// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_btree.h" #include "xfs_bmap_btree.h" #include "xfs_bmap.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_da_format.h" #include "xfs_da_btree.h" #include "xfs_dir2_priv.h" #include "xfs_attr_leaf.h" #include "xfs_types.h" #include "xfs_errortag.h" #include "xfs_health.h" #include "xfs_symlink_remote.h" struct kmem_cache *xfs_ifork_cache; void xfs_init_local_fork( struct xfs_inode *ip, int whichfork, const void *data, int64_t size) { struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); int mem_size = size; bool zero_terminate; /* * If we are using the local fork to store a symlink body we need to * zero-terminate it so that we can pass it back to the VFS directly. * Overallocate the in-memory fork by one for that and add a zero * to terminate it below. */ zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); if (zero_terminate) mem_size++; if (size) { char *new_data = kmalloc(mem_size, GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); memcpy(new_data, data, size); if (zero_terminate) new_data[size] = '\0'; ifp->if_data = new_data; } else { ifp->if_data = NULL; } ifp->if_bytes = size; } /* * The file is in-lined in the on-disk inode. */ STATIC int xfs_iformat_local( struct xfs_inode *ip, struct xfs_dinode *dip, int whichfork, int size) { /* * If the size is unreasonable, then something * is wrong and we just bail out rather than crash in * kmalloc() or memcpy() below. */ if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { xfs_warn(ip->i_mount, "corrupt inode %llu (bad size %d for local fork, size = %zd).", (unsigned long long) ip->i_ino, size, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); xfs_inode_verifier_error(ip, -EFSCORRUPTED, "xfs_iformat_local", dip, sizeof(*dip), __this_address); xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); return -EFSCORRUPTED; } xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); return 0; } /* * The file consists of a set of extents all of which fit into the on-disk * inode. */ STATIC int xfs_iformat_extents( struct xfs_inode *ip, struct xfs_dinode *dip, int whichfork) { struct xfs_mount *mp = ip->i_mount; struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); int state = xfs_bmap_fork_to_state(whichfork); xfs_extnum_t nex = xfs_dfork_nextents(dip, whichfork); int size = nex * sizeof(xfs_bmbt_rec_t); struct xfs_iext_cursor icur; struct xfs_bmbt_rec *dp; struct xfs_bmbt_irec new; int i; /* * If the number of extents is unreasonable, then something is wrong and * we just bail out rather than crash in kmalloc() or memcpy() below. */ if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).", ip->i_ino, nex); xfs_inode_verifier_error(ip, -EFSCORRUPTED, "xfs_iformat_extents(1)", dip, sizeof(*dip), __this_address); xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); return -EFSCORRUPTED; } ifp->if_bytes = 0; ifp->if_data = NULL; ifp->if_height = 0; if (size) { dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); xfs_iext_first(ifp, &icur); for (i = 0; i < nex; i++, dp++) { xfs_failaddr_t fa; xfs_bmbt_disk_get_all(dp, &new); fa = xfs_bmap_validate_extent(ip, whichfork, &new); if (fa) { xfs_inode_verifier_error(ip, -EFSCORRUPTED, "xfs_iformat_extents(2)", dp, sizeof(*dp), fa); xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); return xfs_bmap_complain_bad_rec(ip, whichfork, fa, &new); } xfs_iext_insert(ip, &icur, &new, state); trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); xfs_iext_next(ifp, &icur); } } return 0; } /* * The file has too many extents to fit into * the inode, so they are in B-tree format. * Allocate a buffer for the root of the B-tree * and copy the root into it. The i_extents * field will remain NULL until all of the * extents are read in (when they are needed). */ STATIC int xfs_iformat_btree( struct xfs_inode *ip, struct xfs_dinode *dip, int whichfork) { struct xfs_mount *mp = ip->i_mount; xfs_bmdr_block_t *dfp; struct xfs_ifork *ifp; /* REFERENCED */ int nrecs; int size; int level; ifp = xfs_ifork_ptr(ip, whichfork); dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); size = xfs_bmap_broot_space(mp, dfp); nrecs = be16_to_cpu(dfp->bb_numrecs); level = be16_to_cpu(dfp->bb_level); /* * blow out if -- fork has less extents than can fit in * fork (fork shouldn't be a btree format), root btree * block has more records than can fit into the fork, * or the number of extents is greater than the number of * blocks. */ if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) || nrecs == 0 || xfs_bmdr_space_calc(nrecs) > XFS_DFORK_SIZE(dip, mp, whichfork) || ifp->if_nextents > ip->i_nblocks) || level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) { xfs_warn(mp, "corrupt inode %llu (btree).", (unsigned long long) ip->i_ino); xfs_inode_verifier_error(ip, -EFSCORRUPTED, "xfs_iformat_btree", dfp, size, __this_address); xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); return -EFSCORRUPTED; } ifp->if_broot_bytes = size; ifp->if_broot = kmalloc(size, GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); ASSERT(ifp->if_broot != NULL); /* * Copy and convert from the on-disk structure * to the in-memory structure. */ xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), ifp->if_broot, size); ifp->if_bytes = 0; ifp->if_data = NULL; ifp->if_height = 0; return 0; } int xfs_iformat_data_fork( struct xfs_inode *ip, struct xfs_dinode *dip) { struct inode *inode = VFS_I(ip); int error; /* * Initialize the extent count early, as the per-format routines may * depend on it. Use release semantics to set needextents /after/ we * set the format. This ensures that we can use acquire semantics on * needextents in xfs_need_iread_extents() and be guaranteed to see a * valid format value after that load. */ ip->i_df.if_format = dip->di_format; ip->i_df.if_nextents = xfs_dfork_data_extents(dip); smp_store_release(&ip->i_df.if_needextents, ip->i_df.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0); switch (inode->i_mode & S_IFMT) { case S_IFIFO: case S_IFCHR: case S_IFBLK: case S_IFSOCK: ip->i_disk_size = 0; inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); return 0; case S_IFREG: case S_IFLNK: case S_IFDIR: switch (ip->i_df.if_format) { case XFS_DINODE_FMT_LOCAL: error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, be64_to_cpu(dip->di_size)); if (!error) error = xfs_ifork_verify_local_data(ip); return error; case XFS_DINODE_FMT_EXTENTS: return xfs_iformat_extents(ip, dip, XFS_DATA_FORK); case XFS_DINODE_FMT_BTREE: return xfs_iformat_btree(ip, dip, XFS_DATA_FORK); default: xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, sizeof(*dip), __this_address); xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); return -EFSCORRUPTED; } break; default: xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, sizeof(*dip), __this_address); xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); return -EFSCORRUPTED; } } static uint16_t xfs_dfork_attr_shortform_size( struct xfs_dinode *dip) { struct xfs_attr_sf_hdr *sf = XFS_DFORK_APTR(dip); return be16_to_cpu(sf->totsize); } void xfs_ifork_init_attr( struct xfs_inode *ip, enum xfs_dinode_fmt format, xfs_extnum_t nextents) { /* * Initialize the extent count early, as the per-format routines may * depend on it. Use release semantics to set needextents /after/ we * set the format. This ensures that we can use acquire semantics on * needextents in xfs_need_iread_extents() and be guaranteed to see a * valid format value after that load. */ ip->i_af.if_format = format; ip->i_af.if_nextents = nextents; smp_store_release(&ip->i_af.if_needextents, ip->i_af.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0); } void xfs_ifork_zap_attr( struct xfs_inode *ip) { xfs_idestroy_fork(&ip->i_af); memset(&ip->i_af, 0, sizeof(struct xfs_ifork)); ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; } int xfs_iformat_attr_fork( struct xfs_inode *ip, struct xfs_dinode *dip) { xfs_extnum_t naextents = xfs_dfork_attr_extents(dip); int error = 0; /* * Initialize the extent count early, as the per-format routines may * depend on it. */ xfs_ifork_init_attr(ip, dip->di_aformat, naextents); switch (ip->i_af.if_format) { case XFS_DINODE_FMT_LOCAL: error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, xfs_dfork_attr_shortform_size(dip)); if (!error) error = xfs_ifork_verify_local_attr(ip); break; case XFS_DINODE_FMT_EXTENTS: error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); break; case XFS_DINODE_FMT_BTREE: error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); break; default: xfs_inode_verifier_error(ip, error, __func__, dip, sizeof(*dip), __this_address); xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); error = -EFSCORRUPTED; break; } if (error) xfs_ifork_zap_attr(ip); return error; } /* * Reallocate the space for if_broot based on the number of records * being added or deleted as indicated in rec_diff. Move the records * and pointers in if_broot to fit the new size. When shrinking this * will eliminate holes between the records and pointers created by * the caller. When growing this will create holes to be filled in * by the caller. * * The caller must not request to add more records than would fit in * the on-disk inode root. If the if_broot is currently NULL, then * if we are adding records, one will be allocated. The caller must also * not request that the number of records go below zero, although * it can go to zero. * * ip -- the inode whose if_broot area is changing * ext_diff -- the change in the number of records, positive or negative, * requested for the if_broot array. */ void xfs_iroot_realloc( xfs_inode_t *ip, int rec_diff, int whichfork) { struct xfs_mount *mp = ip->i_mount; int cur_max; struct xfs_ifork *ifp; struct xfs_btree_block *new_broot; int new_max; size_t new_size; char *np; char *op; /* * Handle the degenerate case quietly. */ if (rec_diff == 0) { return; } ifp = xfs_ifork_ptr(ip, whichfork); if (rec_diff > 0) { /* * If there wasn't any memory allocated before, just * allocate it now and get out. */ if (ifp->if_broot_bytes == 0) { new_size = xfs_bmap_broot_space_calc(mp, rec_diff); ifp->if_broot = kmalloc(new_size, GFP_KERNEL | __GFP_NOFAIL); ifp->if_broot_bytes = (int)new_size; return; } /* * If there is already an existing if_broot, then we need * to realloc() it and shift the pointers to their new * location. The records don't change location because * they are kept butted up against the btree block header. */ cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, false); new_max = cur_max + rec_diff; new_size = xfs_bmap_broot_space_calc(mp, new_max); ifp->if_broot = krealloc(ifp->if_broot, new_size, GFP_KERNEL | __GFP_NOFAIL); op = (char *)xfs_bmap_broot_ptr_addr(mp, ifp->if_broot, 1, ifp->if_broot_bytes); np = (char *)xfs_bmap_broot_ptr_addr(mp, ifp->if_broot, 1, (int)new_size); ifp->if_broot_bytes = (int)new_size; ASSERT(xfs_bmap_bmdr_space(ifp->if_broot) <= xfs_inode_fork_size(ip, whichfork)); memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); return; } /* * rec_diff is less than 0. In this case, we are shrinking the * if_broot buffer. It must already exist. If we go to zero * records, just get rid of the root and clear the status bit. */ ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, false); new_max = cur_max + rec_diff; ASSERT(new_max >= 0); if (new_max > 0) new_size = xfs_bmap_broot_space_calc(mp, new_max); else new_size = 0; if (new_size > 0) { new_broot = kmalloc(new_size, GFP_KERNEL | __GFP_NOFAIL); /* * First copy over the btree block header. */ memcpy(new_broot, ifp->if_broot, xfs_bmbt_block_len(ip->i_mount)); } else { new_broot = NULL; } /* * Only copy the keys and pointers if there are any. */ if (new_max > 0) { /* * First copy the keys. */ op = (char *)xfs_bmbt_key_addr(mp, ifp->if_broot, 1); np = (char *)xfs_bmbt_key_addr(mp, new_broot, 1); memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_key_t)); /* * Then copy the pointers. */ op = (char *)xfs_bmap_broot_ptr_addr(mp, ifp->if_broot, 1, ifp->if_broot_bytes); np = (char *)xfs_bmap_broot_ptr_addr(mp, new_broot, 1, (int)new_size); memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); } kfree(ifp->if_broot); ifp->if_broot = new_broot; ifp->if_broot_bytes = (int)new_size; if (ifp->if_broot) ASSERT(xfs_bmap_bmdr_space(ifp->if_broot) <= xfs_inode_fork_size(ip, whichfork)); return; } /* * This is called when the amount of space needed for if_data * is increased or decreased. The change in size is indicated by * the number of bytes that need to be added or deleted in the * byte_diff parameter. * * If the amount of space needed has decreased below the size of the * inline buffer, then switch to using the inline buffer. Otherwise, * use krealloc() or kmalloc() to adjust the size of the buffer * to what is needed. * * ip -- the inode whose if_data area is changing * byte_diff -- the change in the number of bytes, positive or negative, * requested for the if_data array. */ void * xfs_idata_realloc( struct xfs_inode *ip, int64_t byte_diff, int whichfork) { struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); int64_t new_size = ifp->if_bytes + byte_diff; ASSERT(new_size >= 0); ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork)); if (byte_diff) { ifp->if_data = krealloc(ifp->if_data, new_size, GFP_KERNEL | __GFP_NOFAIL); if (new_size == 0) ifp->if_data = NULL; ifp->if_bytes = new_size; } return ifp->if_data; } /* Free all memory and reset a fork back to its initial state. */ void xfs_idestroy_fork( struct xfs_ifork *ifp) { if (ifp->if_broot != NULL) { kfree(ifp->if_broot); ifp->if_broot = NULL; } switch (ifp->if_format) { case XFS_DINODE_FMT_LOCAL: kfree(ifp->if_data); ifp->if_data = NULL; break; case XFS_DINODE_FMT_EXTENTS: case XFS_DINODE_FMT_BTREE: if (ifp->if_height) xfs_iext_destroy(ifp); break; } } /* * Convert in-core extents to on-disk form * * In the case of the data fork, the in-core and on-disk fork sizes can be * different due to delayed allocation extents. We only copy on-disk extents * here, so callers must always use the physical fork size to determine the * size of the buffer passed to this routine. We will return the size actually * used. */ int xfs_iextents_copy( struct xfs_inode *ip, struct xfs_bmbt_rec *dp, int whichfork) { int state = xfs_bmap_fork_to_state(whichfork); struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); struct xfs_iext_cursor icur; struct xfs_bmbt_irec rec; int64_t copied = 0; xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); ASSERT(ifp->if_bytes > 0); for_each_xfs_iext(ifp, &icur, &rec) { if (isnullstartblock(rec.br_startblock)) continue; ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); xfs_bmbt_disk_set_all(dp, &rec); trace_xfs_write_extent(ip, &icur, state, _RET_IP_); copied += sizeof(struct xfs_bmbt_rec); dp++; } ASSERT(copied > 0); ASSERT(copied <= ifp->if_bytes); return copied; } /* * Each of the following cases stores data into the same region * of the on-disk inode, so only one of them can be valid at * any given time. While it is possible to have conflicting formats * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is * in EXTENTS format, this can only happen when the fork has * changed formats after being modified but before being flushed. * In these cases, the format always takes precedence, because the * format indicates the current state of the fork. */ void xfs_iflush_fork( struct xfs_inode *ip, struct xfs_dinode *dip, struct xfs_inode_log_item *iip, int whichfork) { char *cp; struct xfs_ifork *ifp; xfs_mount_t *mp; static const short brootflag[2] = { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; static const short dataflag[2] = { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; static const short extflag[2] = { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; if (!iip) return; ifp = xfs_ifork_ptr(ip, whichfork); /* * This can happen if we gave up in iformat in an error path, * for the attribute fork. */ if (!ifp) { ASSERT(whichfork == XFS_ATTR_FORK); return; } cp = XFS_DFORK_PTR(dip, whichfork); mp = ip->i_mount; switch (ifp->if_format) { case XFS_DINODE_FMT_LOCAL: if ((iip->ili_fields & dataflag[whichfork]) && (ifp->if_bytes > 0)) { ASSERT(ifp->if_data != NULL); ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork)); memcpy(cp, ifp->if_data, ifp->if_bytes); } break; case XFS_DINODE_FMT_EXTENTS: if ((iip->ili_fields & extflag[whichfork]) && (ifp->if_bytes > 0)) { ASSERT(ifp->if_nextents > 0); (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, whichfork); } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_fields & brootflag[whichfork]) && (ifp->if_broot_bytes > 0)) { ASSERT(ifp->if_broot != NULL); ASSERT(xfs_bmap_bmdr_space(ifp->if_broot) <= xfs_inode_fork_size(ip, whichfork)); xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, (xfs_bmdr_block_t *)cp, XFS_DFORK_SIZE(dip, mp, whichfork)); } break; case XFS_DINODE_FMT_DEV: if (iip->ili_fields & XFS_ILOG_DEV) { ASSERT(whichfork == XFS_DATA_FORK); xfs_dinode_put_rdev(dip, linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); } break; default: ASSERT(0); break; } } /* Convert bmap state flags to an inode fork. */ struct xfs_ifork * xfs_iext_state_to_fork( struct xfs_inode *ip, int state) { if (state & BMAP_COWFORK) return ip->i_cowfp; else if (state & BMAP_ATTRFORK) return &ip->i_af; return &ip->i_df; } /* * Initialize an inode's copy-on-write fork. */ void xfs_ifork_init_cow( struct xfs_inode *ip) { if (ip->i_cowfp) return; ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache, GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS; } /* Verify the inline contents of the data fork of an inode. */ int xfs_ifork_verify_local_data( struct xfs_inode *ip) { xfs_failaddr_t fa = NULL; switch (VFS_I(ip)->i_mode & S_IFMT) { case S_IFDIR: { struct xfs_mount *mp = ip->i_mount; struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); struct xfs_dir2_sf_hdr *sfp = ifp->if_data; fa = xfs_dir2_sf_verify(mp, sfp, ifp->if_bytes); break; } case S_IFLNK: { struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); fa = xfs_symlink_shortform_verify(ifp->if_data, ifp->if_bytes); break; } default: break; } if (fa) { xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", ip->i_df.if_data, ip->i_df.if_bytes, fa); return -EFSCORRUPTED; } return 0; } /* Verify the inline contents of the attr fork of an inode. */ int xfs_ifork_verify_local_attr( struct xfs_inode *ip) { struct xfs_ifork *ifp = &ip->i_af; xfs_failaddr_t fa; if (!xfs_inode_has_attr_fork(ip)) { fa = __this_address; } else { struct xfs_ifork *ifp = &ip->i_af; ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); fa = xfs_attr_shortform_verify(ifp->if_data, ifp->if_bytes); } if (fa) { xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", ifp->if_data, ifp->if_bytes, fa); return -EFSCORRUPTED; } return 0; } /* * Check if the inode fork supports adding nr_to_add more extents. * * If it doesn't but we can upgrade it to large extent counters, do the upgrade. * If we can't upgrade or are already using big counters but still can't fit the * additional extents, return -EFBIG. */ int xfs_iext_count_extend( struct xfs_trans *tp, struct xfs_inode *ip, int whichfork, uint nr_to_add) { struct xfs_mount *mp = ip->i_mount; bool has_large = xfs_inode_has_large_extent_counts(ip); struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); uint64_t nr_exts; ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR); if (whichfork == XFS_COW_FORK) return 0; /* no point in upgrading if if_nextents overflows */ nr_exts = ifp->if_nextents + nr_to_add; if (nr_exts < ifp->if_nextents) return -EFBIG; if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_REDUCE_MAX_IEXTENTS) && nr_exts > 10) return -EFBIG; if (nr_exts > xfs_iext_max_nextents(has_large, whichfork)) { if (has_large || !xfs_has_large_extent_counts(mp)) return -EFBIG; ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); } return 0; } /* Decide if a file mapping is on the realtime device or not. */ bool xfs_ifork_is_realtime( struct xfs_inode *ip, int whichfork) { return XFS_IS_REALTIME_INODE(ip) && whichfork != XFS_ATTR_FORK; }