// SPDX-License-Identifier: GPL-2.0-only /* Network filesystem high-level buffered write support. * * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include #include #include #include #include #include #include "internal.h" static void __netfs_set_group(struct folio *folio, struct netfs_group *netfs_group) { if (netfs_group) folio_attach_private(folio, netfs_get_group(netfs_group)); } static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group) { void *priv = folio_get_private(folio); if (unlikely(priv != netfs_group)) { if (netfs_group && (!priv || priv == NETFS_FOLIO_COPY_TO_CACHE)) folio_attach_private(folio, netfs_get_group(netfs_group)); else if (!netfs_group && priv == NETFS_FOLIO_COPY_TO_CACHE) folio_detach_private(folio); } } /* * Grab a folio for writing and lock it. Attempt to allocate as large a folio * as possible to hold as much of the remaining length as possible in one go. */ static struct folio *netfs_grab_folio_for_write(struct address_space *mapping, loff_t pos, size_t part) { pgoff_t index = pos / PAGE_SIZE; fgf_t fgp_flags = FGP_WRITEBEGIN; if (mapping_large_folio_support(mapping)) fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part); return __filemap_get_folio(mapping, index, fgp_flags, mapping_gfp_mask(mapping)); } /* * Update i_size and estimate the update to i_blocks to reflect the additional * data written into the pagecache until we can find out from the server what * the values actually are. */ static void netfs_update_i_size(struct netfs_inode *ctx, struct inode *inode, loff_t i_size, loff_t pos, size_t copied) { blkcnt_t add; size_t gap; if (ctx->ops->update_i_size) { ctx->ops->update_i_size(inode, pos); return; } i_size_write(inode, pos); #if IS_ENABLED(CONFIG_FSCACHE) fscache_update_cookie(ctx->cache, NULL, &pos); #endif gap = SECTOR_SIZE - (i_size & (SECTOR_SIZE - 1)); if (copied > gap) { add = DIV_ROUND_UP(copied - gap, SECTOR_SIZE); inode->i_blocks = min_t(blkcnt_t, DIV_ROUND_UP(pos, SECTOR_SIZE), inode->i_blocks + add); } } /** * netfs_perform_write - Copy data into the pagecache. * @iocb: The operation parameters * @iter: The source buffer * @netfs_group: Grouping for dirty folios (eg. ceph snaps). * * Copy data into pagecache folios attached to the inode specified by @iocb. * The caller must hold appropriate inode locks. * * Dirty folios are tagged with a netfs_folio struct if they're not up to date * to indicate the range modified. Dirty folios may also be tagged with a * netfs-specific grouping such that data from an old group gets flushed before * a new one is started. */ ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter, struct netfs_group *netfs_group) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); struct address_space *mapping = inode->i_mapping; struct netfs_inode *ctx = netfs_inode(inode); struct writeback_control wbc = { .sync_mode = WB_SYNC_NONE, .for_sync = true, .nr_to_write = LONG_MAX, .range_start = iocb->ki_pos, .range_end = iocb->ki_pos + iter->count, }; struct netfs_io_request *wreq = NULL; struct folio *folio = NULL, *writethrough = NULL; unsigned int bdp_flags = (iocb->ki_flags & IOCB_NOWAIT) ? BDP_ASYNC : 0; ssize_t written = 0, ret, ret2; loff_t i_size, pos = iocb->ki_pos; size_t max_chunk = mapping_max_folio_size(mapping); bool maybe_trouble = false; if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) || iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) ) { wbc_attach_fdatawrite_inode(&wbc, mapping->host); ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count); if (ret < 0) { wbc_detach_inode(&wbc); goto out; } wreq = netfs_begin_writethrough(iocb, iter->count); if (IS_ERR(wreq)) { wbc_detach_inode(&wbc); ret = PTR_ERR(wreq); wreq = NULL; goto out; } if (!is_sync_kiocb(iocb)) wreq->iocb = iocb; netfs_stat(&netfs_n_wh_writethrough); } else { netfs_stat(&netfs_n_wh_buffered_write); } do { struct netfs_folio *finfo; struct netfs_group *group; unsigned long long fpos; size_t flen; size_t offset; /* Offset into pagecache folio */ size_t part; /* Bytes to write to folio */ size_t copied; /* Bytes copied from user */ offset = pos & (max_chunk - 1); part = min(max_chunk - offset, iov_iter_count(iter)); /* Bring in the user pages that we will copy from _first_ lest * we hit a nasty deadlock on copying from the same page as * we're writing to, without it being marked uptodate. * * Not only is this an optimisation, but it is also required to * check that the address is actually valid, when atomic * usercopies are used below. * * We rely on the page being held onto long enough by the LRU * that we can grab it below if this causes it to be read. */ ret = -EFAULT; if (unlikely(fault_in_iov_iter_readable(iter, part) == part)) break; folio = netfs_grab_folio_for_write(mapping, pos, part); if (IS_ERR(folio)) { ret = PTR_ERR(folio); break; } flen = folio_size(folio); fpos = folio_pos(folio); offset = pos - fpos; part = min_t(size_t, flen - offset, part); /* Wait for writeback to complete. The writeback engine owns * the info in folio->private and may change it until it * removes the WB mark. */ if (folio_get_private(folio) && folio_wait_writeback_killable(folio)) { ret = written ? -EINTR : -ERESTARTSYS; goto error_folio_unlock; } if (signal_pending(current)) { ret = written ? -EINTR : -ERESTARTSYS; goto error_folio_unlock; } /* Decide how we should modify a folio. We might be attempting * to do write-streaming, in which case we don't want to a * local RMW cycle if we can avoid it. If we're doing local * caching or content crypto, we award that priority over * avoiding RMW. If the file is open readably, then we also * assume that we may want to read what we wrote. */ finfo = netfs_folio_info(folio); group = netfs_folio_group(folio); if (unlikely(group != netfs_group) && group != NETFS_FOLIO_COPY_TO_CACHE) goto flush_content; if (folio_test_uptodate(folio)) { if (mapping_writably_mapped(mapping)) flush_dcache_folio(folio); copied = copy_folio_from_iter_atomic(folio, offset, part, iter); if (unlikely(copied == 0)) goto copy_failed; netfs_set_group(folio, netfs_group); trace_netfs_folio(folio, netfs_folio_is_uptodate); goto copied; } /* If the page is above the zero-point then we assume that the * server would just return a block of zeros or a short read if * we try to read it. */ if (fpos >= ctx->zero_point) { folio_zero_segment(folio, 0, offset); copied = copy_folio_from_iter_atomic(folio, offset, part, iter); if (unlikely(copied == 0)) goto copy_failed; folio_zero_segment(folio, offset + copied, flen); __netfs_set_group(folio, netfs_group); folio_mark_uptodate(folio); trace_netfs_folio(folio, netfs_modify_and_clear); goto copied; } /* See if we can write a whole folio in one go. */ if (!maybe_trouble && offset == 0 && part >= flen) { copied = copy_folio_from_iter_atomic(folio, offset, part, iter); if (unlikely(copied == 0)) goto copy_failed; if (unlikely(copied < part)) { maybe_trouble = true; iov_iter_revert(iter, copied); copied = 0; folio_unlock(folio); goto retry; } __netfs_set_group(folio, netfs_group); folio_mark_uptodate(folio); trace_netfs_folio(folio, netfs_whole_folio_modify); goto copied; } /* We don't want to do a streaming write on a file that loses * caching service temporarily because the backing store got * culled and we don't really want to get a streaming write on * a file that's open for reading as ->read_folio() then has to * be able to flush it. */ if ((file->f_mode & FMODE_READ) || netfs_is_cache_enabled(ctx)) { if (finfo) { netfs_stat(&netfs_n_wh_wstream_conflict); goto flush_content; } ret = netfs_prefetch_for_write(file, folio, offset, part); if (ret < 0) { _debug("prefetch = %zd", ret); goto error_folio_unlock; } /* Note that copy-to-cache may have been set. */ copied = copy_folio_from_iter_atomic(folio, offset, part, iter); if (unlikely(copied == 0)) goto copy_failed; netfs_set_group(folio, netfs_group); trace_netfs_folio(folio, netfs_just_prefetch); goto copied; } if (!finfo) { ret = -EIO; if (WARN_ON(folio_get_private(folio))) goto error_folio_unlock; copied = copy_folio_from_iter_atomic(folio, offset, part, iter); if (unlikely(copied == 0)) goto copy_failed; if (offset == 0 && copied == flen) { __netfs_set_group(folio, netfs_group); folio_mark_uptodate(folio); trace_netfs_folio(folio, netfs_streaming_filled_page); goto copied; } finfo = kzalloc(sizeof(*finfo), GFP_KERNEL); if (!finfo) { iov_iter_revert(iter, copied); ret = -ENOMEM; goto error_folio_unlock; } finfo->netfs_group = netfs_get_group(netfs_group); finfo->dirty_offset = offset; finfo->dirty_len = copied; folio_attach_private(folio, (void *)((unsigned long)finfo | NETFS_FOLIO_INFO)); trace_netfs_folio(folio, netfs_streaming_write); goto copied; } /* We can continue a streaming write only if it continues on * from the previous. If it overlaps, we must flush lest we * suffer a partial copy and disjoint dirty regions. */ if (offset == finfo->dirty_offset + finfo->dirty_len) { copied = copy_folio_from_iter_atomic(folio, offset, part, iter); if (unlikely(copied == 0)) goto copy_failed; finfo->dirty_len += copied; if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) { if (finfo->netfs_group) folio_change_private(folio, finfo->netfs_group); else folio_detach_private(folio); folio_mark_uptodate(folio); kfree(finfo); trace_netfs_folio(folio, netfs_streaming_cont_filled_page); } else { trace_netfs_folio(folio, netfs_streaming_write_cont); } goto copied; } /* Incompatible write; flush the folio and try again. */ flush_content: trace_netfs_folio(folio, netfs_flush_content); folio_unlock(folio); folio_put(folio); ret = filemap_write_and_wait_range(mapping, fpos, fpos + flen - 1); if (ret < 0) goto error_folio_unlock; continue; copied: flush_dcache_folio(folio); /* Update the inode size if we moved the EOF marker */ pos += copied; i_size = i_size_read(inode); if (pos > i_size) netfs_update_i_size(ctx, inode, i_size, pos, copied); written += copied; if (likely(!wreq)) { folio_mark_dirty(folio); folio_unlock(folio); } else { netfs_advance_writethrough(wreq, &wbc, folio, copied, offset + copied == flen, &writethrough); /* Folio unlocked */ } retry: folio_put(folio); folio = NULL; ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags); if (unlikely(ret < 0)) break; cond_resched(); } while (iov_iter_count(iter)); out: if (likely(written)) { /* Set indication that ctime and mtime got updated in case * close is deferred. */ set_bit(NETFS_ICTX_MODIFIED_ATTR, &ctx->flags); if (unlikely(ctx->ops->post_modify)) ctx->ops->post_modify(inode); } if (unlikely(wreq)) { ret2 = netfs_end_writethrough(wreq, &wbc, writethrough); wbc_detach_inode(&wbc); if (ret2 == -EIOCBQUEUED) return ret2; if (ret == 0) ret = ret2; } iocb->ki_pos += written; _leave(" = %zd [%zd]", written, ret); return written ? written : ret; copy_failed: ret = -EFAULT; error_folio_unlock: folio_unlock(folio); folio_put(folio); goto out; } EXPORT_SYMBOL(netfs_perform_write); /** * netfs_buffered_write_iter_locked - write data to a file * @iocb: IO state structure (file, offset, etc.) * @from: iov_iter with data to write * @netfs_group: Grouping for dirty folios (eg. ceph snaps). * * This function does all the work needed for actually writing data to a * file. It does all basic checks, removes SUID from the file, updates * modification times and calls proper subroutines depending on whether we * do direct IO or a standard buffered write. * * The caller must hold appropriate locks around this function and have called * generic_write_checks() already. The caller is also responsible for doing * any necessary syncing afterwards. * * This function does *not* take care of syncing data in case of O_SYNC write. * A caller has to handle it. This is mainly due to the fact that we want to * avoid syncing under i_rwsem. * * Return: * * number of bytes written, even for truncated writes * * negative error code if no data has been written at all */ ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from, struct netfs_group *netfs_group) { struct file *file = iocb->ki_filp; ssize_t ret; trace_netfs_write_iter(iocb, from); ret = file_remove_privs(file); if (ret) return ret; ret = file_update_time(file); if (ret) return ret; return netfs_perform_write(iocb, from, netfs_group); } EXPORT_SYMBOL(netfs_buffered_write_iter_locked); /** * netfs_file_write_iter - write data to a file * @iocb: IO state structure * @from: iov_iter with data to write * * Perform a write to a file, writing into the pagecache if possible and doing * an unbuffered write instead if not. * * Return: * * Negative error code if no data has been written at all of * vfs_fsync_range() failed for a synchronous write * * Number of bytes written, even for truncated writes */ ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; struct netfs_inode *ictx = netfs_inode(inode); ssize_t ret; _enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode)); if (!iov_iter_count(from)) return 0; if ((iocb->ki_flags & IOCB_DIRECT) || test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags)) return netfs_unbuffered_write_iter(iocb, from); ret = netfs_start_io_write(inode); if (ret < 0) return ret; ret = generic_write_checks(iocb, from); if (ret > 0) ret = netfs_buffered_write_iter_locked(iocb, from, NULL); netfs_end_io_write(inode); if (ret > 0) ret = generic_write_sync(iocb, ret); return ret; } EXPORT_SYMBOL(netfs_file_write_iter); /* * Notification that a previously read-only page is about to become writable. * The caller indicates the precise page that needs to be written to, but * we only track group on a per-folio basis, so we block more often than * we might otherwise. */ vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group) { struct netfs_group *group; struct folio *folio = page_folio(vmf->page); struct file *file = vmf->vma->vm_file; struct address_space *mapping = file->f_mapping; struct inode *inode = file_inode(file); struct netfs_inode *ictx = netfs_inode(inode); vm_fault_t ret = VM_FAULT_NOPAGE; int err; _enter("%lx", folio->index); sb_start_pagefault(inode->i_sb); if (folio_lock_killable(folio) < 0) goto out; if (folio->mapping != mapping) goto unlock; if (folio_wait_writeback_killable(folio) < 0) goto unlock; /* Can we see a streaming write here? */ if (WARN_ON(!folio_test_uptodate(folio))) { ret = VM_FAULT_SIGBUS; goto unlock; } group = netfs_folio_group(folio); if (group != netfs_group && group != NETFS_FOLIO_COPY_TO_CACHE) { folio_unlock(folio); err = filemap_fdatawrite_range(mapping, folio_pos(folio), folio_pos(folio) + folio_size(folio)); switch (err) { case 0: ret = VM_FAULT_RETRY; goto out; case -ENOMEM: ret = VM_FAULT_OOM; goto out; default: ret = VM_FAULT_SIGBUS; goto out; } } if (folio_test_dirty(folio)) trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus); else trace_netfs_folio(folio, netfs_folio_trace_mkwrite); netfs_set_group(folio, netfs_group); file_update_time(file); set_bit(NETFS_ICTX_MODIFIED_ATTR, &ictx->flags); if (ictx->ops->post_modify) ictx->ops->post_modify(inode); ret = VM_FAULT_LOCKED; out: sb_end_pagefault(inode->i_sb); return ret; unlock: folio_unlock(folio); goto out; } EXPORT_SYMBOL(netfs_page_mkwrite);