// SPDX-License-Identifier: GPL-2.0 //! Implementation of [`Box`]. #[allow(unused_imports)] // Used in doc comments. use super::allocator::{KVmalloc, Kmalloc, Vmalloc}; use super::{AllocError, Allocator, Flags}; use core::alloc::Layout; use core::fmt; use core::marker::PhantomData; use core::mem::ManuallyDrop; use core::mem::MaybeUninit; use core::ops::{Deref, DerefMut}; use core::pin::Pin; use core::ptr::NonNull; use core::result::Result; use crate::init::{InPlaceInit, InPlaceWrite, Init, PinInit}; use crate::types::ForeignOwnable; /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. /// /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions /// that may allocate memory are fallible. /// /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). /// /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. /// /// # Examples /// /// ``` /// let b = KBox::::new(24_u64, GFP_KERNEL)?; /// /// assert_eq!(*b, 24_u64); /// # Ok::<(), Error>(()) /// ``` /// /// ``` /// # use kernel::bindings; /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; /// struct Huge([u8; SIZE]); /// /// assert!(KBox::::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); /// ``` /// /// ``` /// # use kernel::bindings; /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; /// struct Huge([u8; SIZE]); /// /// assert!(KVBox::::new_uninit(GFP_KERNEL).is_ok()); /// ``` /// /// # Invariants /// /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for /// zero-sized types, is a dangling, well aligned pointer. #[repr(transparent)] pub struct Box(NonNull, PhantomData); /// Type alias for [`Box`] with a [`Kmalloc`] allocator. /// /// # Examples /// /// ``` /// let b = KBox::new(24_u64, GFP_KERNEL)?; /// /// assert_eq!(*b, 24_u64); /// # Ok::<(), Error>(()) /// ``` pub type KBox = Box; /// Type alias for [`Box`] with a [`Vmalloc`] allocator. /// /// # Examples /// /// ``` /// let b = VBox::new(24_u64, GFP_KERNEL)?; /// /// assert_eq!(*b, 24_u64); /// # Ok::<(), Error>(()) /// ``` pub type VBox = Box; /// Type alias for [`Box`] with a [`KVmalloc`] allocator. /// /// # Examples /// /// ``` /// let b = KVBox::new(24_u64, GFP_KERNEL)?; /// /// assert_eq!(*b, 24_u64); /// # Ok::<(), Error>(()) /// ``` pub type KVBox = Box; // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. unsafe impl Send for Box where T: Send + ?Sized, A: Allocator, { } // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. unsafe impl Sync for Box where T: Sync + ?Sized, A: Allocator, { } impl Box where T: ?Sized, A: Allocator, { /// Creates a new `Box` from a raw pointer. /// /// # Safety /// /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the /// `Box`. /// /// For ZSTs, `raw` must be a dangling, well aligned pointer. #[inline] pub const unsafe fn from_raw(raw: *mut T) -> Self { // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) } /// Consumes the `Box` and returns a raw pointer. /// /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the /// allocation, if any. /// /// # Examples /// /// ``` /// let x = KBox::new(24, GFP_KERNEL)?; /// let ptr = KBox::into_raw(x); /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. /// let x = unsafe { KBox::from_raw(ptr) }; /// /// assert_eq!(*x, 24); /// # Ok::<(), Error>(()) /// ``` #[inline] pub fn into_raw(b: Self) -> *mut T { ManuallyDrop::new(b).0.as_ptr() } /// Consumes and leaks the `Box` and returns a mutable reference. /// /// See [`Box::into_raw`] for more details. #[inline] pub fn leak<'a>(b: Self) -> &'a mut T { // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer // which points to an initialized instance of `T`. unsafe { &mut *Box::into_raw(b) } } } impl Box, A> where A: Allocator, { /// Converts a `Box, A>` to a `Box`. /// /// It is undefined behavior to call this function while the value inside of `b` is not yet /// fully initialized. /// /// # Safety /// /// Callers must ensure that the value inside of `b` is in an initialized state. pub unsafe fn assume_init(self) -> Box { let raw = Self::into_raw(self); // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements // of this function, the value inside the `Box` is in an initialized state. Hence, it is // safe to reconstruct the `Box` as `Box`. unsafe { Box::from_raw(raw.cast()) } } /// Writes the value and converts to `Box`. pub fn write(mut self, value: T) -> Box { (*self).write(value); // SAFETY: We've just initialized `b`'s value. unsafe { self.assume_init() } } } impl Box where A: Allocator, { /// Creates a new `Box` and initializes its contents with `x`. /// /// New memory is allocated with `A`. The allocation may fail, in which case an error is /// returned. For ZSTs no memory is allocated. pub fn new(x: T, flags: Flags) -> Result { let b = Self::new_uninit(flags)?; Ok(Box::write(b, x)) } /// Creates a new `Box` with uninitialized contents. /// /// New memory is allocated with `A`. The allocation may fail, in which case an error is /// returned. For ZSTs no memory is allocated. /// /// # Examples /// /// ``` /// let b = KBox::::new_uninit(GFP_KERNEL)?; /// let b = KBox::write(b, 24); /// /// assert_eq!(*b, 24_u64); /// # Ok::<(), Error>(()) /// ``` pub fn new_uninit(flags: Flags) -> Result, A>, AllocError> { let layout = Layout::new::>(); let ptr = A::alloc(layout, flags)?; // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, // which is sufficient in size and alignment for storing a `T`. Ok(Box(ptr.cast(), PhantomData)) } /// Constructs a new `Pin>`. If `T` does not implement [`Unpin`], then `x` will be /// pinned in memory and can't be moved. #[inline] pub fn pin(x: T, flags: Flags) -> Result>, AllocError> where A: 'static, { Ok(Self::new(x, flags)?.into()) } /// Forgets the contents (does not run the destructor), but keeps the allocation. fn forget_contents(this: Self) -> Box, A> { let ptr = Self::into_raw(this); // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. unsafe { Box::from_raw(ptr.cast()) } } /// Drops the contents, but keeps the allocation. /// /// # Examples /// /// ``` /// let value = KBox::new([0; 32], GFP_KERNEL)?; /// assert_eq!(*value, [0; 32]); /// let value = KBox::drop_contents(value); /// // Now we can re-use `value`: /// let value = KBox::write(value, [1; 32]); /// assert_eq!(*value, [1; 32]); /// # Ok::<(), Error>(()) /// ``` pub fn drop_contents(this: Self) -> Box, A> { let ptr = this.0.as_ptr(); // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the // value stored in `this` again. unsafe { core::ptr::drop_in_place(ptr) }; Self::forget_contents(this) } /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. pub fn into_inner(b: Self) -> T { // SAFETY: By the type invariant `&*b` is valid for `read`. let value = unsafe { core::ptr::read(&*b) }; let _ = Self::forget_contents(b); value } } impl From> for Pin> where T: ?Sized, A: Allocator, { /// Converts a `Box` into a `Pin>`. If `T` does not implement [`Unpin`], then /// `*b` will be pinned in memory and can't be moved. /// /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. fn from(b: Box) -> Self { // SAFETY: The value wrapped inside a `Pin>` cannot be moved or replaced as long // as `T` does not implement `Unpin`. unsafe { Pin::new_unchecked(b) } } } impl InPlaceWrite for Box, A> where A: Allocator + 'static, { type Initialized = Box; fn write_init(mut self, init: impl Init) -> Result { let slot = self.as_mut_ptr(); // SAFETY: When init errors/panics, slot will get deallocated but not dropped, // slot is valid. unsafe { init.__init(slot)? }; // SAFETY: All fields have been initialized. Ok(unsafe { Box::assume_init(self) }) } fn write_pin_init(mut self, init: impl PinInit) -> Result, E> { let slot = self.as_mut_ptr(); // SAFETY: When init errors/panics, slot will get deallocated but not dropped, // slot is valid and will not be moved, because we pin it later. unsafe { init.__pinned_init(slot)? }; // SAFETY: All fields have been initialized. Ok(unsafe { Box::assume_init(self) }.into()) } } impl InPlaceInit for Box where A: Allocator + 'static, { type PinnedSelf = Pin; #[inline] fn try_pin_init(init: impl PinInit, flags: Flags) -> Result, E> where E: From, { Box::<_, A>::new_uninit(flags)?.write_pin_init(init) } #[inline] fn try_init(init: impl Init, flags: Flags) -> Result where E: From, { Box::<_, A>::new_uninit(flags)?.write_init(init) } } impl ForeignOwnable for Box where A: Allocator, { type Borrowed<'a> = &'a T; fn into_foreign(self) -> *const crate::ffi::c_void { Box::into_raw(self) as _ } unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self { // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous // call to `Self::into_foreign`. unsafe { Box::from_raw(ptr as _) } } unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> &'a T { // SAFETY: The safety requirements of this method ensure that the object remains alive and // immutable for the duration of 'a. unsafe { &*ptr.cast() } } } impl ForeignOwnable for Pin> where A: Allocator, { type Borrowed<'a> = Pin<&'a T>; fn into_foreign(self) -> *const crate::ffi::c_void { // SAFETY: We are still treating the box as pinned. Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }) as _ } unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self { // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous // call to `Self::into_foreign`. unsafe { Pin::new_unchecked(Box::from_raw(ptr as _)) } } unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> Pin<&'a T> { // SAFETY: The safety requirements for this function ensure that the object is still alive, // so it is safe to dereference the raw pointer. // The safety requirements of `from_foreign` also ensure that the object remains alive for // the lifetime of the returned value. let r = unsafe { &*ptr.cast() }; // SAFETY: This pointer originates from a `Pin>`. unsafe { Pin::new_unchecked(r) } } } impl Deref for Box where T: ?Sized, A: Allocator, { type Target = T; fn deref(&self) -> &T { // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized // instance of `T`. unsafe { self.0.as_ref() } } } impl DerefMut for Box where T: ?Sized, A: Allocator, { fn deref_mut(&mut self) -> &mut T { // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized // instance of `T`. unsafe { self.0.as_mut() } } } impl fmt::Debug for Box where T: ?Sized + fmt::Debug, A: Allocator, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl Drop for Box where T: ?Sized, A: Allocator, { fn drop(&mut self) { let layout = Layout::for_value::(self); // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. unsafe { core::ptr::drop_in_place::(self.deref_mut()) }; // SAFETY: // - `self.0` was previously allocated with `A`. // - `layout` is equal to the `Layout´ `self.0` was allocated with. unsafe { A::free(self.0.cast(), layout) }; } }