSB_DEVCTL); if (is_on) { musb->is_active = 1; musb->xceiv->otg->default_a = 1; musb->xceiv->otg->state = OTG_STATE_A_WAIT_VRISE; devctl |= MUSB_DEVCTL_SESSION; MUSB_HST_MODE(musb); } else { musb->is_active = 0; /* * NOTE: skipping A_WAIT_VFALL -> A_IDLE and * jumping right to B_IDLE... */ musb->xceiv->otg->default_a = 0; musb->xceiv->otg->state = OTG_STATE_B_IDLE; devctl &= ~MUSB_DEVCTL_SESSION; MUSB_DEV_MODE(musb); } musb_writeb(musb->mregs, MUSB_DEVCTL, devctl); dev_dbg(musb->controller, "VBUS %s, devctl %02x\n", usb_otg_state_string(musb->xceiv->otg->state), musb_readb(musb->mregs, MUSB_DEVCTL)); } #define POLL_SECONDS 2 static void otg_timer(struct timer_list *t) { struct musb *musb = from_timer(musb, t, dev_timer); void __iomem *mregs = musb->mregs; u8 devctl; unsigned long flags; /* * We poll because PolarFire SoC won't expose several OTG-critical * status change events (from the transceiver) otherwise. */ devctl = musb_readb(mregs, MUSB_DEVCTL); dev_dbg(musb->controller, "Poll devctl %02x (%s)\n", devctl, usb_otg_state_string(musb->xceiv->otg->state)); spin_lock_irqsave(&musb->lock, flags); switch (musb->xceiv->otg->state) { case OTG_STATE_A_WAIT_BCON: devctl &= ~MUSB_DEVCTL_SESSION; musb_writeb(musb->mregs, MUSB_DEVCTL, devctl); devctl = musb_readb(musb->mregs, MUSB_DEVCTL); if (devctl & MUSB_DEVCTL_BDEVICE) { musb->xceiv->otg->state = OTG_STATE_B_IDLE; MUSB_DEV_MODE(musb); mod_timer(&musb->dev_timer, jiffies + POLL_SECONDS * HZ); } else { musb->xceiv->otg->state = OTG_STATE_A_IDLE; MUSB_HST_MODE(musb); } break; case OTG_STATE_A_WAIT_VFALL: if (devctl & MUSB_DEVCTL_VBUS) { mod_timer(&musb->dev_timer, jiffies + POLL_SECONDS * HZ); break; } musb->xceiv->otg->state = OTG_STATE_A_WAIT_VRISE; break; case OTG_STATE_B_IDLE: /* * There's no ID-changed IRQ, so we have no good way to tell * when to switch to the A-Default state machine (by setting * the DEVCTL.Session bit). * * Workaround: whenever we're in B_IDLE, try setting the * session flag every few seconds. If it works, ID was * grounded and we're now in the A-Default state machine. * * NOTE: setting the session flag is _supposed_ to trigger * SRP but clearly it doesn't. */ musb_writeb(mregs, MUSB_DEVCTL, devctl | MUSB_DEVCTL_SESSION); devctl = musb_readb(mregs, MUSB_DEVCTL); if (devctl & MUSB_DEVCTL_BDEVICE) mod_timer(&musb->dev_timer, jiffies + POLL_SECONDS * HZ); else musb->xceiv->otg->state = OTG_STATE_A_IDLE; break; default: break; } spin_unlock_irqrestore(&musb->lock, flags); } static void __maybe_unused mpfs_musb_try_idle(struct musb *musb, unsigned long timeout) { static unsigned long last_timer; if (timeout == 0) timeout = jiffies + msecs_to_jiffies(3); /* Never idle if active, or when VBUS timeout is not set as host */ if (musb->is_active || (musb->a_wait_bcon == 0 && musb->xceiv->otg->state == OTG_STATE_A_WAIT_BCON)) { dev_dbg(musb->controller, "%s active, deleting timer\n", usb_otg_state_string(musb->xceiv->otg->state)); del_timer(&musb->dev_timer); last_timer = jiffies; return; } if (time_after(last_timer, timeout) && timer_pending(&musb->dev_timer)) { dev_dbg(musb->controller, "Longer idle timer already pending, ignoring...\n"); return; } last_timer = timeout; dev_dbg(musb->controller, "%s inactive, starting idle timer for %u ms\n", usb_otg_state_string(musb->xceiv->otg->state), jiffies_to_msecs(timeout - jiffies)); mod_timer(&musb->dev_timer, timeout); } static irqreturn_t mpfs_musb_interrupt(int irq, void *__hci) { unsigned long flags; irqreturn_t ret = IRQ_NONE; struct musb *musb = __hci; spin_lock_irqsave(&musb->lock, flags); musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB); musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX); musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX); if (musb->int_usb || musb->int_tx || musb->int_rx) { musb_writeb(musb->mregs, MUSB_INTRUSB, musb->int_usb); musb_writew(musb->mregs, MUSB_INTRTX, musb->int_tx); musb_writew(musb->mregs, MUSB_INTRRX, musb->int_rx); ret = musb_interrupt(musb); } /* Poll for ID change */ if (musb->xceiv->otg->state == OTG_STATE_B_IDLE) mod_timer(&musb->dev_timer, jiffies + POLL_SECONDS * HZ); spin_unlock_irqrestore(&musb->lock, flags); return ret; } static int mpfs_musb_init(struct musb *musb) { struct device *dev = musb->controller; musb->xceiv = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2); if (IS_ERR(musb->xceiv)) { dev_err(dev, "HS UDC: no transceiver configured\n"); return PTR_ERR(musb->xceiv); } timer_setup(&musb->dev_timer, otg_timer, 0); musb->dyn_fifo = true; musb->isr = mpfs_musb_interrupt; musb_platform_set_vbus(musb, 1); return 0; } static int mpfs_musb_exit(struct musb *musb) { del_timer_sync(&musb->dev_timer); return 0; } static const struct musb_platform_ops mpfs_ops = { .quirks = MUSB_DMA_INVENTRA, .init = mpfs_musb_init, .exit = mpfs_musb_exit, .fifo_mode = 2, #ifdef CONFIG_USB_INVENTRA_DMA .dma_init = musbhs_dma_controller_create, .dma_exit = musbhs_dma_controller_destroy, #endif #ifndef CONFIG_USB_MUSB_HOST .try_idle = mpfs_musb_try_idle, #endif .set_vbus = mpfs_musb_set_vbus }; static int mpfs_probe(struct platform_device *pdev) { struct musb_hdrc_platform_data *pdata = dev_get_platdata(&pdev->dev); struct mpfs_glue *glue; struct platform_device *musb_pdev; struct device *dev = &pdev->dev; struct clk *clk; int ret; glue = devm_kzalloc(dev, sizeof(*glue), GFP_KERNEL); if (!glue) return -ENOMEM; musb_pdev = platform_device_alloc("musb-hdrc", PLATFORM_DEVID_AUTO); if (!musb_pdev) { dev_err(dev, "failed to allocate musb device\n"); return -ENOMEM; } clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { dev_err(&pdev->dev, "failed to get clock\n"); ret = PTR_ERR(clk); goto err_phy_release; } ret = clk_prepare_enable(clk); if (ret) { dev_err(&pdev->dev, "failed to enable clock\n"); goto err_phy_release; } musb_pdev->dev.parent = dev; musb_pdev->dev.coherent_dma_mask = DMA_BIT_MASK(39); musb_pdev->dev.dma_mask = &musb_pdev->dev.coherent_dma_mask; device_set_of_node_from_dev(&musb_pdev->dev, dev); glue->dev = dev; glue->musb = musb_pdev; glue->clk = clk; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { ret = -ENOMEM; goto err_clk_disable; } pdata->config = &mpfs_musb_hdrc_config; pdata->platform_ops = &mpfs_ops; pdata->extvbus = device_property_read_bool(dev, "microchip,ext-vbus-drv"); pdata->mode = usb_get_dr_mode(dev); if (pdata->mode == USB_DR_MODE_UNKNOWN) { dev_info(dev, "No dr_mode property found, defaulting to otg\n"); pdata->mode = USB_DR_MODE_OTG; } glue->phy = usb_phy_generic_register(); if (IS_ERR(glue->phy)) { dev_err(dev, "failed to register usb-phy %ld\n", PTR_ERR(glue->phy)); ret = PTR_ERR(glue->phy); goto err_clk_disable; } platform_set_drvdata(pdev, glue); ret = platform_device_add_resources(musb_pdev, pdev->resource, pdev->num_resources); if (ret) { dev_err(dev, "failed to add resources\n"); goto err_clk_disable; } ret = platform_device_add_data(musb_pdev, pdata, sizeof(*pdata)); if (ret) { dev_err(dev, "failed to add platform_data\n"); goto err_clk_disable; } ret = platform_device_add(musb_pdev); if (ret) { dev_err(dev, "failed to register musb device\n"); goto err_clk_disable; } dev_info(&pdev->dev, "Registered MPFS MUSB driver\n"); return 0; err_clk_disable: clk_disable_unprepare(clk); err_phy_release: usb_phy_generic_unregister(glue->phy); platform_device_put(musb_pdev); return ret; } static void mpfs_remove(struct platform_device *pdev) { struct mpfs_glue *glue = platform_get_drvdata(pdev); clk_disable_unprepare(glue->clk); platform_device_unregister(glue->musb); usb_phy_generic_unregister(pdev); } #ifdef CONFIG_OF static const struct of_device_id mpfs_id_table[] = { { .compatible = "microchip,mpfs-musb" }, { } }; MODULE_DEVICE_TABLE(of, mpfs_id_table); #endif static struct platform_driver mpfs_musb_driver = { .probe = mpfs_probe, .remove = mpfs_remove, .driver = { .name = "mpfs-musb", .of_match_table = of_match_ptr(mpfs_id_table) }, }; module_platform_driver(mpfs_musb_driver); MODULE_DESCRIPTION("PolarFire SoC MUSB Glue Layer"); MODULE_LICENSE("GPL");