/* SPDX-License-Identifier: GPL-2.0-only */ /* include/net/xdp.h * * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc. */ #ifndef __LINUX_NET_XDP_H__ #define __LINUX_NET_XDP_H__ #include #include #include #include /* skb_shared_info */ #include /** * DOC: XDP RX-queue information * * The XDP RX-queue info (xdp_rxq_info) is associated with the driver * level RX-ring queues. It is information that is specific to how * the driver has configured a given RX-ring queue. * * Each xdp_buff frame received in the driver carries a (pointer) * reference to this xdp_rxq_info structure. This provides the XDP * data-path read-access to RX-info for both kernel and bpf-side * (limited subset). * * For now, direct access is only safe while running in NAPI/softirq * context. Contents are read-mostly and must not be updated during * driver NAPI/softirq poll. * * The driver usage API is a register and unregister API. * * The struct is not directly tied to the XDP prog. A new XDP prog * can be attached as long as it doesn't change the underlying * RX-ring. If the RX-ring does change significantly, the NIC driver * naturally needs to stop the RX-ring before purging and reallocating * memory. In that process the driver MUST call unregister (which * also applies for driver shutdown and unload). The register API is * also mandatory during RX-ring setup. */ enum xdp_mem_type { MEM_TYPE_PAGE_SHARED = 0, /* Split-page refcnt based model */ MEM_TYPE_PAGE_ORDER0, /* Orig XDP full page model */ MEM_TYPE_PAGE_POOL, MEM_TYPE_XSK_BUFF_POOL, MEM_TYPE_MAX, }; /* XDP flags for ndo_xdp_xmit */ #define XDP_XMIT_FLUSH (1U << 0) /* doorbell signal consumer */ #define XDP_XMIT_FLAGS_MASK XDP_XMIT_FLUSH struct xdp_mem_info { u32 type; /* enum xdp_mem_type, but known size type */ u32 id; }; struct page_pool; struct xdp_rxq_info { struct net_device *dev; u32 queue_index; u32 reg_state; struct xdp_mem_info mem; unsigned int napi_id; u32 frag_size; } ____cacheline_aligned; /* perf critical, avoid false-sharing */ struct xdp_txq_info { struct net_device *dev; }; enum xdp_buff_flags { XDP_FLAGS_HAS_FRAGS = BIT(0), /* non-linear xdp buff */ XDP_FLAGS_FRAGS_PF_MEMALLOC = BIT(1), /* xdp paged memory is under * pressure */ }; struct xdp_buff { void *data; void *data_end; void *data_meta; void *data_hard_start; struct xdp_rxq_info *rxq; struct xdp_txq_info *txq; u32 frame_sz; /* frame size to deduce data_hard_end/reserved tailroom*/ u32 flags; /* supported values defined in xdp_buff_flags */ }; static __always_inline bool xdp_buff_has_frags(const struct xdp_buff *xdp) { return !!(xdp->flags & XDP_FLAGS_HAS_FRAGS); } static __always_inline void xdp_buff_set_frags_flag(struct xdp_buff *xdp) { xdp->flags |= XDP_FLAGS_HAS_FRAGS; } static __always_inline void xdp_buff_clear_frags_flag(struct xdp_buff *xdp) { xdp->flags &= ~XDP_FLAGS_HAS_FRAGS; } static __always_inline bool xdp_buff_is_frag_pfmemalloc(const struct xdp_buff *xdp) { return !!(xdp->flags & XDP_FLAGS_FRAGS_PF_MEMALLOC); } static __always_inline void xdp_buff_set_frag_pfmemalloc(struct xdp_buff *xdp) { xdp->flags |= XDP_FLAGS_FRAGS_PF_MEMALLOC; } static __always_inline void xdp_init_buff(struct xdp_buff *xdp, u32 frame_sz, struct xdp_rxq_info *rxq) { xdp->frame_sz = frame_sz; xdp->rxq = rxq; xdp->flags = 0; } static __always_inline void xdp_prepare_buff(struct xdp_buff *xdp, unsigned char *hard_start, int headroom, int data_len, const bool meta_valid) { unsigned char *data = hard_start + headroom; xdp->data_hard_start = hard_start; xdp->data = data; xdp->data_end = data + data_len; xdp->data_meta = meta_valid ? data : data + 1; } /* Reserve memory area at end-of data area. * * This macro reserves tailroom in the XDP buffer by limiting the * XDP/BPF data access to data_hard_end. Notice same area (and size) * is used for XDP_PASS, when constructing the SKB via build_skb(). */ #define xdp_data_hard_end(xdp) \ ((xdp)->data_hard_start + (xdp)->frame_sz - \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) static inline struct skb_shared_info * xdp_get_shared_info_from_buff(const struct xdp_buff *xdp) { return (struct skb_shared_info *)xdp_data_hard_end(xdp); } static __always_inline unsigned int xdp_get_buff_len(const struct xdp_buff *xdp) { unsigned int len = xdp->data_end - xdp->data; const struct skb_shared_info *sinfo; if (likely(!xdp_buff_has_frags(xdp))) goto out; sinfo = xdp_get_shared_info_from_buff(xdp); len += sinfo->xdp_frags_size; out: return len; } void xdp_return_frag(netmem_ref netmem, const struct xdp_buff *xdp); /** * __xdp_buff_add_frag - attach frag to &xdp_buff * @xdp: XDP buffer to attach the frag to * @netmem: network memory containing the frag * @offset: offset at which the frag starts * @size: size of the frag * @truesize: total memory size occupied by the frag * @try_coalesce: whether to try coalescing the frags (not valid for XSk) * * Attach frag to the XDP buffer. If it currently has no frags attached, * initialize the related fields, otherwise check that the frag number * didn't reach the limit of ``MAX_SKB_FRAGS``. If possible, try coalescing * the frag with the previous one. * The function doesn't check/update the pfmemalloc bit. Please use the * non-underscored wrapper in drivers. * * Return: true on success, false if there's no space for the frag in * the shared info struct. */ static inline bool __xdp_buff_add_frag(struct xdp_buff *xdp, netmem_ref netmem, u32 offset, u32 size, u32 truesize, bool try_coalesce) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); skb_frag_t *prev; u32 nr_frags; if (!xdp_buff_has_frags(xdp)) { xdp_buff_set_frags_flag(xdp); nr_frags = 0; sinfo->xdp_frags_size = 0; sinfo->xdp_frags_truesize = 0; goto fill; } nr_frags = sinfo->nr_frags; prev = &sinfo->frags[nr_frags - 1]; if (try_coalesce && netmem == skb_frag_netmem(prev) && offset == skb_frag_off(prev) + skb_frag_size(prev)) { skb_frag_size_add(prev, size); /* Guaranteed to only decrement the refcount */ xdp_return_frag(netmem, xdp); } else if (unlikely(nr_frags == MAX_SKB_FRAGS)) { return false; } else { fill: __skb_fill_netmem_desc_noacc(sinfo, nr_frags++, netmem, offset, size); } sinfo->nr_frags = nr_frags; sinfo->xdp_frags_size += size; sinfo->xdp_frags_truesize += truesize; return true; } /** * xdp_buff_add_frag - attach frag to &xdp_buff * @xdp: XDP buffer to attach the frag to * @netmem: network memory containing the frag * @offset: offset at which the frag starts * @size: size of the frag * @truesize: total memory size occupied by the frag * * Version of __xdp_buff_add_frag() which takes care of the pfmemalloc bit. * * Return: true on success, false if there's no space for the frag in * the shared info struct. */ static inline bool xdp_buff_add_frag(struct xdp_buff *xdp, netmem_ref netmem, u32 offset, u32 size, u32 truesize) { if (!__xdp_buff_add_frag(xdp, netmem, offset, size, truesize, true)) return false; if (unlikely(netmem_is_pfmemalloc(netmem))) xdp_buff_set_frag_pfmemalloc(xdp); return true; } struct xdp_frame { void *data; u32 len; u32 headroom; u32 metasize; /* uses lower 8-bits */ /* Lifetime of xdp_rxq_info is limited to NAPI/enqueue time, * while mem_type is valid on remote CPU. */ enum xdp_mem_type mem_type:32; struct net_device *dev_rx; /* used by cpumap */ u32 frame_sz; u32 flags; /* supported values defined in xdp_buff_flags */ }; static __always_inline bool xdp_frame_has_frags(const struct xdp_frame *frame) { return !!(frame->flags & XDP_FLAGS_HAS_FRAGS); } static __always_inline bool xdp_frame_is_frag_pfmemalloc(const struct xdp_frame *frame) { return !!(frame->flags & XDP_FLAGS_FRAGS_PF_MEMALLOC); } #define XDP_BULK_QUEUE_SIZE 16 struct xdp_frame_bulk { int count; netmem_ref q[XDP_BULK_QUEUE_SIZE]; }; static __always_inline void xdp_frame_bulk_init(struct xdp_frame_bulk *bq) { bq->count = 0; } static inline struct skb_shared_info * xdp_get_shared_info_from_frame(const struct xdp_frame *frame) { void *data_hard_start = frame->data - frame->headroom - sizeof(*frame); return (struct skb_shared_info *)(data_hard_start + frame->frame_sz - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); } struct xdp_cpumap_stats { unsigned int redirect; unsigned int pass; unsigned int drop; }; /* Clear kernel pointers in xdp_frame */ static inline void xdp_scrub_frame(struct xdp_frame *frame) { frame->data = NULL; frame->dev_rx = NULL; } static inline void xdp_update_skb_shared_info(struct sk_buff *skb, u8 nr_frags, unsigned int size, unsigned int truesize, bool pfmemalloc) { struct skb_shared_info *sinfo = skb_shinfo(skb); sinfo->nr_frags = nr_frags; /* * ``destructor_arg`` is unionized with ``xdp_frags_{,true}size``, * reset it after that these fields aren't used anymore. */ sinfo->destructor_arg = NULL; skb->len += size; skb->data_len += size; skb->truesize += truesize; skb->pfmemalloc |= pfmemalloc; } /* Avoids inlining WARN macro in fast-path */ void xdp_warn(const char *msg, const char *func, const int line); #define XDP_WARN(msg) xdp_warn(msg, __func__, __LINE__) struct sk_buff *xdp_build_skb_from_buff(const struct xdp_buff *xdp); struct sk_buff *xdp_build_skb_from_zc(struct xdp_buff *xdp); struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp); struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf, struct sk_buff *skb, struct net_device *dev); struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf, struct net_device *dev); int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp); struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf); static inline void xdp_convert_frame_to_buff(const struct xdp_frame *frame, struct xdp_buff *xdp) { xdp->data_hard_start = frame->data - frame->headroom - sizeof(*frame); xdp->data = frame->data; xdp->data_end = frame->data + frame->len; xdp->data_meta = frame->data - frame->metasize; xdp->frame_sz = frame->frame_sz; xdp->flags = frame->flags; } static inline int xdp_update_frame_from_buff(const struct xdp_buff *xdp, struct xdp_frame *xdp_frame) { int metasize, headroom; /* Assure headroom is available for storing info */ headroom = xdp->data - xdp->data_hard_start; metasize = xdp->data - xdp->data_meta; metasize = metasize > 0 ? metasize : 0; if (unlikely((headroom - metasize) < sizeof(*xdp_frame))) return -ENOSPC; /* Catch if driver didn't reserve tailroom for skb_shared_info */ if (unlikely(xdp->data_end > xdp_data_hard_end(xdp))) { XDP_WARN("Driver BUG: missing reserved tailroom"); return -ENOSPC; } xdp_frame->data = xdp->data; xdp_frame->len = xdp->data_end - xdp->data; xdp_frame->headroom = headroom - sizeof(*xdp_frame); xdp_frame->metasize = metasize; xdp_frame->frame_sz = xdp->frame_sz; xdp_frame->flags = xdp->flags; return 0; } /* Convert xdp_buff to xdp_frame */ static inline struct xdp_frame *xdp_convert_buff_to_frame(struct xdp_buff *xdp) { struct xdp_frame *xdp_frame; if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) return xdp_convert_zc_to_xdp_frame(xdp); /* Store info in top of packet */ xdp_frame = xdp->data_hard_start; if (unlikely(xdp_update_frame_from_buff(xdp, xdp_frame) < 0)) return NULL; /* rxq only valid until napi_schedule ends, convert to xdp_mem_type */ xdp_frame->mem_type = xdp->rxq->mem.type; return xdp_frame; } void __xdp_return(netmem_ref netmem, enum xdp_mem_type mem_type, bool napi_direct, struct xdp_buff *xdp); void xdp_return_frame(struct xdp_frame *xdpf); void xdp_return_frame_rx_napi(struct xdp_frame *xdpf); void xdp_return_buff(struct xdp_buff *xdp); void xdp_return_frame_bulk(struct xdp_frame *xdpf, struct xdp_frame_bulk *bq); static inline void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq) { if (unlikely(!bq->count)) return; page_pool_put_netmem_bulk(bq->q, bq->count); bq->count = 0; } static __always_inline unsigned int xdp_get_frame_len(const struct xdp_frame *xdpf) { const struct skb_shared_info *sinfo; unsigned int len = xdpf->len; if (likely(!xdp_frame_has_frags(xdpf))) goto out; sinfo = xdp_get_shared_info_from_frame(xdpf); len += sinfo->xdp_frags_size; out: return len; } int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq, struct net_device *dev, u32 queue_index, unsigned int napi_id, u32 frag_size); static inline int xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq, struct net_device *dev, u32 queue_index, unsigned int napi_id) { return __xdp_rxq_info_reg(xdp_rxq, dev, queue_index, napi_id, 0); } void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq); void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq); bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq); int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq, enum xdp_mem_type type, void *allocator); void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq); int xdp_reg_mem_model(struct xdp_mem_info *mem, enum xdp_mem_type type, void *allocator); void xdp_unreg_mem_model(struct xdp_mem_info *mem); int xdp_reg_page_pool(struct page_pool *pool); void xdp_unreg_page_pool(const struct page_pool *pool); void xdp_rxq_info_attach_page_pool(struct xdp_rxq_info *xdp_rxq, const struct page_pool *pool); /** * xdp_rxq_info_attach_mem_model - attach registered mem info to RxQ info * @xdp_rxq: XDP RxQ info to attach the memory info to * @mem: already registered memory info * * If the driver registers its memory providers manually, it must use this * function instead of xdp_rxq_info_reg_mem_model(). */ static inline void xdp_rxq_info_attach_mem_model(struct xdp_rxq_info *xdp_rxq, const struct xdp_mem_info *mem) { xdp_rxq->mem = *mem; } /** * xdp_rxq_info_detach_mem_model - detach registered mem info from RxQ info * @xdp_rxq: XDP RxQ info to detach the memory info from * * If the driver registers its memory providers manually and then attaches it * via xdp_rxq_info_attach_mem_model(), it must call this function before * xdp_rxq_info_unreg(). */ static inline void xdp_rxq_info_detach_mem_model(struct xdp_rxq_info *xdp_rxq) { xdp_rxq->mem = (struct xdp_mem_info){ }; } /* Drivers not supporting XDP metadata can use this helper, which * rejects any room expansion for metadata as a result. */ static __always_inline void xdp_set_data_meta_invalid(struct xdp_buff *xdp) { xdp->data_meta = xdp->data + 1; } static __always_inline bool xdp_data_meta_unsupported(const struct xdp_buff *xdp) { return unlikely(xdp->data_meta > xdp->data); } static inline bool xdp_metalen_invalid(unsigned long metalen) { unsigned long meta_max; meta_max = type_max(typeof_member(struct skb_shared_info, meta_len)); BUILD_BUG_ON(!__builtin_constant_p(meta_max)); return !IS_ALIGNED(metalen, sizeof(u32)) || metalen > meta_max; } struct xdp_attachment_info { struct bpf_prog *prog; u32 flags; }; struct netdev_bpf; void xdp_attachment_setup(struct xdp_attachment_info *info, struct netdev_bpf *bpf); #define DEV_MAP_BULK_SIZE XDP_BULK_QUEUE_SIZE /* Define the relationship between xdp-rx-metadata kfunc and * various other entities: * - xdp_rx_metadata enum * - netdev netlink enum (Documentation/netlink/specs/netdev.yaml) * - kfunc name * - xdp_metadata_ops field */ #define XDP_METADATA_KFUNC_xxx \ XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_TIMESTAMP, \ NETDEV_XDP_RX_METADATA_TIMESTAMP, \ bpf_xdp_metadata_rx_timestamp, \ xmo_rx_timestamp) \ XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_HASH, \ NETDEV_XDP_RX_METADATA_HASH, \ bpf_xdp_metadata_rx_hash, \ xmo_rx_hash) \ XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_VLAN_TAG, \ NETDEV_XDP_RX_METADATA_VLAN_TAG, \ bpf_xdp_metadata_rx_vlan_tag, \ xmo_rx_vlan_tag) \ enum xdp_rx_metadata { #define XDP_METADATA_KFUNC(name, _, __, ___) name, XDP_METADATA_KFUNC_xxx #undef XDP_METADATA_KFUNC MAX_XDP_METADATA_KFUNC, }; enum xdp_rss_hash_type { /* First part: Individual bits for L3/L4 types */ XDP_RSS_L3_IPV4 = BIT(0), XDP_RSS_L3_IPV6 = BIT(1), /* The fixed (L3) IPv4 and IPv6 headers can both be followed by * variable/dynamic headers, IPv4 called Options and IPv6 called * Extension Headers. HW RSS type can contain this info. */ XDP_RSS_L3_DYNHDR = BIT(2), /* When RSS hash covers L4 then drivers MUST set XDP_RSS_L4 bit in * addition to the protocol specific bit. This ease interaction with * SKBs and avoids reserving a fixed mask for future L4 protocol bits. */ XDP_RSS_L4 = BIT(3), /* L4 based hash, proto can be unknown */ XDP_RSS_L4_TCP = BIT(4), XDP_RSS_L4_UDP = BIT(5), XDP_RSS_L4_SCTP = BIT(6), XDP_RSS_L4_IPSEC = BIT(7), /* L4 based hash include IPSEC SPI */ XDP_RSS_L4_ICMP = BIT(8), /* Second part: RSS hash type combinations used for driver HW mapping */ XDP_RSS_TYPE_NONE = 0, XDP_RSS_TYPE_L2 = XDP_RSS_TYPE_NONE, XDP_RSS_TYPE_L3_IPV4 = XDP_RSS_L3_IPV4, XDP_RSS_TYPE_L3_IPV6 = XDP_RSS_L3_IPV6, XDP_RSS_TYPE_L3_IPV4_OPT = XDP_RSS_L3_IPV4 | XDP_RSS_L3_DYNHDR, XDP_RSS_TYPE_L3_IPV6_EX = XDP_RSS_L3_IPV6 | XDP_RSS_L3_DYNHDR, XDP_RSS_TYPE_L4_ANY = XDP_RSS_L4, XDP_RSS_TYPE_L4_IPV4_TCP = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_TCP, XDP_RSS_TYPE_L4_IPV4_UDP = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_UDP, XDP_RSS_TYPE_L4_IPV4_SCTP = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_SCTP, XDP_RSS_TYPE_L4_IPV4_IPSEC = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_IPSEC, XDP_RSS_TYPE_L4_IPV4_ICMP = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_ICMP, XDP_RSS_TYPE_L4_IPV6_TCP = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_TCP, XDP_RSS_TYPE_L4_IPV6_UDP = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_UDP, XDP_RSS_TYPE_L4_IPV6_SCTP = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_SCTP, XDP_RSS_TYPE_L4_IPV6_IPSEC = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_IPSEC, XDP_RSS_TYPE_L4_IPV6_ICMP = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_ICMP, XDP_RSS_TYPE_L4_IPV6_TCP_EX = XDP_RSS_TYPE_L4_IPV6_TCP | XDP_RSS_L3_DYNHDR, XDP_RSS_TYPE_L4_IPV6_UDP_EX = XDP_RSS_TYPE_L4_IPV6_UDP | XDP_RSS_L3_DYNHDR, XDP_RSS_TYPE_L4_IPV6_SCTP_EX = XDP_RSS_TYPE_L4_IPV6_SCTP | XDP_RSS_L3_DYNHDR, }; struct xdp_metadata_ops { int (*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp); int (*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash, enum xdp_rss_hash_type *rss_type); int (*xmo_rx_vlan_tag)(const struct xdp_md *ctx, __be16 *vlan_proto, u16 *vlan_tci); }; #ifdef CONFIG_NET u32 bpf_xdp_metadata_kfunc_id(int id); bool bpf_dev_bound_kfunc_id(u32 btf_id); void xdp_set_features_flag(struct net_device *dev, xdp_features_t val); void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg); void xdp_features_clear_redirect_target(struct net_device *dev); #else static inline u32 bpf_xdp_metadata_kfunc_id(int id) { return 0; } static inline bool bpf_dev_bound_kfunc_id(u32 btf_id) { return false; } static inline void xdp_set_features_flag(struct net_device *dev, xdp_features_t val) { } static inline void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg) { } static inline void xdp_features_clear_redirect_target(struct net_device *dev) { } #endif static inline void xdp_clear_features_flag(struct net_device *dev) { xdp_set_features_flag(dev, 0); } static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, struct xdp_buff *xdp) { /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus * under local_bh_disable(), which provides the needed RCU protection * for accessing map entries. */ u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) { if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev)) act = xdp_master_redirect(xdp); } return act; } #endif /* __LINUX_NET_XDP_H__ */