/* SPDX-License-Identifier: GPL-2.0 * * page_pool.c * Author: Jesper Dangaard Brouer * Copyright (C) 2016 Red Hat, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include /* for put_page() */ #include #include #include #include #include "mp_dmabuf_devmem.h" #include "netmem_priv.h" #include "page_pool_priv.h" DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); #define DEFER_TIME (msecs_to_jiffies(1000)) #define DEFER_WARN_INTERVAL (60 * HZ) #define BIAS_MAX (LONG_MAX >> 1) #ifdef CONFIG_PAGE_POOL_STATS static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); /* alloc_stat_inc is intended to be used in softirq context */ #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) /* recycle_stat_inc is safe to use when preemption is possible. */ #define recycle_stat_inc(pool, __stat) \ do { \ struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ this_cpu_inc(s->__stat); \ } while (0) #define recycle_stat_add(pool, __stat, val) \ do { \ struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ this_cpu_add(s->__stat, val); \ } while (0) static const char pp_stats[][ETH_GSTRING_LEN] = { "rx_pp_alloc_fast", "rx_pp_alloc_slow", "rx_pp_alloc_slow_ho", "rx_pp_alloc_empty", "rx_pp_alloc_refill", "rx_pp_alloc_waive", "rx_pp_recycle_cached", "rx_pp_recycle_cache_full", "rx_pp_recycle_ring", "rx_pp_recycle_ring_full", "rx_pp_recycle_released_ref", }; /** * page_pool_get_stats() - fetch page pool stats * @pool: pool from which page was allocated * @stats: struct page_pool_stats to fill in * * Retrieve statistics about the page_pool. This API is only available * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. * A pointer to a caller allocated struct page_pool_stats structure * is passed to this API which is filled in. The caller can then report * those stats to the user (perhaps via ethtool, debugfs, etc.). */ bool page_pool_get_stats(const struct page_pool *pool, struct page_pool_stats *stats) { int cpu = 0; if (!stats) return false; /* The caller is responsible to initialize stats. */ stats->alloc_stats.fast += pool->alloc_stats.fast; stats->alloc_stats.slow += pool->alloc_stats.slow; stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; stats->alloc_stats.empty += pool->alloc_stats.empty; stats->alloc_stats.refill += pool->alloc_stats.refill; stats->alloc_stats.waive += pool->alloc_stats.waive; for_each_possible_cpu(cpu) { const struct page_pool_recycle_stats *pcpu = per_cpu_ptr(pool->recycle_stats, cpu); stats->recycle_stats.cached += pcpu->cached; stats->recycle_stats.cache_full += pcpu->cache_full; stats->recycle_stats.ring += pcpu->ring; stats->recycle_stats.ring_full += pcpu->ring_full; stats->recycle_stats.released_refcnt += pcpu->released_refcnt; } return true; } EXPORT_SYMBOL(page_pool_get_stats); u8 *page_pool_ethtool_stats_get_strings(u8 *data) { int i; for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { memcpy(data, pp_stats[i], ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } return data; } EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); int page_pool_ethtool_stats_get_count(void) { return ARRAY_SIZE(pp_stats); } EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) { const struct page_pool_stats *pool_stats = stats; *data++ = pool_stats->alloc_stats.fast; *data++ = pool_stats->alloc_stats.slow; *data++ = pool_stats->alloc_stats.slow_high_order; *data++ = pool_stats->alloc_stats.empty; *data++ = pool_stats->alloc_stats.refill; *data++ = pool_stats->alloc_stats.waive; *data++ = pool_stats->recycle_stats.cached; *data++ = pool_stats->recycle_stats.cache_full; *data++ = pool_stats->recycle_stats.ring; *data++ = pool_stats->recycle_stats.ring_full; *data++ = pool_stats->recycle_stats.released_refcnt; return data; } EXPORT_SYMBOL(page_pool_ethtool_stats_get); #else #define alloc_stat_inc(pool, __stat) #define recycle_stat_inc(pool, __stat) #define recycle_stat_add(pool, __stat, val) #endif static bool page_pool_producer_lock(struct page_pool *pool) __acquires(&pool->ring.producer_lock) { bool in_softirq = in_softirq(); if (in_softirq) spin_lock(&pool->ring.producer_lock); else spin_lock_bh(&pool->ring.producer_lock); return in_softirq; } static void page_pool_producer_unlock(struct page_pool *pool, bool in_softirq) __releases(&pool->ring.producer_lock) { if (in_softirq) spin_unlock(&pool->ring.producer_lock); else spin_unlock_bh(&pool->ring.producer_lock); } static void page_pool_struct_check(void) { CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, PAGE_POOL_FRAG_GROUP_ALIGN); } static int page_pool_init(struct page_pool *pool, const struct page_pool_params *params, int cpuid) { unsigned int ring_qsize = 1024; /* Default */ struct netdev_rx_queue *rxq; int err; page_pool_struct_check(); memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); pool->cpuid = cpuid; pool->dma_sync_for_cpu = true; /* Validate only known flags were used */ if (pool->slow.flags & ~PP_FLAG_ALL) return -EINVAL; if (pool->p.pool_size) ring_qsize = pool->p.pool_size; /* Sanity limit mem that can be pinned down */ if (ring_qsize > 32768) return -E2BIG; /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, * which is the XDP_TX use-case. */ if (pool->slow.flags & PP_FLAG_DMA_MAP) { if ((pool->p.dma_dir != DMA_FROM_DEVICE) && (pool->p.dma_dir != DMA_BIDIRECTIONAL)) return -EINVAL; pool->dma_map = true; } if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { /* In order to request DMA-sync-for-device the page * needs to be mapped */ if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) return -EINVAL; if (!pool->p.max_len) return -EINVAL; pool->dma_sync = true; /* pool->p.offset has to be set according to the address * offset used by the DMA engine to start copying rx data */ } pool->has_init_callback = !!pool->slow.init_callback; #ifdef CONFIG_PAGE_POOL_STATS if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); if (!pool->recycle_stats) return -ENOMEM; } else { /* For system page pool instance we use a singular stats object * instead of allocating a separate percpu variable for each * (also percpu) page pool instance. */ pool->recycle_stats = &pp_system_recycle_stats; pool->system = true; } #endif if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { #ifdef CONFIG_PAGE_POOL_STATS if (!pool->system) free_percpu(pool->recycle_stats); #endif return -ENOMEM; } atomic_set(&pool->pages_state_release_cnt, 0); /* Driver calling page_pool_create() also call page_pool_destroy() */ refcount_set(&pool->user_cnt, 1); if (pool->dma_map) get_device(pool->p.dev); if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) { /* We rely on rtnl_lock()ing to make sure netdev_rx_queue * configuration doesn't change while we're initializing * the page_pool. */ ASSERT_RTNL(); rxq = __netif_get_rx_queue(pool->slow.netdev, pool->slow.queue_idx); pool->mp_priv = rxq->mp_params.mp_priv; } if (pool->mp_priv) { if (!pool->dma_map || !pool->dma_sync) return -EOPNOTSUPP; err = mp_dmabuf_devmem_init(pool); if (err) { pr_warn("%s() mem-provider init failed %d\n", __func__, err); goto free_ptr_ring; } static_branch_inc(&page_pool_mem_providers); } return 0; free_ptr_ring: ptr_ring_cleanup(&pool->ring, NULL); #ifdef CONFIG_PAGE_POOL_STATS if (!pool->system) free_percpu(pool->recycle_stats); #endif return err; } static void page_pool_uninit(struct page_pool *pool) { ptr_ring_cleanup(&pool->ring, NULL); if (pool->dma_map) put_device(pool->p.dev); #ifdef CONFIG_PAGE_POOL_STATS if (!pool->system) free_percpu(pool->recycle_stats); #endif } /** * page_pool_create_percpu() - create a page pool for a given cpu. * @params: parameters, see struct page_pool_params * @cpuid: cpu identifier */ struct page_pool * page_pool_create_percpu(const struct page_pool_params *params, int cpuid) { struct page_pool *pool; int err; pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); if (!pool) return ERR_PTR(-ENOMEM); err = page_pool_init(pool, params, cpuid); if (err < 0) goto err_free; err = page_pool_list(pool); if (err) goto err_uninit; return pool; err_uninit: page_pool_uninit(pool); err_free: pr_warn("%s() gave up with errno %d\n", __func__, err); kfree(pool); return ERR_PTR(err); } EXPORT_SYMBOL(page_pool_create_percpu); /** * page_pool_create() - create a page pool * @params: parameters, see struct page_pool_params */ struct page_pool *page_pool_create(const struct page_pool_params *params) { return page_pool_create_percpu(params, -1); } EXPORT_SYMBOL(page_pool_create); static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem); static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) { struct ptr_ring *r = &pool->ring; netmem_ref netmem; int pref_nid; /* preferred NUMA node */ /* Quicker fallback, avoid locks when ring is empty */ if (__ptr_ring_empty(r)) { alloc_stat_inc(pool, empty); return 0; } /* Softirq guarantee CPU and thus NUMA node is stable. This, * assumes CPU refilling driver RX-ring will also run RX-NAPI. */ #ifdef CONFIG_NUMA pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; #else /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ #endif /* Refill alloc array, but only if NUMA match */ do { netmem = (__force netmem_ref)__ptr_ring_consume(r); if (unlikely(!netmem)) break; if (likely(netmem_is_pref_nid(netmem, pref_nid))) { pool->alloc.cache[pool->alloc.count++] = netmem; } else { /* NUMA mismatch; * (1) release 1 page to page-allocator and * (2) break out to fallthrough to alloc_pages_node. * This limit stress on page buddy alloactor. */ page_pool_return_page(pool, netmem); alloc_stat_inc(pool, waive); netmem = 0; break; } } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); /* Return last page */ if (likely(pool->alloc.count > 0)) { netmem = pool->alloc.cache[--pool->alloc.count]; alloc_stat_inc(pool, refill); } return netmem; } /* fast path */ static netmem_ref __page_pool_get_cached(struct page_pool *pool) { netmem_ref netmem; /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ if (likely(pool->alloc.count)) { /* Fast-path */ netmem = pool->alloc.cache[--pool->alloc.count]; alloc_stat_inc(pool, fast); } else { netmem = page_pool_refill_alloc_cache(pool); } return netmem; } static void __page_pool_dma_sync_for_device(const struct page_pool *pool, netmem_ref netmem, u32 dma_sync_size) { #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); dma_sync_size = min(dma_sync_size, pool->p.max_len); __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, dma_sync_size, pool->p.dma_dir); #endif } static __always_inline void page_pool_dma_sync_for_device(const struct page_pool *pool, netmem_ref netmem, u32 dma_sync_size) { if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); } static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem) { dma_addr_t dma; /* Setup DMA mapping: use 'struct page' area for storing DMA-addr * since dma_addr_t can be either 32 or 64 bits and does not always fit * into page private data (i.e 32bit cpu with 64bit DMA caps) * This mapping is kept for lifetime of page, until leaving pool. */ dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, (PAGE_SIZE << pool->p.order), pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); if (dma_mapping_error(pool->p.dev, dma)) return false; if (page_pool_set_dma_addr_netmem(netmem, dma)) goto unmap_failed; page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); return true; unmap_failed: WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); dma_unmap_page_attrs(pool->p.dev, dma, PAGE_SIZE << pool->p.order, pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); return false; } static struct page *__page_pool_alloc_page_order(struct page_pool *pool, gfp_t gfp) { struct page *page; gfp |= __GFP_COMP; page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); if (unlikely(!page)) return NULL; if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) { put_page(page); return NULL; } alloc_stat_inc(pool, slow_high_order); page_pool_set_pp_info(pool, page_to_netmem(page)); /* Track how many pages are held 'in-flight' */ pool->pages_state_hold_cnt++; trace_page_pool_state_hold(pool, page_to_netmem(page), pool->pages_state_hold_cnt); return page; } /* slow path */ static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool, gfp_t gfp) { const int bulk = PP_ALLOC_CACHE_REFILL; unsigned int pp_order = pool->p.order; bool dma_map = pool->dma_map; netmem_ref netmem; int i, nr_pages; /* Don't support bulk alloc for high-order pages */ if (unlikely(pp_order)) return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); /* Unnecessary as alloc cache is empty, but guarantees zero count */ if (unlikely(pool->alloc.count > 0)) return pool->alloc.cache[--pool->alloc.count]; /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, (struct page **)pool->alloc.cache); if (unlikely(!nr_pages)) return 0; /* Pages have been filled into alloc.cache array, but count is zero and * page element have not been (possibly) DMA mapped. */ for (i = 0; i < nr_pages; i++) { netmem = pool->alloc.cache[i]; if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) { put_page(netmem_to_page(netmem)); continue; } page_pool_set_pp_info(pool, netmem); pool->alloc.cache[pool->alloc.count++] = netmem; /* Track how many pages are held 'in-flight' */ pool->pages_state_hold_cnt++; trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt); } /* Return last page */ if (likely(pool->alloc.count > 0)) { netmem = pool->alloc.cache[--pool->alloc.count]; alloc_stat_inc(pool, slow); } else { netmem = 0; } /* When page just alloc'ed is should/must have refcnt 1. */ return netmem; } /* For using page_pool replace: alloc_pages() API calls, but provide * synchronization guarantee for allocation side. */ netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp) { netmem_ref netmem; /* Fast-path: Get a page from cache */ netmem = __page_pool_get_cached(pool); if (netmem) return netmem; /* Slow-path: cache empty, do real allocation */ if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv) netmem = mp_dmabuf_devmem_alloc_netmems(pool, gfp); else netmem = __page_pool_alloc_pages_slow(pool, gfp); return netmem; } EXPORT_SYMBOL(page_pool_alloc_netmems); ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL); struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) { return netmem_to_page(page_pool_alloc_netmems(pool, gfp)); } EXPORT_SYMBOL(page_pool_alloc_pages); /* Calculate distance between two u32 values, valid if distance is below 2^(31) * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution */ #define _distance(a, b) (s32)((a) - (b)) s32 page_pool_inflight(const struct page_pool *pool, bool strict) { u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); s32 inflight; inflight = _distance(hold_cnt, release_cnt); if (strict) { trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); } else { inflight = max(0, inflight); } return inflight; } void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) { netmem_set_pp(netmem, pool); netmem_or_pp_magic(netmem, PP_SIGNATURE); /* Ensuring all pages have been split into one fragment initially: * page_pool_set_pp_info() is only called once for every page when it * is allocated from the page allocator and page_pool_fragment_page() * is dirtying the same cache line as the page->pp_magic above, so * the overhead is negligible. */ page_pool_fragment_netmem(netmem, 1); if (pool->has_init_callback) pool->slow.init_callback(netmem, pool->slow.init_arg); } void page_pool_clear_pp_info(netmem_ref netmem) { netmem_clear_pp_magic(netmem); netmem_set_pp(netmem, NULL); } static __always_inline void __page_pool_release_page_dma(struct page_pool *pool, netmem_ref netmem) { dma_addr_t dma; if (!pool->dma_map) /* Always account for inflight pages, even if we didn't * map them */ return; dma = page_pool_get_dma_addr_netmem(netmem); /* When page is unmapped, it cannot be returned to our pool */ dma_unmap_page_attrs(pool->p.dev, dma, PAGE_SIZE << pool->p.order, pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); page_pool_set_dma_addr_netmem(netmem, 0); } /* Disconnects a page (from a page_pool). API users can have a need * to disconnect a page (from a page_pool), to allow it to be used as * a regular page (that will eventually be returned to the normal * page-allocator via put_page). */ void page_pool_return_page(struct page_pool *pool, netmem_ref netmem) { int count; bool put; put = true; if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv) put = mp_dmabuf_devmem_release_page(pool, netmem); else __page_pool_release_page_dma(pool, netmem); /* This may be the last page returned, releasing the pool, so * it is not safe to reference pool afterwards. */ count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); trace_page_pool_state_release(pool, netmem, count); if (put) { page_pool_clear_pp_info(netmem); put_page(netmem_to_page(netmem)); } /* An optimization would be to call __free_pages(page, pool->p.order) * knowing page is not part of page-cache (thus avoiding a * __page_cache_release() call). */ } static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) { int ret; /* BH protection not needed if current is softirq */ if (in_softirq()) ret = ptr_ring_produce(&pool->ring, (__force void *)netmem); else ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem); if (!ret) { recycle_stat_inc(pool, ring); return true; } return false; } /* Only allow direct recycling in special circumstances, into the * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. * * Caller must provide appropriate safe context. */ static bool page_pool_recycle_in_cache(netmem_ref netmem, struct page_pool *pool) { if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { recycle_stat_inc(pool, cache_full); return false; } /* Caller MUST have verified/know (page_ref_count(page) == 1) */ pool->alloc.cache[pool->alloc.count++] = netmem; recycle_stat_inc(pool, cached); return true; } static bool __page_pool_page_can_be_recycled(netmem_ref netmem) { return netmem_is_net_iov(netmem) || (page_ref_count(netmem_to_page(netmem)) == 1 && !page_is_pfmemalloc(netmem_to_page(netmem))); } /* If the page refcnt == 1, this will try to recycle the page. * If pool->dma_sync is set, we'll try to sync the DMA area for * the configured size min(dma_sync_size, pool->max_len). * If the page refcnt != 1, then the page will be returned to memory * subsystem. */ static __always_inline netmem_ref __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, unsigned int dma_sync_size, bool allow_direct) { lockdep_assert_no_hardirq(); /* This allocator is optimized for the XDP mode that uses * one-frame-per-page, but have fallbacks that act like the * regular page allocator APIs. * * refcnt == 1 means page_pool owns page, and can recycle it. * * page is NOT reusable when allocated when system is under * some pressure. (page_is_pfmemalloc) */ if (likely(__page_pool_page_can_be_recycled(netmem))) { /* Read barrier done in page_ref_count / READ_ONCE */ page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) return 0; /* Page found as candidate for recycling */ return netmem; } /* Fallback/non-XDP mode: API user have elevated refcnt. * * Many drivers split up the page into fragments, and some * want to keep doing this to save memory and do refcnt based * recycling. Support this use case too, to ease drivers * switching between XDP/non-XDP. * * In-case page_pool maintains the DMA mapping, API user must * call page_pool_put_page once. In this elevated refcnt * case, the DMA is unmapped/released, as driver is likely * doing refcnt based recycle tricks, meaning another process * will be invoking put_page. */ recycle_stat_inc(pool, released_refcnt); page_pool_return_page(pool, netmem); return 0; } static bool page_pool_napi_local(const struct page_pool *pool) { const struct napi_struct *napi; u32 cpuid; if (unlikely(!in_softirq())) return false; /* Allow direct recycle if we have reasons to believe that we are * in the same context as the consumer would run, so there's * no possible race. * __page_pool_put_page() makes sure we're not in hardirq context * and interrupts are enabled prior to accessing the cache. */ cpuid = smp_processor_id(); if (READ_ONCE(pool->cpuid) == cpuid) return true; napi = READ_ONCE(pool->p.napi); return napi && READ_ONCE(napi->list_owner) == cpuid; } void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, unsigned int dma_sync_size, bool allow_direct) { if (!allow_direct) allow_direct = page_pool_napi_local(pool); netmem = __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct); if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { /* Cache full, fallback to free pages */ recycle_stat_inc(pool, ring_full); page_pool_return_page(pool, netmem); } } EXPORT_SYMBOL(page_pool_put_unrefed_netmem); void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, unsigned int dma_sync_size, bool allow_direct) { page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, allow_direct); } EXPORT_SYMBOL(page_pool_put_unrefed_page); static void page_pool_recycle_ring_bulk(struct page_pool *pool, netmem_ref *bulk, u32 bulk_len) { bool in_softirq; u32 i; /* Bulk produce into ptr_ring page_pool cache */ in_softirq = page_pool_producer_lock(pool); for (i = 0; i < bulk_len; i++) { if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) { /* ring full */ recycle_stat_inc(pool, ring_full); break; } } page_pool_producer_unlock(pool, in_softirq); recycle_stat_add(pool, ring, i); /* Hopefully all pages were returned into ptr_ring */ if (likely(i == bulk_len)) return; /* * ptr_ring cache is full, free remaining pages outside producer lock * since put_page() with refcnt == 1 can be an expensive operation. */ for (; i < bulk_len; i++) page_pool_return_page(pool, bulk[i]); } /** * page_pool_put_netmem_bulk() - release references on multiple netmems * @data: array holding netmem references * @count: number of entries in @data * * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk() * will release leftover netmems to the memory provider. * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx * completion loop for the XDP_REDIRECT use case. * * Please note the caller must not use data area after running * page_pool_put_netmem_bulk(), as this function overwrites it. */ void page_pool_put_netmem_bulk(netmem_ref *data, u32 count) { u32 bulk_len = 0; for (u32 i = 0; i < count; i++) { netmem_ref netmem = netmem_compound_head(data[i]); if (page_pool_unref_and_test(netmem)) data[bulk_len++] = netmem; } count = bulk_len; while (count) { netmem_ref bulk[XDP_BULK_QUEUE_SIZE]; struct page_pool *pool = NULL; bool allow_direct; u32 foreign = 0; bulk_len = 0; for (u32 i = 0; i < count; i++) { struct page_pool *netmem_pp; netmem_ref netmem = data[i]; netmem_pp = netmem_get_pp(netmem); if (unlikely(!pool)) { pool = netmem_pp; allow_direct = page_pool_napi_local(pool); } else if (netmem_pp != pool) { /* * If the netmem belongs to a different * page_pool, save it for another round. */ data[foreign++] = netmem; continue; } netmem = __page_pool_put_page(pool, netmem, -1, allow_direct); /* Approved for bulk recycling in ptr_ring cache */ if (netmem) bulk[bulk_len++] = netmem; } if (bulk_len) page_pool_recycle_ring_bulk(pool, bulk, bulk_len); count = foreign; } } EXPORT_SYMBOL(page_pool_put_netmem_bulk); static netmem_ref page_pool_drain_frag(struct page_pool *pool, netmem_ref netmem) { long drain_count = BIAS_MAX - pool->frag_users; /* Some user is still using the page frag */ if (likely(page_pool_unref_netmem(netmem, drain_count))) return 0; if (__page_pool_page_can_be_recycled(netmem)) { page_pool_dma_sync_for_device(pool, netmem, -1); return netmem; } page_pool_return_page(pool, netmem); return 0; } static void page_pool_free_frag(struct page_pool *pool) { long drain_count = BIAS_MAX - pool->frag_users; netmem_ref netmem = pool->frag_page; pool->frag_page = 0; if (!netmem || page_pool_unref_netmem(netmem, drain_count)) return; page_pool_return_page(pool, netmem); } netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, unsigned int *offset, unsigned int size, gfp_t gfp) { unsigned int max_size = PAGE_SIZE << pool->p.order; netmem_ref netmem = pool->frag_page; if (WARN_ON(size > max_size)) return 0; size = ALIGN(size, dma_get_cache_alignment()); *offset = pool->frag_offset; if (netmem && *offset + size > max_size) { netmem = page_pool_drain_frag(pool, netmem); if (netmem) { recycle_stat_inc(pool, cached); alloc_stat_inc(pool, fast); goto frag_reset; } } if (!netmem) { netmem = page_pool_alloc_netmems(pool, gfp); if (unlikely(!netmem)) { pool->frag_page = 0; return 0; } pool->frag_page = netmem; frag_reset: pool->frag_users = 1; *offset = 0; pool->frag_offset = size; page_pool_fragment_netmem(netmem, BIAS_MAX); return netmem; } pool->frag_users++; pool->frag_offset = *offset + size; return netmem; } EXPORT_SYMBOL(page_pool_alloc_frag_netmem); struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, unsigned int size, gfp_t gfp) { return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, gfp)); } EXPORT_SYMBOL(page_pool_alloc_frag); static void page_pool_empty_ring(struct page_pool *pool) { netmem_ref netmem; /* Empty recycle ring */ while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { /* Verify the refcnt invariant of cached pages */ if (!(netmem_ref_count(netmem) == 1)) pr_crit("%s() page_pool refcnt %d violation\n", __func__, netmem_ref_count(netmem)); page_pool_return_page(pool, netmem); } } static void __page_pool_destroy(struct page_pool *pool) { if (pool->disconnect) pool->disconnect(pool); page_pool_unlist(pool); page_pool_uninit(pool); if (pool->mp_priv) { mp_dmabuf_devmem_destroy(pool); static_branch_dec(&page_pool_mem_providers); } kfree(pool); } static void page_pool_empty_alloc_cache_once(struct page_pool *pool) { netmem_ref netmem; if (pool->destroy_cnt) return; /* Empty alloc cache, assume caller made sure this is * no-longer in use, and page_pool_alloc_pages() cannot be * call concurrently. */ while (pool->alloc.count) { netmem = pool->alloc.cache[--pool->alloc.count]; page_pool_return_page(pool, netmem); } } static void page_pool_scrub(struct page_pool *pool) { page_pool_empty_alloc_cache_once(pool); pool->destroy_cnt++; /* No more consumers should exist, but producers could still * be in-flight. */ page_pool_empty_ring(pool); } static int page_pool_release(struct page_pool *pool) { int inflight; page_pool_scrub(pool); inflight = page_pool_inflight(pool, true); if (!inflight) __page_pool_destroy(pool); return inflight; } static void page_pool_release_retry(struct work_struct *wq) { struct delayed_work *dwq = to_delayed_work(wq); struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); void *netdev; int inflight; inflight = page_pool_release(pool); if (!inflight) return; /* Periodic warning for page pools the user can't see */ netdev = READ_ONCE(pool->slow.netdev); if (time_after_eq(jiffies, pool->defer_warn) && (!netdev || netdev == NET_PTR_POISON)) { int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", __func__, pool->user.id, inflight, sec); pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; } /* Still not ready to be disconnected, retry later */ schedule_delayed_work(&pool->release_dw, DEFER_TIME); } void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), const struct xdp_mem_info *mem) { refcount_inc(&pool->user_cnt); pool->disconnect = disconnect; pool->xdp_mem_id = mem->id; } void page_pool_disable_direct_recycling(struct page_pool *pool) { /* Disable direct recycling based on pool->cpuid. * Paired with READ_ONCE() in page_pool_napi_local(). */ WRITE_ONCE(pool->cpuid, -1); if (!pool->p.napi) return; /* To avoid races with recycling and additional barriers make sure * pool and NAPI are unlinked when NAPI is disabled. */ WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state)); WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1); WRITE_ONCE(pool->p.napi, NULL); } EXPORT_SYMBOL(page_pool_disable_direct_recycling); void page_pool_destroy(struct page_pool *pool) { if (!pool) return; if (!page_pool_put(pool)) return; page_pool_disable_direct_recycling(pool); page_pool_free_frag(pool); if (!page_pool_release(pool)) return; page_pool_detached(pool); pool->defer_start = jiffies; pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); schedule_delayed_work(&pool->release_dw, DEFER_TIME); } EXPORT_SYMBOL(page_pool_destroy); /* Caller must provide appropriate safe context, e.g. NAPI. */ void page_pool_update_nid(struct page_pool *pool, int new_nid) { netmem_ref netmem; trace_page_pool_update_nid(pool, new_nid); pool->p.nid = new_nid; /* Flush pool alloc cache, as refill will check NUMA node */ while (pool->alloc.count) { netmem = pool->alloc.cache[--pool->alloc.count]; page_pool_return_page(pool, netmem); } } EXPORT_SYMBOL(page_pool_update_nid);