// SPDX-License-Identifier: GPL-2.0 /* * Wireless utility functions * * Copyright 2007-2009 Johannes Berg * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2017 Intel Deutschland GmbH * Copyright (C) 2018-2023 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "rdev-ops.h" const struct ieee80211_rate * ieee80211_get_response_rate(struct ieee80211_supported_band *sband, u32 basic_rates, int bitrate) { struct ieee80211_rate *result = &sband->bitrates[0]; int i; for (i = 0; i < sband->n_bitrates; i++) { if (!(basic_rates & BIT(i))) continue; if (sband->bitrates[i].bitrate > bitrate) continue; result = &sband->bitrates[i]; } return result; } EXPORT_SYMBOL(ieee80211_get_response_rate); u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband) { struct ieee80211_rate *bitrates; u32 mandatory_rates = 0; enum ieee80211_rate_flags mandatory_flag; int i; if (WARN_ON(!sband)) return 1; if (sband->band == NL80211_BAND_2GHZ) mandatory_flag = IEEE80211_RATE_MANDATORY_B; else mandatory_flag = IEEE80211_RATE_MANDATORY_A; bitrates = sband->bitrates; for (i = 0; i < sband->n_bitrates; i++) if (bitrates[i].flags & mandatory_flag) mandatory_rates |= BIT(i); return mandatory_rates; } EXPORT_SYMBOL(ieee80211_mandatory_rates); u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) { /* see 802.11 17.3.8.3.2 and Annex J * there are overlapping channel numbers in 5GHz and 2GHz bands */ if (chan <= 0) return 0; /* not supported */ switch (band) { case NL80211_BAND_2GHZ: case NL80211_BAND_LC: if (chan == 14) return MHZ_TO_KHZ(2484); else if (chan < 14) return MHZ_TO_KHZ(2407 + chan * 5); break; case NL80211_BAND_5GHZ: if (chan >= 182 && chan <= 196) return MHZ_TO_KHZ(4000 + chan * 5); else return MHZ_TO_KHZ(5000 + chan * 5); break; case NL80211_BAND_6GHZ: /* see 802.11ax D6.1 27.3.23.2 */ if (chan == 2) return MHZ_TO_KHZ(5935); if (chan <= 233) return MHZ_TO_KHZ(5950 + chan * 5); break; case NL80211_BAND_60GHZ: if (chan < 7) return MHZ_TO_KHZ(56160 + chan * 2160); break; case NL80211_BAND_S1GHZ: return 902000 + chan * 500; default: ; } return 0; /* not supported */ } EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); enum nl80211_chan_width ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) { if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) return NL80211_CHAN_WIDTH_20_NOHT; /*S1G defines a single allowed channel width per channel. * Extract that width here. */ if (chan->flags & IEEE80211_CHAN_1MHZ) return NL80211_CHAN_WIDTH_1; else if (chan->flags & IEEE80211_CHAN_2MHZ) return NL80211_CHAN_WIDTH_2; else if (chan->flags & IEEE80211_CHAN_4MHZ) return NL80211_CHAN_WIDTH_4; else if (chan->flags & IEEE80211_CHAN_8MHZ) return NL80211_CHAN_WIDTH_8; else if (chan->flags & IEEE80211_CHAN_16MHZ) return NL80211_CHAN_WIDTH_16; pr_err("unknown channel width for channel at %dKHz?\n", ieee80211_channel_to_khz(chan)); return NL80211_CHAN_WIDTH_1; } EXPORT_SYMBOL(ieee80211_s1g_channel_width); int ieee80211_freq_khz_to_channel(u32 freq) { /* TODO: just handle MHz for now */ freq = KHZ_TO_MHZ(freq); /* see 802.11 17.3.8.3.2 and Annex J */ if (freq == 2484) return 14; else if (freq < 2484) return (freq - 2407) / 5; else if (freq >= 4910 && freq <= 4980) return (freq - 4000) / 5; else if (freq < 5925) return (freq - 5000) / 5; else if (freq == 5935) return 2; else if (freq <= 45000) /* DMG band lower limit */ /* see 802.11ax D6.1 27.3.22.2 */ return (freq - 5950) / 5; else if (freq >= 58320 && freq <= 70200) return (freq - 56160) / 2160; else return 0; } EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, u32 freq) { enum nl80211_band band; struct ieee80211_supported_band *sband; int i; for (band = 0; band < NUM_NL80211_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { struct ieee80211_channel *chan = &sband->channels[i]; if (ieee80211_channel_to_khz(chan) == freq) return chan; } } return NULL; } EXPORT_SYMBOL(ieee80211_get_channel_khz); static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) { int i, want; switch (sband->band) { case NL80211_BAND_5GHZ: case NL80211_BAND_6GHZ: want = 3; for (i = 0; i < sband->n_bitrates; i++) { if (sband->bitrates[i].bitrate == 60 || sband->bitrates[i].bitrate == 120 || sband->bitrates[i].bitrate == 240) { sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_A; want--; } } WARN_ON(want); break; case NL80211_BAND_2GHZ: case NL80211_BAND_LC: want = 7; for (i = 0; i < sband->n_bitrates; i++) { switch (sband->bitrates[i].bitrate) { case 10: case 20: case 55: case 110: sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_B | IEEE80211_RATE_MANDATORY_G; want--; break; case 60: case 120: case 240: sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_G; want--; fallthrough; default: sband->bitrates[i].flags |= IEEE80211_RATE_ERP_G; break; } } WARN_ON(want != 0 && want != 3); break; case NL80211_BAND_60GHZ: /* check for mandatory HT MCS 1..4 */ WARN_ON(!sband->ht_cap.ht_supported); WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); break; case NL80211_BAND_S1GHZ: /* Figure 9-589bd: 3 means unsupported, so != 3 means at least * mandatory is ok. */ WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); break; case NUM_NL80211_BANDS: default: WARN_ON(1); break; } } void ieee80211_set_bitrate_flags(struct wiphy *wiphy) { enum nl80211_band band; for (band = 0; band < NUM_NL80211_BANDS; band++) if (wiphy->bands[band]) set_mandatory_flags_band(wiphy->bands[band]); } bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) { int i; for (i = 0; i < wiphy->n_cipher_suites; i++) if (cipher == wiphy->cipher_suites[i]) return true; return false; } static bool cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) { struct wiphy *wiphy = &rdev->wiphy; int i; for (i = 0; i < wiphy->n_cipher_suites; i++) { switch (wiphy->cipher_suites[i]) { case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: return true; } } return false; } bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, int key_idx, bool pairwise) { int max_key_idx; if (pairwise) max_key_idx = 3; else if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_PROTECTION) || wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) max_key_idx = 7; else if (cfg80211_igtk_cipher_supported(rdev)) max_key_idx = 5; else max_key_idx = 3; if (key_idx < 0 || key_idx > max_key_idx) return false; return true; } int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr) { if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) return -EINVAL; if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) return -EINVAL; if (pairwise && !mac_addr) return -EINVAL; switch (params->cipher) { case WLAN_CIPHER_SUITE_TKIP: /* Extended Key ID can only be used with CCMP/GCMP ciphers */ if ((pairwise && key_idx) || params->mode != NL80211_KEY_RX_TX) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: /* IEEE802.11-2016 allows only 0 and - when supporting * Extended Key ID - 1 as index for pairwise keys. * @NL80211_KEY_NO_TX is only allowed for pairwise keys when * the driver supports Extended Key ID. * @NL80211_KEY_SET_TX can't be set when installing and * validating a key. */ if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || params->mode == NL80211_KEY_SET_TX) return -EINVAL; if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_EXT_KEY_ID)) { if (pairwise && (key_idx < 0 || key_idx > 1)) return -EINVAL; } else if (pairwise && key_idx) { return -EINVAL; } break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: /* Disallow BIP (group-only) cipher as pairwise cipher */ if (pairwise) return -EINVAL; if (key_idx < 4) return -EINVAL; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: if (key_idx > 3) return -EINVAL; break; default: break; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: if (params->key_len != WLAN_KEY_LEN_WEP40) return -EINVAL; break; case WLAN_CIPHER_SUITE_TKIP: if (params->key_len != WLAN_KEY_LEN_TKIP) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP: if (params->key_len != WLAN_KEY_LEN_CCMP) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP_256: if (params->key_len != WLAN_KEY_LEN_CCMP_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_GCMP: if (params->key_len != WLAN_KEY_LEN_GCMP) return -EINVAL; break; case WLAN_CIPHER_SUITE_GCMP_256: if (params->key_len != WLAN_KEY_LEN_GCMP_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_WEP104: if (params->key_len != WLAN_KEY_LEN_WEP104) return -EINVAL; break; case WLAN_CIPHER_SUITE_AES_CMAC: if (params->key_len != WLAN_KEY_LEN_AES_CMAC) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_CMAC_256: if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) return -EINVAL; break; default: /* * We don't know anything about this algorithm, * allow using it -- but the driver must check * all parameters! We still check below whether * or not the driver supports this algorithm, * of course. */ break; } if (params->seq) { switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* These ciphers do not use key sequence */ return -EINVAL; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (params->seq_len != 6) return -EINVAL; break; } } if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) return -EINVAL; return 0; } unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) { unsigned int hdrlen = 24; if (ieee80211_is_ext(fc)) { hdrlen = 4; goto out; } if (ieee80211_is_data(fc)) { if (ieee80211_has_a4(fc)) hdrlen = 30; if (ieee80211_is_data_qos(fc)) { hdrlen += IEEE80211_QOS_CTL_LEN; if (ieee80211_has_order(fc)) hdrlen += IEEE80211_HT_CTL_LEN; } goto out; } if (ieee80211_is_mgmt(fc)) { if (ieee80211_has_order(fc)) hdrlen += IEEE80211_HT_CTL_LEN; goto out; } if (ieee80211_is_ctl(fc)) { /* * ACK and CTS are 10 bytes, all others 16. To see how * to get this condition consider * subtype mask: 0b0000000011110000 (0x00F0) * ACK subtype: 0b0000000011010000 (0x00D0) * CTS subtype: 0b0000000011000000 (0x00C0) * bits that matter: ^^^ (0x00E0) * value of those: 0b0000000011000000 (0x00C0) */ if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) hdrlen = 10; else hdrlen = 16; } out: return hdrlen; } EXPORT_SYMBOL(ieee80211_hdrlen); unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) { const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *)skb->data; unsigned int hdrlen; if (unlikely(skb->len < 10)) return 0; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (unlikely(hdrlen > skb->len)) return 0; return hdrlen; } EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) { int ae = flags & MESH_FLAGS_AE; /* 802.11-2012, 8.2.4.7.3 */ switch (ae) { default: case 0: return 6; case MESH_FLAGS_AE_A4: return 12; case MESH_FLAGS_AE_A5_A6: return 18; } } unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) { return __ieee80211_get_mesh_hdrlen(meshhdr->flags); } EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) { const __be16 *hdr_proto = hdr + ETH_ALEN; if (!(ether_addr_equal(hdr, rfc1042_header) && *hdr_proto != htons(ETH_P_AARP) && *hdr_proto != htons(ETH_P_IPX)) && !ether_addr_equal(hdr, bridge_tunnel_header)) return false; *proto = *hdr_proto; return true; } EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) { const void *mesh_addr; struct { struct ethhdr eth; u8 flags; } payload; int hdrlen; int ret; ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); if (ret) return ret; hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); if (likely(pskb_may_pull(skb, hdrlen + 8) && ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, &payload.eth.h_proto))) hdrlen += ETH_ALEN + 2; else if (!pskb_may_pull(skb, hdrlen)) return -EINVAL; else payload.eth.h_proto = htons(skb->len - hdrlen); mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; switch (payload.flags & MESH_FLAGS_AE) { case MESH_FLAGS_AE_A4: memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); break; case MESH_FLAGS_AE_A5_A6: memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); break; default: break; } pskb_pull(skb, hdrlen - sizeof(payload.eth)); memcpy(skb->data, &payload.eth, sizeof(payload.eth)); return 0; } EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, const u8 *addr, enum nl80211_iftype iftype, u8 data_offset, bool is_amsdu) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct { u8 hdr[ETH_ALEN] __aligned(2); __be16 proto; } payload; struct ethhdr tmp; u16 hdrlen; if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return -1; hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; if (skb->len < hdrlen) return -1; /* convert IEEE 802.11 header + possible LLC headers into Ethernet * header * IEEE 802.11 address fields: * ToDS FromDS Addr1 Addr2 Addr3 Addr4 * 0 0 DA SA BSSID n/a * 0 1 DA BSSID SA n/a * 1 0 BSSID SA DA n/a * 1 1 RA TA DA SA */ memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); switch (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case cpu_to_le16(IEEE80211_FCTL_TODS): if (unlikely(iftype != NL80211_IFTYPE_AP && iftype != NL80211_IFTYPE_AP_VLAN && iftype != NL80211_IFTYPE_P2P_GO)) return -1; break; case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && iftype != NL80211_IFTYPE_AP_VLAN && iftype != NL80211_IFTYPE_STATION)) return -1; break; case cpu_to_le16(IEEE80211_FCTL_FROMDS): if ((iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_P2P_CLIENT && iftype != NL80211_IFTYPE_MESH_POINT) || (is_multicast_ether_addr(tmp.h_dest) && ether_addr_equal(tmp.h_source, addr))) return -1; break; case cpu_to_le16(0): if (iftype != NL80211_IFTYPE_ADHOC && iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_OCB) return -1; break; } if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { /* remove RFC1042 or Bridge-Tunnel encapsulation */ hdrlen += ETH_ALEN + 2; skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); } else { tmp.h_proto = htons(skb->len - hdrlen); } pskb_pull(skb, hdrlen); if (!ehdr) ehdr = skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr, &tmp, sizeof(tmp)); return 0; } EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); static void __frame_add_frag(struct sk_buff *skb, struct page *page, void *ptr, int len, int size) { struct skb_shared_info *sh = skb_shinfo(skb); int page_offset; get_page(page); page_offset = ptr - page_address(page); skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); } static void __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, int offset, int len) { struct skb_shared_info *sh = skb_shinfo(skb); const skb_frag_t *frag = &sh->frags[0]; struct page *frag_page; void *frag_ptr; int frag_len, frag_size; int head_size = skb->len - skb->data_len; int cur_len; frag_page = virt_to_head_page(skb->head); frag_ptr = skb->data; frag_size = head_size; while (offset >= frag_size) { offset -= frag_size; frag_page = skb_frag_page(frag); frag_ptr = skb_frag_address(frag); frag_size = skb_frag_size(frag); frag++; } frag_ptr += offset; frag_len = frag_size - offset; cur_len = min(len, frag_len); __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); len -= cur_len; while (len > 0) { frag_len = skb_frag_size(frag); cur_len = min(len, frag_len); __frame_add_frag(frame, skb_frag_page(frag), skb_frag_address(frag), cur_len, frag_len); len -= cur_len; frag++; } } static struct sk_buff * __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, int offset, int len, bool reuse_frag, int min_len) { struct sk_buff *frame; int cur_len = len; if (skb->len - offset < len) return NULL; /* * When reusing fragments, copy some data to the head to simplify * ethernet header handling and speed up protocol header processing * in the stack later. */ if (reuse_frag) cur_len = min_t(int, len, min_len); /* * Allocate and reserve two bytes more for payload * alignment since sizeof(struct ethhdr) is 14. */ frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); if (!frame) return NULL; frame->priority = skb->priority; skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); len -= cur_len; if (!len) return frame; offset += cur_len; __ieee80211_amsdu_copy_frag(skb, frame, offset, len); return frame; } static u16 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) { __le16 *field_le = field; __be16 *field_be = field; u16 len; if (hdr_type >= 2) len = le16_to_cpu(*field_le); else len = be16_to_cpu(*field_be); if (hdr_type) len += __ieee80211_get_mesh_hdrlen(mesh_flags); return len; } bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) { int offset = 0, subframe_len, padding; for (offset = 0; offset < skb->len; offset += subframe_len + padding) { int remaining = skb->len - offset; struct { __be16 len; u8 mesh_flags; } hdr; u16 len; if (sizeof(hdr) > remaining) return false; if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) return false; len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, mesh_hdr); subframe_len = sizeof(struct ethhdr) + len; padding = (4 - subframe_len) & 0x3; if (subframe_len > remaining) return false; } return true; } EXPORT_SYMBOL(ieee80211_is_valid_amsdu); void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, const u8 *addr, enum nl80211_iftype iftype, const unsigned int extra_headroom, const u8 *check_da, const u8 *check_sa, u8 mesh_control) { unsigned int hlen = ALIGN(extra_headroom, 4); struct sk_buff *frame = NULL; int offset = 0; struct { struct ethhdr eth; uint8_t flags; } hdr; bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); bool reuse_skb = false; bool last = false; int copy_len = sizeof(hdr.eth); if (iftype == NL80211_IFTYPE_MESH_POINT) copy_len = sizeof(hdr); while (!last) { int remaining = skb->len - offset; unsigned int subframe_len; int len, mesh_len = 0; u8 padding; if (copy_len > remaining) goto purge; skb_copy_bits(skb, offset, &hdr, copy_len); if (iftype == NL80211_IFTYPE_MESH_POINT) mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, mesh_control); subframe_len = sizeof(struct ethhdr) + len; padding = (4 - subframe_len) & 0x3; /* the last MSDU has no padding */ if (subframe_len > remaining) goto purge; /* mitigate A-MSDU aggregation injection attacks */ if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header)) goto purge; offset += sizeof(struct ethhdr); last = remaining <= subframe_len + padding; /* FIXME: should we really accept multicast DA? */ if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && !ether_addr_equal(check_da, hdr.eth.h_dest)) || (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { offset += len + padding; continue; } /* reuse skb for the last subframe */ if (!skb_is_nonlinear(skb) && !reuse_frag && last) { skb_pull(skb, offset); frame = skb; reuse_skb = true; } else { frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, reuse_frag, 32 + mesh_len); if (!frame) goto purge; offset += len + padding; } skb_reset_network_header(frame); frame->dev = skb->dev; frame->priority = skb->priority; if (likely(iftype != NL80211_IFTYPE_MESH_POINT && ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) skb_pull(frame, ETH_ALEN + 2); memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); __skb_queue_tail(list, frame); } if (!reuse_skb) dev_kfree_skb(skb); return; purge: __skb_queue_purge(list); dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); /* Given a data frame determine the 802.1p/1d tag to use. */ unsigned int cfg80211_classify8021d(struct sk_buff *skb, struct cfg80211_qos_map *qos_map) { unsigned int dscp; unsigned char vlan_priority; unsigned int ret; /* skb->priority values from 256->263 are magic values to * directly indicate a specific 802.1d priority. This is used * to allow 802.1d priority to be passed directly in from VLAN * tags, etc. */ if (skb->priority >= 256 && skb->priority <= 263) { ret = skb->priority - 256; goto out; } if (skb_vlan_tag_present(skb)) { vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; if (vlan_priority > 0) { ret = vlan_priority; goto out; } } switch (skb->protocol) { case htons(ETH_P_IP): dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; break; case htons(ETH_P_IPV6): dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; break; case htons(ETH_P_MPLS_UC): case htons(ETH_P_MPLS_MC): { struct mpls_label mpls_tmp, *mpls; mpls = skb_header_pointer(skb, sizeof(struct ethhdr), sizeof(*mpls), &mpls_tmp); if (!mpls) return 0; ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; goto out; } case htons(ETH_P_80221): /* 802.21 is always network control traffic */ return 7; default: return 0; } if (qos_map) { unsigned int i, tmp_dscp = dscp >> 2; for (i = 0; i < qos_map->num_des; i++) { if (tmp_dscp == qos_map->dscp_exception[i].dscp) { ret = qos_map->dscp_exception[i].up; goto out; } } for (i = 0; i < 8; i++) { if (tmp_dscp >= qos_map->up[i].low && tmp_dscp <= qos_map->up[i].high) { ret = i; goto out; } } } /* The default mapping as defined Section 2.3 in RFC8325: The three * Most Significant Bits (MSBs) of the DSCP are used as the * corresponding L2 markings. */ ret = dscp >> 5; /* Handle specific DSCP values for which the default mapping (as * described above) doesn't adhere to the intended usage of the DSCP * value. See section 4 in RFC8325. Specifically, for the following * Diffserv Service Classes no update is needed: * - Standard: DF * - Low Priority Data: CS1 * - Multimedia Conferencing: AF41, AF42, AF43 * - Network Control Traffic: CS7 * - Real-Time Interactive: CS4 * - Signaling: CS5 */ switch (dscp >> 2) { case 10: case 12: case 14: /* High throughput data: AF11, AF12, AF13 */ ret = 0; break; case 16: /* Operations, Administration, and Maintenance and Provisioning: * CS2 */ ret = 0; break; case 18: case 20: case 22: /* Low latency data: AF21, AF22, AF23 */ ret = 3; break; case 24: /* Broadcasting video: CS3 */ ret = 4; break; case 26: case 28: case 30: /* Multimedia Streaming: AF31, AF32, AF33 */ ret = 4; break; case 44: /* Voice Admit: VA */ ret = 6; break; case 46: /* Telephony traffic: EF */ ret = 6; break; case 48: /* Network Control Traffic: CS6 */ ret = 7; break; } out: return array_index_nospec(ret, IEEE80211_NUM_TIDS); } EXPORT_SYMBOL(cfg80211_classify8021d); const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) { const struct cfg80211_bss_ies *ies; ies = rcu_dereference(bss->ies); if (!ies) return NULL; return cfg80211_find_elem(id, ies->data, ies->len); } EXPORT_SYMBOL(ieee80211_bss_get_elem); void cfg80211_upload_connect_keys(struct wireless_dev *wdev) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct net_device *dev = wdev->netdev; int i; if (!wdev->connect_keys) return; for (i = 0; i < 4; i++) { if (!wdev->connect_keys->params[i].cipher) continue; if (rdev_add_key(rdev, dev, -1, i, false, NULL, &wdev->connect_keys->params[i])) { netdev_err(dev, "failed to set key %d\n", i); continue; } if (wdev->connect_keys->def == i && rdev_set_default_key(rdev, dev, -1, i, true, true)) { netdev_err(dev, "failed to set defkey %d\n", i); continue; } } kfree_sensitive(wdev->connect_keys); wdev->connect_keys = NULL; } void cfg80211_process_wdev_events(struct wireless_dev *wdev) { struct cfg80211_event *ev; unsigned long flags; spin_lock_irqsave(&wdev->event_lock, flags); while (!list_empty(&wdev->event_list)) { ev = list_first_entry(&wdev->event_list, struct cfg80211_event, list); list_del(&ev->list); spin_unlock_irqrestore(&wdev->event_lock, flags); switch (ev->type) { case EVENT_CONNECT_RESULT: __cfg80211_connect_result( wdev->netdev, &ev->cr, ev->cr.status == WLAN_STATUS_SUCCESS); break; case EVENT_ROAMED: __cfg80211_roamed(wdev, &ev->rm); break; case EVENT_DISCONNECTED: __cfg80211_disconnected(wdev->netdev, ev->dc.ie, ev->dc.ie_len, ev->dc.reason, !ev->dc.locally_generated); break; case EVENT_IBSS_JOINED: __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, ev->ij.channel); break; case EVENT_STOPPED: cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); break; case EVENT_PORT_AUTHORIZED: __cfg80211_port_authorized(wdev, ev->pa.peer_addr, ev->pa.td_bitmap, ev->pa.td_bitmap_len); break; } kfree(ev); spin_lock_irqsave(&wdev->event_lock, flags); } spin_unlock_irqrestore(&wdev->event_lock, flags); } void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) { struct wireless_dev *wdev; lockdep_assert_held(&rdev->wiphy.mtx); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) cfg80211_process_wdev_events(wdev); } int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params) { int err; enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; lockdep_assert_held(&rdev->wiphy.mtx); /* don't support changing VLANs, you just re-create them */ if (otype == NL80211_IFTYPE_AP_VLAN) return -EOPNOTSUPP; /* cannot change into P2P device or NAN */ if (ntype == NL80211_IFTYPE_P2P_DEVICE || ntype == NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!rdev->ops->change_virtual_intf || !(rdev->wiphy.interface_modes & (1 << ntype))) return -EOPNOTSUPP; if (ntype != otype) { /* if it's part of a bridge, reject changing type to station/ibss */ if (netif_is_bridge_port(dev) && (ntype == NL80211_IFTYPE_ADHOC || ntype == NL80211_IFTYPE_STATION || ntype == NL80211_IFTYPE_P2P_CLIENT)) return -EBUSY; dev->ieee80211_ptr->use_4addr = false; rdev_set_qos_map(rdev, dev, NULL); switch (otype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: cfg80211_stop_ap(rdev, dev, -1, true); break; case NL80211_IFTYPE_ADHOC: cfg80211_leave_ibss(rdev, dev, false); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: cfg80211_disconnect(rdev, dev, WLAN_REASON_DEAUTH_LEAVING, true); break; case NL80211_IFTYPE_MESH_POINT: /* mesh should be handled? */ break; case NL80211_IFTYPE_OCB: cfg80211_leave_ocb(rdev, dev); break; default: break; } cfg80211_process_rdev_events(rdev); cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); memset(&dev->ieee80211_ptr->u, 0, sizeof(dev->ieee80211_ptr->u)); memset(&dev->ieee80211_ptr->links, 0, sizeof(dev->ieee80211_ptr->links)); } err = rdev_change_virtual_intf(rdev, dev, ntype, params); WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); if (!err && params && params->use_4addr != -1) dev->ieee80211_ptr->use_4addr = params->use_4addr; if (!err) { dev->priv_flags &= ~IFF_DONT_BRIDGE; switch (ntype) { case NL80211_IFTYPE_STATION: if (dev->ieee80211_ptr->use_4addr) break; fallthrough; case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_ADHOC: dev->priv_flags |= IFF_DONT_BRIDGE; break; case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_MESH_POINT: /* bridging OK */ break; case NL80211_IFTYPE_MONITOR: /* monitor can't bridge anyway */ break; case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: /* not happening */ break; case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_NAN: WARN_ON(1); break; } } if (!err && ntype != otype && netif_running(dev)) { cfg80211_update_iface_num(rdev, ntype, 1); cfg80211_update_iface_num(rdev, otype, -1); } return err; } static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) { int modulation, streams, bitrate; /* the formula below does only work for MCS values smaller than 32 */ if (WARN_ON_ONCE(rate->mcs >= 32)) return 0; modulation = rate->mcs & 7; streams = (rate->mcs >> 3) + 1; bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; if (modulation < 4) bitrate *= (modulation + 1); else if (modulation == 4) bitrate *= (modulation + 2); else bitrate *= (modulation + 3); bitrate *= streams; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; } static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) { static const u32 __mcs2bitrate[] = { /* control PHY */ [0] = 275, /* SC PHY */ [1] = 3850, [2] = 7700, [3] = 9625, [4] = 11550, [5] = 12512, /* 1251.25 mbps */ [6] = 15400, [7] = 19250, [8] = 23100, [9] = 25025, [10] = 30800, [11] = 38500, [12] = 46200, /* OFDM PHY */ [13] = 6930, [14] = 8662, /* 866.25 mbps */ [15] = 13860, [16] = 17325, [17] = 20790, [18] = 27720, [19] = 34650, [20] = 41580, [21] = 45045, [22] = 51975, [23] = 62370, [24] = 67568, /* 6756.75 mbps */ /* LP-SC PHY */ [25] = 6260, [26] = 8340, [27] = 11120, [28] = 12510, [29] = 16680, [30] = 22240, [31] = 25030, }; if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) return 0; return __mcs2bitrate[rate->mcs]; } static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) { static const u32 __mcs2bitrate[] = { [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ [7 - 6] = 50050, /* MCS 12.1 */ [8 - 6] = 53900, [9 - 6] = 57750, [10 - 6] = 63900, [11 - 6] = 75075, [12 - 6] = 80850, }; /* Extended SC MCS not defined for base MCS below 6 or above 12 */ if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) return 0; return __mcs2bitrate[rate->mcs - 6]; } static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) { static const u32 __mcs2bitrate[] = { /* control PHY */ [0] = 275, /* SC PHY */ [1] = 3850, [2] = 7700, [3] = 9625, [4] = 11550, [5] = 12512, /* 1251.25 mbps */ [6] = 13475, [7] = 15400, [8] = 19250, [9] = 23100, [10] = 25025, [11] = 26950, [12] = 30800, [13] = 38500, [14] = 46200, [15] = 50050, [16] = 53900, [17] = 57750, [18] = 69300, [19] = 75075, [20] = 80850, }; if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) return 0; return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; } static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) { static const u32 base[4][12] = { { 6500000, 13000000, 19500000, 26000000, 39000000, 52000000, 58500000, 65000000, 78000000, /* not in the spec, but some devices use this: */ 86700000, 97500000, 108300000, }, { 13500000, 27000000, 40500000, 54000000, 81000000, 108000000, 121500000, 135000000, 162000000, 180000000, 202500000, 225000000, }, { 29300000, 58500000, 87800000, 117000000, 175500000, 234000000, 263300000, 292500000, 351000000, 390000000, 438800000, 487500000, }, { 58500000, 117000000, 175500000, 234000000, 351000000, 468000000, 526500000, 585000000, 702000000, 780000000, 877500000, 975000000, }, }; u32 bitrate; int idx; if (rate->mcs > 11) goto warn; switch (rate->bw) { case RATE_INFO_BW_160: idx = 3; break; case RATE_INFO_BW_80: idx = 2; break; case RATE_INFO_BW_40: idx = 1; break; case RATE_INFO_BW_5: case RATE_INFO_BW_10: default: goto warn; case RATE_INFO_BW_20: idx = 0; } bitrate = base[idx][rate->mcs]; bitrate *= rate->nss; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; warn: WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", rate->bw, rate->mcs, rate->nss); return 0; } static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) { #define SCALE 6144 u32 mcs_divisors[14] = { 102399, /* 16.666666... */ 51201, /* 8.333333... */ 34134, /* 5.555555... */ 25599, /* 4.166666... */ 17067, /* 2.777777... */ 12801, /* 2.083333... */ 11377, /* 1.851725... */ 10239, /* 1.666666... */ 8532, /* 1.388888... */ 7680, /* 1.250000... */ 6828, /* 1.111111... */ 6144, /* 1.000000... */ 5690, /* 0.926106... */ 5120, /* 0.833333... */ }; u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; u32 rates_996[3] = { 480388888, 453700000, 408333333 }; u32 rates_484[3] = { 229411111, 216666666, 195000000 }; u32 rates_242[3] = { 114711111, 108333333, 97500000 }; u32 rates_106[3] = { 40000000, 37777777, 34000000 }; u32 rates_52[3] = { 18820000, 17777777, 16000000 }; u32 rates_26[3] = { 9411111, 8888888, 8000000 }; u64 tmp; u32 result; if (WARN_ON_ONCE(rate->mcs > 13)) return 0; if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) return 0; if (WARN_ON_ONCE(rate->he_ru_alloc > NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) return 0; if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) return 0; if (rate->bw == RATE_INFO_BW_160 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) result = rates_160M[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_80 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) result = rates_996[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_40 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) result = rates_484[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_20 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) result = rates_242[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) result = rates_106[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) result = rates_52[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) result = rates_26[rate->he_gi]; else { WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", rate->bw, rate->he_ru_alloc); return 0; } /* now scale to the appropriate MCS */ tmp = result; tmp *= SCALE; do_div(tmp, mcs_divisors[rate->mcs]); result = tmp; /* and take NSS, DCM into account */ result = (result * rate->nss) / 8; if (rate->he_dcm) result /= 2; return result / 10000; } static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) { #define SCALE 6144 static const u32 mcs_divisors[16] = { 102399, /* 16.666666... */ 51201, /* 8.333333... */ 34134, /* 5.555555... */ 25599, /* 4.166666... */ 17067, /* 2.777777... */ 12801, /* 2.083333... */ 11377, /* 1.851725... */ 10239, /* 1.666666... */ 8532, /* 1.388888... */ 7680, /* 1.250000... */ 6828, /* 1.111111... */ 6144, /* 1.000000... */ 5690, /* 0.926106... */ 5120, /* 0.833333... */ 409600, /* 66.666666... */ 204800, /* 33.333333... */ }; static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; u64 tmp; u32 result; if (WARN_ON_ONCE(rate->mcs > 15)) return 0; if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) return 0; if (WARN_ON_ONCE(rate->eht_ru_alloc > NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) return 0; if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) return 0; /* Bandwidth checks for MCS 14 */ if (rate->mcs == 14) { if ((rate->bw != RATE_INFO_BW_EHT_RU && rate->bw != RATE_INFO_BW_80 && rate->bw != RATE_INFO_BW_160 && rate->bw != RATE_INFO_BW_320) || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", rate->bw, rate->eht_ru_alloc); return 0; } } if (rate->bw == RATE_INFO_BW_320 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) result = 4 * rates_996[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) result = 3 * rates_996[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_160 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) result = 2 * rates_996[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_80 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) result = rates_996[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_40 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) result = rates_484[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_20 || (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) result = rates_242[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) result = rates_106[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) result = rates_52[rate->eht_gi]; else if (rate->bw == RATE_INFO_BW_EHT_RU && rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) result = rates_26[rate->eht_gi]; else { WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", rate->bw, rate->eht_ru_alloc); return 0; } /* now scale to the appropriate MCS */ tmp = result; tmp *= SCALE; do_div(tmp, mcs_divisors[rate->mcs]); /* and take NSS */ tmp *= rate->nss; do_div(tmp, 8); result = tmp; return result / 10000; } static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) { /* For 1, 2, 4, 8 and 16 MHz channels */ static const u32 base[5][11] = { { 300000, 600000, 900000, 1200000, 1800000, 2400000, 2700000, 3000000, 3600000, 4000000, /* MCS 10 supported in 1 MHz only */ 150000, }, { 650000, 1300000, 1950000, 2600000, 3900000, 5200000, 5850000, 6500000, 7800000, /* MCS 9 not valid */ }, { 1350000, 2700000, 4050000, 5400000, 8100000, 10800000, 12150000, 13500000, 16200000, 18000000, }, { 2925000, 5850000, 8775000, 11700000, 17550000, 23400000, 26325000, 29250000, 35100000, 39000000, }, { 8580000, 11700000, 17550000, 23400000, 35100000, 46800000, 52650000, 58500000, 70200000, 78000000, }, }; u32 bitrate; /* default is 1 MHz index */ int idx = 0; if (rate->mcs >= 11) goto warn; switch (rate->bw) { case RATE_INFO_BW_16: idx = 4; break; case RATE_INFO_BW_8: idx = 3; break; case RATE_INFO_BW_4: idx = 2; break; case RATE_INFO_BW_2: idx = 1; break; case RATE_INFO_BW_1: idx = 0; break; case RATE_INFO_BW_5: case RATE_INFO_BW_10: case RATE_INFO_BW_20: case RATE_INFO_BW_40: case RATE_INFO_BW_80: case RATE_INFO_BW_160: default: goto warn; } bitrate = base[idx][rate->mcs]; bitrate *= rate->nss; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; warn: WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", rate->bw, rate->mcs, rate->nss); return 0; } u32 cfg80211_calculate_bitrate(struct rate_info *rate) { if (rate->flags & RATE_INFO_FLAGS_MCS) return cfg80211_calculate_bitrate_ht(rate); if (rate->flags & RATE_INFO_FLAGS_DMG) return cfg80211_calculate_bitrate_dmg(rate); if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) return cfg80211_calculate_bitrate_extended_sc_dmg(rate); if (rate->flags & RATE_INFO_FLAGS_EDMG) return cfg80211_calculate_bitrate_edmg(rate); if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) return cfg80211_calculate_bitrate_vht(rate); if (rate->flags & RATE_INFO_FLAGS_HE_MCS) return cfg80211_calculate_bitrate_he(rate); if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) return cfg80211_calculate_bitrate_eht(rate); if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) return cfg80211_calculate_bitrate_s1g(rate); return rate->legacy; } EXPORT_SYMBOL(cfg80211_calculate_bitrate); int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, enum ieee80211_p2p_attr_id attr, u8 *buf, unsigned int bufsize) { u8 *out = buf; u16 attr_remaining = 0; bool desired_attr = false; u16 desired_len = 0; while (len > 0) { unsigned int iedatalen; unsigned int copy; const u8 *iedata; if (len < 2) return -EILSEQ; iedatalen = ies[1]; if (iedatalen + 2 > len) return -EILSEQ; if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) goto cont; if (iedatalen < 4) goto cont; iedata = ies + 2; /* check WFA OUI, P2P subtype */ if (iedata[0] != 0x50 || iedata[1] != 0x6f || iedata[2] != 0x9a || iedata[3] != 0x09) goto cont; iedatalen -= 4; iedata += 4; /* check attribute continuation into this IE */ copy = min_t(unsigned int, attr_remaining, iedatalen); if (copy && desired_attr) { desired_len += copy; if (out) { memcpy(out, iedata, min(bufsize, copy)); out += min(bufsize, copy); bufsize -= min(bufsize, copy); } if (copy == attr_remaining) return desired_len; } attr_remaining -= copy; if (attr_remaining) goto cont; iedatalen -= copy; iedata += copy; while (iedatalen > 0) { u16 attr_len; /* P2P attribute ID & size must fit */ if (iedatalen < 3) return -EILSEQ; desired_attr = iedata[0] == attr; attr_len = get_unaligned_le16(iedata + 1); iedatalen -= 3; iedata += 3; copy = min_t(unsigned int, attr_len, iedatalen); if (desired_attr) { desired_len += copy; if (out) { memcpy(out, iedata, min(bufsize, copy)); out += min(bufsize, copy); bufsize -= min(bufsize, copy); } if (copy == attr_len) return desired_len; } iedata += copy; iedatalen -= copy; attr_remaining = attr_len - copy; } cont: len -= ies[1] + 2; ies += ies[1] + 2; } if (attr_remaining && desired_attr) return -EILSEQ; return -ENOENT; } EXPORT_SYMBOL(cfg80211_get_p2p_attr); static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) { int i; /* Make sure array values are legal */ if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) return false; i = 0; while (i < n_ids) { if (ids[i] == WLAN_EID_EXTENSION) { if (id_ext && (ids[i + 1] == id)) return true; i += 2; continue; } if (ids[i] == id && !id_ext) return true; i++; } return false; } static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) { /* we assume a validly formed IEs buffer */ u8 len = ies[pos + 1]; pos += 2 + len; /* the IE itself must have 255 bytes for fragments to follow */ if (len < 255) return pos; while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { len = ies[pos + 1]; pos += 2 + len; } return pos; } size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, const u8 *ids, int n_ids, const u8 *after_ric, int n_after_ric, size_t offset) { size_t pos = offset; while (pos < ielen) { u8 ext = 0; if (ies[pos] == WLAN_EID_EXTENSION) ext = 2; if ((pos + ext) >= ielen) break; if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], ies[pos] == WLAN_EID_EXTENSION)) break; if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { pos = skip_ie(ies, ielen, pos); while (pos < ielen) { if (ies[pos] == WLAN_EID_EXTENSION) ext = 2; else ext = 0; if ((pos + ext) >= ielen) break; if (!ieee80211_id_in_list(after_ric, n_after_ric, ies[pos + ext], ext == 2)) pos = skip_ie(ies, ielen, pos); else break; } } else { pos = skip_ie(ies, ielen, pos); } } return pos; } EXPORT_SYMBOL(ieee80211_ie_split_ric); void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) { unsigned int elem_len; if (!len_pos) return; elem_len = skb->data + skb->len - len_pos - 1; while (elem_len > 255) { /* this one is 255 */ *len_pos = 255; /* remaining data gets smaller */ elem_len -= 255; /* make space for the fragment ID/len in SKB */ skb_put(skb, 2); /* shift back the remaining data to place fragment ID/len */ memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); /* place the fragment ID */ len_pos += 255 + 1; *len_pos = frag_id; /* and point to fragment length to update later */ len_pos++; } *len_pos = elem_len; } EXPORT_SYMBOL(ieee80211_fragment_element); bool ieee80211_operating_class_to_band(u8 operating_class, enum nl80211_band *band) { switch (operating_class) { case 112: case 115 ... 127: case 128 ... 130: *band = NL80211_BAND_5GHZ; return true; case 131 ... 135: case 137: *band = NL80211_BAND_6GHZ; return true; case 81: case 82: case 83: case 84: *band = NL80211_BAND_2GHZ; return true; case 180: *band = NL80211_BAND_60GHZ; return true; } return false; } EXPORT_SYMBOL(ieee80211_operating_class_to_band); bool ieee80211_operating_class_to_chandef(u8 operating_class, struct ieee80211_channel *chan, struct cfg80211_chan_def *chandef) { u32 control_freq, offset = 0; enum nl80211_band band; if (!ieee80211_operating_class_to_band(operating_class, &band) || !chan || band != chan->band) return false; control_freq = chan->center_freq; chandef->chan = chan; if (control_freq >= 5955) offset = control_freq - 5955; else if (control_freq >= 5745) offset = control_freq - 5745; else if (control_freq >= 5180) offset = control_freq - 5180; offset /= 20; switch (operating_class) { case 81: /* 2 GHz band; 20 MHz; channels 1..13 */ case 82: /* 2 GHz band; 20 MHz; channel 14 */ case 115: /* 5 GHz band; 20 MHz; channels 36,40,44,48 */ case 118: /* 5 GHz band; 20 MHz; channels 52,56,60,64 */ case 121: /* 5 GHz band; 20 MHz; channels 100..144 */ case 124: /* 5 GHz band; 20 MHz; channels 149,153,157,161 */ case 125: /* 5 GHz band; 20 MHz; channels 149..177 */ case 131: /* 6 GHz band; 20 MHz; channels 1..233*/ case 136: /* 6 GHz band; 20 MHz; channel 2 */ chandef->center_freq1 = control_freq; chandef->width = NL80211_CHAN_WIDTH_20; return true; case 83: /* 2 GHz band; 40 MHz; channels 1..9 */ case 116: /* 5 GHz band; 40 MHz; channels 36,44 */ case 119: /* 5 GHz band; 40 MHz; channels 52,60 */ case 122: /* 5 GHz band; 40 MHz; channels 100,108,116,124,132,140 */ case 126: /* 5 GHz band; 40 MHz; channels 149,157,165,173 */ chandef->center_freq1 = control_freq + 10; chandef->width = NL80211_CHAN_WIDTH_40; return true; case 84: /* 2 GHz band; 40 MHz; channels 5..13 */ case 117: /* 5 GHz band; 40 MHz; channels 40,48 */ case 120: /* 5 GHz band; 40 MHz; channels 56,64 */ case 123: /* 5 GHz band; 40 MHz; channels 104,112,120,128,136,144 */ case 127: /* 5 GHz band; 40 MHz; channels 153,161,169,177 */ chandef->center_freq1 = control_freq - 10; chandef->width = NL80211_CHAN_WIDTH_40; return true; case 132: /* 6 GHz band; 40 MHz; channels 1,5,..,229*/ chandef->center_freq1 = control_freq + 10 - (offset & 1) * 20; chandef->width = NL80211_CHAN_WIDTH_40; return true; case 128: /* 5 GHz band; 80 MHz; channels 36..64,100..144,149..177 */ case 133: /* 6 GHz band; 80 MHz; channels 1,5,..,229 */ chandef->center_freq1 = control_freq + 30 - (offset & 3) * 20; chandef->width = NL80211_CHAN_WIDTH_80; return true; case 129: /* 5 GHz band; 160 MHz; channels 36..64,100..144,149..177 */ case 134: /* 6 GHz band; 160 MHz; channels 1,5,..,229 */ chandef->center_freq1 = control_freq + 70 - (offset & 7) * 20; chandef->width = NL80211_CHAN_WIDTH_160; return true; case 130: /* 5 GHz band; 80+80 MHz; channels 36..64,100..144,149..177 */ case 135: /* 6 GHz band; 80+80 MHz; channels 1,5,..,229 */ /* The center_freq2 of 80+80 MHz is unknown */ case 137: /* 6 GHz band; 320 MHz; channels 1,5,..,229 */ /* 320-1 or 320-2 channelization is unknown */ default: return false; } } EXPORT_SYMBOL(ieee80211_operating_class_to_chandef); bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, u8 *op_class) { u8 vht_opclass; u32 freq = chandef->center_freq1; if (freq >= 2412 && freq <= 2472) { if (chandef->width > NL80211_CHAN_WIDTH_40) return false; /* 2.407 GHz, channels 1..13 */ if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 83; /* HT40+ */ else *op_class = 84; /* HT40- */ } else { *op_class = 81; } return true; } if (freq == 2484) { /* channel 14 is only for IEEE 802.11b */ if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) return false; *op_class = 82; /* channel 14 */ return true; } switch (chandef->width) { case NL80211_CHAN_WIDTH_80: vht_opclass = 128; break; case NL80211_CHAN_WIDTH_160: vht_opclass = 129; break; case NL80211_CHAN_WIDTH_80P80: vht_opclass = 130; break; case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_5: return false; /* unsupported for now */ default: vht_opclass = 0; break; } /* 5 GHz, channels 36..48 */ if (freq >= 5180 && freq <= 5240) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 116; else *op_class = 117; } else { *op_class = 115; } return true; } /* 5 GHz, channels 52..64 */ if (freq >= 5260 && freq <= 5320) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 119; else *op_class = 120; } else { *op_class = 118; } return true; } /* 5 GHz, channels 100..144 */ if (freq >= 5500 && freq <= 5720) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 122; else *op_class = 123; } else { *op_class = 121; } return true; } /* 5 GHz, channels 149..169 */ if (freq >= 5745 && freq <= 5845) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 126; else *op_class = 127; } else if (freq <= 5805) { *op_class = 124; } else { *op_class = 125; } return true; } /* 56.16 GHz, channel 1..4 */ if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { if (chandef->width >= NL80211_CHAN_WIDTH_40) return false; *op_class = 180; return true; } /* not supported yet */ return false; } EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); static int cfg80211_wdev_bi(struct wireless_dev *wdev) { switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: WARN_ON(wdev->valid_links); return wdev->links[0].ap.beacon_interval; case NL80211_IFTYPE_MESH_POINT: return wdev->u.mesh.beacon_interval; case NL80211_IFTYPE_ADHOC: return wdev->u.ibss.beacon_interval; default: break; } return 0; } static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, u32 *beacon_int_gcd, bool *beacon_int_different, int radio_idx) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; *beacon_int_gcd = 0; *beacon_int_different = false; rdev = wiphy_to_rdev(wiphy); list_for_each_entry(wdev, &wiphy->wdev_list, list) { int wdev_bi; /* this feature isn't supported with MLO */ if (wdev->valid_links) continue; /* skip wdevs not active on the given wiphy radio */ if (radio_idx >= 0 && !(rdev_get_radio_mask(rdev, wdev->netdev) & BIT(radio_idx))) continue; wdev_bi = cfg80211_wdev_bi(wdev); if (!wdev_bi) continue; if (!*beacon_int_gcd) { *beacon_int_gcd = wdev_bi; continue; } if (wdev_bi == *beacon_int_gcd) continue; *beacon_int_different = true; *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); } if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { if (*beacon_int_gcd) *beacon_int_different = true; *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); } } int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int) { /* * This is just a basic pre-condition check; if interface combinations * are possible the driver must already be checking those with a call * to cfg80211_check_combinations(), in which case we'll validate more * through the cfg80211_calculate_bi_data() call and code in * cfg80211_iter_combinations(). */ if (beacon_int < 10 || beacon_int > 10000) return -EINVAL; return 0; } int cfg80211_iter_combinations(struct wiphy *wiphy, struct iface_combination_params *params, void (*iter)(const struct ieee80211_iface_combination *c, void *data), void *data) { const struct wiphy_radio *radio = NULL; const struct ieee80211_iface_combination *c, *cs; const struct ieee80211_regdomain *regdom; enum nl80211_dfs_regions region = 0; int i, j, n, iftype; int num_interfaces = 0; u32 used_iftypes = 0; u32 beacon_int_gcd; bool beacon_int_different; if (params->radio_idx >= 0) radio = &wiphy->radio[params->radio_idx]; /* * This is a bit strange, since the iteration used to rely only on * the data given by the driver, but here it now relies on context, * in form of the currently operating interfaces. * This is OK for all current users, and saves us from having to * push the GCD calculations into all the drivers. * In the future, this should probably rely more on data that's in * cfg80211 already - the only thing not would appear to be any new * interfaces (while being brought up) and channel/radar data. */ cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, &beacon_int_gcd, &beacon_int_different, params->radio_idx); if (params->radar_detect) { rcu_read_lock(); regdom = rcu_dereference(cfg80211_regdomain); if (regdom) region = regdom->dfs_region; rcu_read_unlock(); } for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { num_interfaces += params->iftype_num[iftype]; if (params->iftype_num[iftype] > 0 && !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) used_iftypes |= BIT(iftype); } if (radio) { cs = radio->iface_combinations; n = radio->n_iface_combinations; } else { cs = wiphy->iface_combinations; n = wiphy->n_iface_combinations; } for (i = 0; i < n; i++) { struct ieee80211_iface_limit *limits; u32 all_iftypes = 0; c = &cs[i]; if (num_interfaces > c->max_interfaces) continue; if (params->num_different_channels > c->num_different_channels) continue; limits = kmemdup_array(c->limits, c->n_limits, sizeof(*limits), GFP_KERNEL); if (!limits) return -ENOMEM; for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) continue; for (j = 0; j < c->n_limits; j++) { all_iftypes |= limits[j].types; if (!(limits[j].types & BIT(iftype))) continue; if (limits[j].max < params->iftype_num[iftype]) goto cont; limits[j].max -= params->iftype_num[iftype]; } } if (params->radar_detect != (c->radar_detect_widths & params->radar_detect)) goto cont; if (params->radar_detect && c->radar_detect_regions && !(c->radar_detect_regions & BIT(region))) goto cont; /* Finally check that all iftypes that we're currently * using are actually part of this combination. If they * aren't then we can't use this combination and have * to continue to the next. */ if ((all_iftypes & used_iftypes) != used_iftypes) goto cont; if (beacon_int_gcd) { if (c->beacon_int_min_gcd && beacon_int_gcd < c->beacon_int_min_gcd) goto cont; if (!c->beacon_int_min_gcd && beacon_int_different) goto cont; } /* This combination covered all interface types and * supported the requested numbers, so we're good. */ (*iter)(c, data); cont: kfree(limits); } return 0; } EXPORT_SYMBOL(cfg80211_iter_combinations); static void cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, void *data) { int *num = data; (*num)++; } int cfg80211_check_combinations(struct wiphy *wiphy, struct iface_combination_params *params) { int err, num = 0; err = cfg80211_iter_combinations(wiphy, params, cfg80211_iter_sum_ifcombs, &num); if (err) return err; if (num == 0) return -EBUSY; return 0; } EXPORT_SYMBOL(cfg80211_check_combinations); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask) { int i, j; if (!sband) return -EINVAL; if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) return -EINVAL; *mask = 0; for (i = 0; i < n_rates; i++) { int rate = (rates[i] & 0x7f) * 5; bool found = false; for (j = 0; j < sband->n_bitrates; j++) { if (sband->bitrates[j].bitrate == rate) { found = true; *mask |= BIT(j); break; } } if (!found) return -EINVAL; } /* * mask must have at least one bit set here since we * didn't accept a 0-length rates array nor allowed * entries in the array that didn't exist */ return 0; } unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) { enum nl80211_band band; unsigned int n_channels = 0; for (band = 0; band < NUM_NL80211_BANDS; band++) if (wiphy->bands[band]) n_channels += wiphy->bands[band]->n_channels; return n_channels; } EXPORT_SYMBOL(ieee80211_get_num_supported_channels); int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, struct station_info *sinfo) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; wdev = dev->ieee80211_ptr; if (!wdev) return -EOPNOTSUPP; rdev = wiphy_to_rdev(wdev->wiphy); if (!rdev->ops->get_station) return -EOPNOTSUPP; memset(sinfo, 0, sizeof(*sinfo)); guard(wiphy)(&rdev->wiphy); return rdev_get_station(rdev, dev, mac_addr, sinfo); } EXPORT_SYMBOL(cfg80211_get_station); void cfg80211_free_nan_func(struct cfg80211_nan_func *f) { int i; if (!f) return; kfree(f->serv_spec_info); kfree(f->srf_bf); kfree(f->srf_macs); for (i = 0; i < f->num_rx_filters; i++) kfree(f->rx_filters[i].filter); for (i = 0; i < f->num_tx_filters; i++) kfree(f->tx_filters[i].filter); kfree(f->rx_filters); kfree(f->tx_filters); kfree(f); } EXPORT_SYMBOL(cfg80211_free_nan_func); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz) { u32 start_freq_khz, end_freq_khz; start_freq_khz = center_freq_khz - (bw_khz / 2); end_freq_khz = center_freq_khz + (bw_khz / 2); if (start_freq_khz >= freq_range->start_freq_khz && end_freq_khz <= freq_range->end_freq_khz) return true; return false; } int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) { sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, sizeof(*(sinfo->pertid)), gfp); if (!sinfo->pertid) return -ENOMEM; return 0; } EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ const unsigned char rfc1042_header[] __aligned(2) = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; EXPORT_SYMBOL(rfc1042_header); /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ const unsigned char bridge_tunnel_header[] __aligned(2) = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; EXPORT_SYMBOL(bridge_tunnel_header); /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ struct iapp_layer2_update { u8 da[ETH_ALEN]; /* broadcast */ u8 sa[ETH_ALEN]; /* STA addr */ __be16 len; /* 6 */ u8 dsap; /* 0 */ u8 ssap; /* 0 */ u8 control; u8 xid_info[3]; } __packed; void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) { struct iapp_layer2_update *msg; struct sk_buff *skb; /* Send Level 2 Update Frame to update forwarding tables in layer 2 * bridge devices */ skb = dev_alloc_skb(sizeof(*msg)); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ eth_broadcast_addr(msg->da); ether_addr_copy(msg->sa, addr); msg->len = htons(6); msg->dsap = 0; msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ msg->control = 0xaf; /* XID response lsb.1111F101. * F=0 (no poll command; unsolicited frame) */ msg->xid_info[0] = 0x81; /* XID format identifier */ msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } EXPORT_SYMBOL(cfg80211_send_layer2_update); int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, enum ieee80211_vht_chanwidth bw, int mcs, bool ext_nss_bw_capable, unsigned int max_vht_nss) { u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); int ext_nss_bw; int supp_width; int i, mcs_encoding; if (map == 0xffff) return 0; if (WARN_ON(mcs > 9 || max_vht_nss > 8)) return 0; if (mcs <= 7) mcs_encoding = 0; else if (mcs == 8) mcs_encoding = 1; else mcs_encoding = 2; if (!max_vht_nss) { /* find max_vht_nss for the given MCS */ for (i = 7; i >= 0; i--) { int supp = (map >> (2 * i)) & 3; if (supp == 3) continue; if (supp >= mcs_encoding) { max_vht_nss = i + 1; break; } } } if (!(cap->supp_mcs.tx_mcs_map & cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) return max_vht_nss; ext_nss_bw = le32_get_bits(cap->vht_cap_info, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); supp_width = le32_get_bits(cap->vht_cap_info, IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); /* if not capable, treat ext_nss_bw as 0 */ if (!ext_nss_bw_capable) ext_nss_bw = 0; /* This is invalid */ if (supp_width == 3) return 0; /* This is an invalid combination so pretend nothing is supported */ if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) return 0; /* * Cover all the special cases according to IEEE 802.11-2016 * Table 9-250. All other cases are either factor of 1 or not * valid/supported. */ switch (bw) { case IEEE80211_VHT_CHANWIDTH_USE_HT: case IEEE80211_VHT_CHANWIDTH_80MHZ: if ((supp_width == 1 || supp_width == 2) && ext_nss_bw == 3) return 2 * max_vht_nss; break; case IEEE80211_VHT_CHANWIDTH_160MHZ: if (supp_width == 0 && (ext_nss_bw == 1 || ext_nss_bw == 2)) return max_vht_nss / 2; if (supp_width == 0 && ext_nss_bw == 3) return (3 * max_vht_nss) / 4; if (supp_width == 1 && ext_nss_bw == 3) return 2 * max_vht_nss; break; case IEEE80211_VHT_CHANWIDTH_80P80MHZ: if (supp_width == 0 && ext_nss_bw == 1) return 0; /* not possible */ if (supp_width == 0 && ext_nss_bw == 2) return max_vht_nss / 2; if (supp_width == 0 && ext_nss_bw == 3) return (3 * max_vht_nss) / 4; if (supp_width == 1 && ext_nss_bw == 0) return 0; /* not possible */ if (supp_width == 1 && ext_nss_bw == 1) return max_vht_nss / 2; if (supp_width == 1 && ext_nss_bw == 2) return (3 * max_vht_nss) / 4; break; } /* not covered or invalid combination received */ return max_vht_nss; } EXPORT_SYMBOL(ieee80211_get_vht_max_nss); bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, bool is_4addr, u8 check_swif) { bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; switch (check_swif) { case 0: if (is_vlan && is_4addr) return wiphy->flags & WIPHY_FLAG_4ADDR_AP; return wiphy->interface_modes & BIT(iftype); case 1: if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) return wiphy->flags & WIPHY_FLAG_4ADDR_AP; return wiphy->software_iftypes & BIT(iftype); default: break; } return false; } EXPORT_SYMBOL(cfg80211_iftype_allowed); void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); lockdep_assert_wiphy(wdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); break; default: /* per-link not relevant */ break; } rdev_del_intf_link(rdev, wdev, link_id); wdev->valid_links &= ~BIT(link_id); eth_zero_addr(wdev->links[link_id].addr); } void cfg80211_remove_links(struct wireless_dev *wdev) { unsigned int link_id; /* * links are controlled by upper layers (userspace/cfg) * only for AP mode, so only remove them here for AP */ if (wdev->iftype != NL80211_IFTYPE_AP) return; if (wdev->valid_links) { for_each_valid_link(wdev, link_id) cfg80211_remove_link(wdev, link_id); } } int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev) { cfg80211_remove_links(wdev); return rdev_del_virtual_intf(rdev, wdev); } const struct wiphy_iftype_ext_capab * cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) { int i; for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { if (wiphy->iftype_ext_capab[i].iftype == type) return &wiphy->iftype_ext_capab[i]; } return NULL; } EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); static bool ieee80211_radio_freq_range_valid(const struct wiphy_radio *radio, u32 freq, u32 width) { const struct wiphy_radio_freq_range *r; int i; for (i = 0; i < radio->n_freq_range; i++) { r = &radio->freq_range[i]; if (freq - width / 2 >= r->start_freq && freq + width / 2 <= r->end_freq) return true; } return false; } bool cfg80211_radio_chandef_valid(const struct wiphy_radio *radio, const struct cfg80211_chan_def *chandef) { u32 freq, width; freq = ieee80211_chandef_to_khz(chandef); width = nl80211_chan_width_to_mhz(chandef->width); if (!ieee80211_radio_freq_range_valid(radio, freq, width)) return false; freq = MHZ_TO_KHZ(chandef->center_freq2); if (freq && !ieee80211_radio_freq_range_valid(radio, freq, width)) return false; return true; } EXPORT_SYMBOL(cfg80211_radio_chandef_valid); bool cfg80211_wdev_channel_allowed(struct wireless_dev *wdev, struct ieee80211_channel *chan) { struct wiphy *wiphy = wdev->wiphy; const struct wiphy_radio *radio; struct cfg80211_chan_def chandef; u32 radio_mask; int i; radio_mask = wdev->radio_mask; if (!wiphy->n_radio || radio_mask == BIT(wiphy->n_radio) - 1) return true; cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20); for (i = 0; i < wiphy->n_radio; i++) { if (!(radio_mask & BIT(i))) continue; radio = &wiphy->radio[i]; if (!cfg80211_radio_chandef_valid(radio, &chandef)) continue; return true; } return false; } EXPORT_SYMBOL(cfg80211_wdev_channel_allowed);