// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2008 Oracle. All rights reserved. */ #include #include #include #include #include #include #include "misc.h" #include "ctree.h" #include "extent_io.h" #include "locking.h" /* * Lockdep class keys for extent_buffer->lock's in this root. For a given * eb, the lockdep key is determined by the btrfs_root it belongs to and * the level the eb occupies in the tree. * * Different roots are used for different purposes and may nest inside each * other and they require separate keysets. As lockdep keys should be * static, assign keysets according to the purpose of the root as indicated * by btrfs_root->root_key.objectid. This ensures that all special purpose * roots have separate keysets. * * Lock-nesting across peer nodes is always done with the immediate parent * node locked thus preventing deadlock. As lockdep doesn't know this, use * subclass to avoid triggering lockdep warning in such cases. * * The key is set by the readpage_end_io_hook after the buffer has passed * csum validation but before the pages are unlocked. It is also set by * btrfs_init_new_buffer on freshly allocated blocks. * * We also add a check to make sure the highest level of the tree is the * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code * needs update as well. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC #if BTRFS_MAX_LEVEL != 8 #error #endif #define DEFINE_LEVEL(stem, level) \ .names[level] = "btrfs-" stem "-0" #level, #define DEFINE_NAME(stem) \ DEFINE_LEVEL(stem, 0) \ DEFINE_LEVEL(stem, 1) \ DEFINE_LEVEL(stem, 2) \ DEFINE_LEVEL(stem, 3) \ DEFINE_LEVEL(stem, 4) \ DEFINE_LEVEL(stem, 5) \ DEFINE_LEVEL(stem, 6) \ DEFINE_LEVEL(stem, 7) static struct btrfs_lockdep_keyset { u64 id; /* root objectid */ /* Longest entry: btrfs-block-group-00 */ char names[BTRFS_MAX_LEVEL][24]; struct lock_class_key keys[BTRFS_MAX_LEVEL]; } btrfs_lockdep_keysets[] = { { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") }, { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") }, { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") }, { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") }, { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") }, { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") }, { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") }, { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") }, { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") }, { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") }, { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") }, { .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") }, { .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") }, { .id = 0, DEFINE_NAME("tree") }, }; #undef DEFINE_LEVEL #undef DEFINE_NAME void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level) { struct btrfs_lockdep_keyset *ks; ASSERT(level < ARRAY_SIZE(ks->keys)); /* Find the matching keyset, id 0 is the default entry */ for (ks = btrfs_lockdep_keysets; ks->id; ks++) if (ks->id == objectid) break; lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]); } void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb) { if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) btrfs_set_buffer_lockdep_class(btrfs_root_id(root), eb, btrfs_header_level(eb)); } #endif #ifdef CONFIG_BTRFS_DEBUG static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { eb->lock_owner = owner; } #else static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { } #endif /* * Extent buffer locking * ===================== * * We use a rw_semaphore for tree locking, and the semantics are exactly the * same: * * - reader/writer exclusion * - writer/writer exclusion * - reader/reader sharing * - try-lock semantics for readers and writers * * The rwsem implementation does opportunistic spinning which reduces number of * times the locking task needs to sleep. */ /* * btrfs_tree_read_lock_nested - lock extent buffer for read * @eb: the eb to be locked * @nest: the nesting level to be used for lockdep * * This takes the read lock on the extent buffer, using the specified nesting * level for lockdep purposes. */ void btrfs_tree_read_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest) { u64 start_ns = 0; if (trace_btrfs_tree_read_lock_enabled()) start_ns = ktime_get_ns(); down_read_nested(&eb->lock, nest); trace_btrfs_tree_read_lock(eb, start_ns); } /* * Try-lock for read. * * Return 1 if the rwlock has been taken, 0 otherwise */ int btrfs_try_tree_read_lock(struct extent_buffer *eb) { if (down_read_trylock(&eb->lock)) { trace_btrfs_try_tree_read_lock(eb); return 1; } return 0; } /* * Release read lock. */ void btrfs_tree_read_unlock(struct extent_buffer *eb) { trace_btrfs_tree_read_unlock(eb); up_read(&eb->lock); } /* * Lock eb for write. * * @eb: the eb to lock * @nest: the nesting to use for the lock * * Returns with the eb->lock write locked. */ void btrfs_tree_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest) __acquires(&eb->lock) { u64 start_ns = 0; if (trace_btrfs_tree_lock_enabled()) start_ns = ktime_get_ns(); down_write_nested(&eb->lock, nest); btrfs_set_eb_lock_owner(eb, current->pid); trace_btrfs_tree_lock(eb, start_ns); } /* * Release the write lock. */ void btrfs_tree_unlock(struct extent_buffer *eb) { trace_btrfs_tree_unlock(eb); btrfs_set_eb_lock_owner(eb, 0); up_write(&eb->lock); } /* * This releases any locks held in the path starting at level and going all the * way up to the root. * * btrfs_search_slot will keep the lock held on higher nodes in a few corner * cases, such as COW of the block at slot zero in the node. This ignores * those rules, and it should only be called when there are no more updates to * be done higher up in the tree. */ void btrfs_unlock_up_safe(struct btrfs_path *path, int level) { int i; if (path->keep_locks) return; for (i = level; i < BTRFS_MAX_LEVEL; i++) { if (!path->nodes[i]) continue; if (!path->locks[i]) continue; btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); path->locks[i] = 0; } } /* * Loop around taking references on and locking the root node of the tree until * we end up with a lock on the root node. * * Return: root extent buffer with write lock held */ struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) { struct extent_buffer *eb; while (1) { eb = btrfs_root_node(root); btrfs_maybe_reset_lockdep_class(root, eb); btrfs_tree_lock(eb); if (eb == root->node) break; btrfs_tree_unlock(eb); free_extent_buffer(eb); } return eb; } /* * Loop around taking references on and locking the root node of the tree until * we end up with a lock on the root node. * * Return: root extent buffer with read lock held */ struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) { struct extent_buffer *eb; while (1) { eb = btrfs_root_node(root); btrfs_maybe_reset_lockdep_class(root, eb); btrfs_tree_read_lock(eb); if (eb == root->node) break; btrfs_tree_read_unlock(eb); free_extent_buffer(eb); } return eb; } /* * Loop around taking references on and locking the root node of the tree in * nowait mode until we end up with a lock on the root node or returning to * avoid blocking. * * Return: root extent buffer with read lock held or -EAGAIN. */ struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root) { struct extent_buffer *eb; while (1) { eb = btrfs_root_node(root); if (!btrfs_try_tree_read_lock(eb)) { free_extent_buffer(eb); return ERR_PTR(-EAGAIN); } if (eb == root->node) break; btrfs_tree_read_unlock(eb); free_extent_buffer(eb); } return eb; } /* * DREW locks * ========== * * DREW stands for double-reader-writer-exclusion lock. It's used in situation * where you want to provide A-B exclusion but not AA or BB. * * Currently implementation gives more priority to reader. If a reader and a * writer both race to acquire their respective sides of the lock the writer * would yield its lock as soon as it detects a concurrent reader. Additionally * if there are pending readers no new writers would be allowed to come in and * acquire the lock. */ void btrfs_drew_lock_init(struct btrfs_drew_lock *lock) { atomic_set(&lock->readers, 0); atomic_set(&lock->writers, 0); init_waitqueue_head(&lock->pending_readers); init_waitqueue_head(&lock->pending_writers); } /* Return true if acquisition is successful, false otherwise */ bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock) { if (atomic_read(&lock->readers)) return false; atomic_inc(&lock->writers); /* Ensure writers count is updated before we check for pending readers */ smp_mb__after_atomic(); if (atomic_read(&lock->readers)) { btrfs_drew_write_unlock(lock); return false; } return true; } void btrfs_drew_write_lock(struct btrfs_drew_lock *lock) { while (true) { if (btrfs_drew_try_write_lock(lock)) return; wait_event(lock->pending_writers, !atomic_read(&lock->readers)); } } void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock) { /* * atomic_dec_and_test() implies a full barrier, so woken up readers are * guaranteed to see the decrement. */ if (atomic_dec_and_test(&lock->writers)) wake_up(&lock->pending_readers); } void btrfs_drew_read_lock(struct btrfs_drew_lock *lock) { atomic_inc(&lock->readers); /* * Ensure the pending reader count is perceieved BEFORE this reader * goes to sleep in case of active writers. This guarantees new writers * won't be allowed and that the current reader will be woken up when * the last active writer finishes its jobs. */ smp_mb__after_atomic(); wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0); } void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock) { /* * atomic_dec_and_test implies a full barrier, so woken up writers * are guaranteed to see the decrement */ if (atomic_dec_and_test(&lock->readers)) wake_up(&lock->pending_writers); }