// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2021 sigma star gmbh */ #include #include #include #include #include #include #include #include #include #include #include #include #define DCP_BLOB_VERSION 1 #define DCP_BLOB_AUTHLEN 16 /** * DOC: dcp blob format * * The Data Co-Processor (DCP) provides hardware-bound AES keys using its * AES encryption engine only. It does not provide direct key sealing/unsealing. * To make DCP hardware encryption keys usable as trust source, we define * our own custom format that uses a hardware-bound key to secure the sealing * key stored in the key blob. * * Whenever a new trusted key using DCP is generated, we generate a random 128-bit * blob encryption key (BEK) and 128-bit nonce. The BEK and nonce are used to * encrypt the trusted key payload using AES-128-GCM. * * The BEK itself is encrypted using the hardware-bound key using the DCP's AES * encryption engine with AES-128-ECB. The encrypted BEK, generated nonce, * BEK-encrypted payload and authentication tag make up the blob format together * with a version number, payload length and authentication tag. */ /** * struct dcp_blob_fmt - DCP BLOB format. * * @fmt_version: Format version, currently being %1. * @blob_key: Random AES 128 key which is used to encrypt @payload, * @blob_key itself is encrypted with OTP or UNIQUE device key in * AES-128-ECB mode by DCP. * @nonce: Random nonce used for @payload encryption. * @payload_len: Length of the plain text @payload. * @payload: The payload itself, encrypted using AES-128-GCM and @blob_key, * GCM auth tag of size DCP_BLOB_AUTHLEN is attached at the end of it. * * The total size of a DCP BLOB is sizeof(struct dcp_blob_fmt) + @payload_len + * DCP_BLOB_AUTHLEN. */ struct dcp_blob_fmt { __u8 fmt_version; __u8 blob_key[AES_KEYSIZE_128]; __u8 nonce[AES_KEYSIZE_128]; __le32 payload_len; __u8 payload[]; } __packed; static bool use_otp_key; module_param_named(dcp_use_otp_key, use_otp_key, bool, 0); MODULE_PARM_DESC(dcp_use_otp_key, "Use OTP instead of UNIQUE key for sealing"); static bool skip_zk_test; module_param_named(dcp_skip_zk_test, skip_zk_test, bool, 0); MODULE_PARM_DESC(dcp_skip_zk_test, "Don't test whether device keys are zero'ed"); static unsigned int calc_blob_len(unsigned int payload_len) { return sizeof(struct dcp_blob_fmt) + payload_len + DCP_BLOB_AUTHLEN; } static int do_dcp_crypto(u8 *in, u8 *out, bool do_encrypt) { struct skcipher_request *req = NULL; struct scatterlist src_sg, dst_sg; struct crypto_skcipher *tfm; u8 paes_key[DCP_PAES_KEYSIZE]; DECLARE_CRYPTO_WAIT(wait); int res = 0; if (use_otp_key) paes_key[0] = DCP_PAES_KEY_OTP; else paes_key[0] = DCP_PAES_KEY_UNIQUE; tfm = crypto_alloc_skcipher("ecb-paes-dcp", CRYPTO_ALG_INTERNAL, CRYPTO_ALG_INTERNAL); if (IS_ERR(tfm)) { res = PTR_ERR(tfm); tfm = NULL; goto out; } req = skcipher_request_alloc(tfm, GFP_NOFS); if (!req) { res = -ENOMEM; goto out; } skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); res = crypto_skcipher_setkey(tfm, paes_key, sizeof(paes_key)); if (res < 0) goto out; sg_init_one(&src_sg, in, AES_KEYSIZE_128); sg_init_one(&dst_sg, out, AES_KEYSIZE_128); skcipher_request_set_crypt(req, &src_sg, &dst_sg, AES_KEYSIZE_128, NULL); if (do_encrypt) res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); else res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); out: skcipher_request_free(req); crypto_free_skcipher(tfm); return res; } static int do_aead_crypto(u8 *in, u8 *out, size_t len, u8 *key, u8 *nonce, bool do_encrypt) { struct aead_request *aead_req = NULL; struct scatterlist src_sg, dst_sg; struct crypto_aead *aead; int ret; DECLARE_CRYPTO_WAIT(wait); aead = crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(aead)) { ret = PTR_ERR(aead); goto out; } ret = crypto_aead_setauthsize(aead, DCP_BLOB_AUTHLEN); if (ret < 0) { pr_err("Can't set crypto auth tag len: %d\n", ret); goto free_aead; } aead_req = aead_request_alloc(aead, GFP_KERNEL); if (!aead_req) { ret = -ENOMEM; goto free_aead; } sg_init_one(&src_sg, in, len); if (do_encrypt) { /* * If we encrypt our buffer has extra space for the auth tag. */ sg_init_one(&dst_sg, out, len + DCP_BLOB_AUTHLEN); } else { sg_init_one(&dst_sg, out, len); } aead_request_set_crypt(aead_req, &src_sg, &dst_sg, len, nonce); aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); aead_request_set_ad(aead_req, 0); if (crypto_aead_setkey(aead, key, AES_KEYSIZE_128)) { pr_err("Can't set crypto AEAD key\n"); ret = -EINVAL; goto free_req; } if (do_encrypt) ret = crypto_wait_req(crypto_aead_encrypt(aead_req), &wait); else ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &wait); free_req: aead_request_free(aead_req); free_aead: crypto_free_aead(aead); out: return ret; } static int decrypt_blob_key(u8 *encrypted_key, u8 *plain_key) { return do_dcp_crypto(encrypted_key, plain_key, false); } static int encrypt_blob_key(u8 *plain_key, u8 *encrypted_key) { return do_dcp_crypto(plain_key, encrypted_key, true); } static int trusted_dcp_seal(struct trusted_key_payload *p, char *datablob) { struct dcp_blob_fmt *b = (struct dcp_blob_fmt *)p->blob; int blen, ret; u8 plain_blob_key[AES_KEYSIZE_128]; blen = calc_blob_len(p->key_len); if (blen > MAX_BLOB_SIZE) return -E2BIG; b->fmt_version = DCP_BLOB_VERSION; get_random_bytes(b->nonce, AES_KEYSIZE_128); get_random_bytes(plain_blob_key, AES_KEYSIZE_128); ret = do_aead_crypto(p->key, b->payload, p->key_len, plain_blob_key, b->nonce, true); if (ret) { pr_err("Unable to encrypt blob payload: %i\n", ret); goto out; } ret = encrypt_blob_key(plain_blob_key, b->blob_key); if (ret) { pr_err("Unable to encrypt blob key: %i\n", ret); goto out; } put_unaligned_le32(p->key_len, &b->payload_len); p->blob_len = blen; ret = 0; out: memzero_explicit(plain_blob_key, sizeof(plain_blob_key)); return ret; } static int trusted_dcp_unseal(struct trusted_key_payload *p, char *datablob) { struct dcp_blob_fmt *b = (struct dcp_blob_fmt *)p->blob; int blen, ret; u8 plain_blob_key[AES_KEYSIZE_128]; if (b->fmt_version != DCP_BLOB_VERSION) { pr_err("DCP blob has bad version: %i, expected %i\n", b->fmt_version, DCP_BLOB_VERSION); ret = -EINVAL; goto out; } p->key_len = le32_to_cpu(b->payload_len); blen = calc_blob_len(p->key_len); if (blen != p->blob_len) { pr_err("DCP blob has bad length: %i != %i\n", blen, p->blob_len); ret = -EINVAL; goto out; } ret = decrypt_blob_key(b->blob_key, plain_blob_key); if (ret) { pr_err("Unable to decrypt blob key: %i\n", ret); goto out; } ret = do_aead_crypto(b->payload, p->key, p->key_len + DCP_BLOB_AUTHLEN, plain_blob_key, b->nonce, false); if (ret) { pr_err("Unwrap of DCP payload failed: %i\n", ret); goto out; } ret = 0; out: memzero_explicit(plain_blob_key, sizeof(plain_blob_key)); return ret; } static int test_for_zero_key(void) { /* * Encrypting a plaintext of all 0x55 bytes will yield * this ciphertext in case the DCP test key is used. */ static const u8 bad[] = {0x9a, 0xda, 0xe0, 0x54, 0xf6, 0x3d, 0xfa, 0xff, 0x5e, 0xa1, 0x8e, 0x45, 0xed, 0xf6, 0xea, 0x6f}; void *buf = NULL; int ret = 0; if (skip_zk_test) goto out; buf = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL); if (!buf) { ret = -ENOMEM; goto out; } memset(buf, 0x55, AES_BLOCK_SIZE); ret = do_dcp_crypto(buf, buf, true); if (ret) goto out; if (memcmp(buf, bad, AES_BLOCK_SIZE) == 0) { pr_warn("Device neither in secure nor trusted mode!\n"); ret = -EINVAL; } out: kfree(buf); return ret; } static int trusted_dcp_init(void) { int ret; if (use_otp_key) pr_info("Using DCP OTP key\n"); ret = test_for_zero_key(); if (ret) { pr_warn("Test for zero'ed keys failed: %i\n", ret); return -EINVAL; } return register_key_type(&key_type_trusted); } static void trusted_dcp_exit(void) { unregister_key_type(&key_type_trusted); } struct trusted_key_ops dcp_trusted_key_ops = { .exit = trusted_dcp_exit, .init = trusted_dcp_init, .seal = trusted_dcp_seal, .unseal = trusted_dcp_unseal, .migratable = 0, };