// SPDX-License-Identifier: GPL-2.0-only /* * cs35l34.c -- CS35l34 ALSA SoC audio driver * * Copyright 2016 Cirrus Logic, Inc. * * Author: Paul Handrigan */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cs35l34.h" #include "cirrus_legacy.h" #define PDN_DONE_ATTEMPTS 10 #define CS35L34_START_DELAY 50 struct cs35l34_private { struct snd_soc_component *component; struct cs35l34_platform_data pdata; struct regmap *regmap; struct regulator_bulk_data core_supplies[2]; int num_core_supplies; int mclk_int; bool tdm_mode; struct gpio_desc *reset_gpio; /* Active-low reset GPIO */ }; static const struct reg_default cs35l34_reg[] = { {CS35L34_PWRCTL1, 0x01}, {CS35L34_PWRCTL2, 0x19}, {CS35L34_PWRCTL3, 0x01}, {CS35L34_ADSP_CLK_CTL, 0x08}, {CS35L34_MCLK_CTL, 0x11}, {CS35L34_AMP_INP_DRV_CTL, 0x01}, {CS35L34_AMP_DIG_VOL_CTL, 0x12}, {CS35L34_AMP_DIG_VOL, 0x00}, {CS35L34_AMP_ANLG_GAIN_CTL, 0x0F}, {CS35L34_PROTECT_CTL, 0x06}, {CS35L34_AMP_KEEP_ALIVE_CTL, 0x04}, {CS35L34_BST_CVTR_V_CTL, 0x00}, {CS35L34_BST_PEAK_I, 0x10}, {CS35L34_BST_RAMP_CTL, 0x87}, {CS35L34_BST_CONV_COEF_1, 0x24}, {CS35L34_BST_CONV_COEF_2, 0x24}, {CS35L34_BST_CONV_SLOPE_COMP, 0x4E}, {CS35L34_BST_CONV_SW_FREQ, 0x08}, {CS35L34_CLASS_H_CTL, 0x0D}, {CS35L34_CLASS_H_HEADRM_CTL, 0x0D}, {CS35L34_CLASS_H_RELEASE_RATE, 0x08}, {CS35L34_CLASS_H_FET_DRIVE_CTL, 0x41}, {CS35L34_CLASS_H_STATUS, 0x05}, {CS35L34_VPBR_CTL, 0x0A}, {CS35L34_VPBR_VOL_CTL, 0x90}, {CS35L34_VPBR_TIMING_CTL, 0x6A}, {CS35L34_PRED_MAX_ATTEN_SPK_LOAD, 0x95}, {CS35L34_PRED_BROWNOUT_THRESH, 0x1C}, {CS35L34_PRED_BROWNOUT_VOL_CTL, 0x00}, {CS35L34_PRED_BROWNOUT_RATE_CTL, 0x10}, {CS35L34_PRED_WAIT_CTL, 0x10}, {CS35L34_PRED_ZVP_INIT_IMP_CTL, 0x08}, {CS35L34_PRED_MAN_SAFE_VPI_CTL, 0x80}, {CS35L34_VPBR_ATTEN_STATUS, 0x00}, {CS35L34_PRED_BRWNOUT_ATT_STATUS, 0x00}, {CS35L34_SPKR_MON_CTL, 0xC6}, {CS35L34_ADSP_I2S_CTL, 0x00}, {CS35L34_ADSP_TDM_CTL, 0x00}, {CS35L34_TDM_TX_CTL_1_VMON, 0x00}, {CS35L34_TDM_TX_CTL_2_IMON, 0x04}, {CS35L34_TDM_TX_CTL_3_VPMON, 0x03}, {CS35L34_TDM_TX_CTL_4_VBSTMON, 0x07}, {CS35L34_TDM_TX_CTL_5_FLAG1, 0x08}, {CS35L34_TDM_TX_CTL_6_FLAG2, 0x09}, {CS35L34_TDM_TX_SLOT_EN_1, 0x00}, {CS35L34_TDM_TX_SLOT_EN_2, 0x00}, {CS35L34_TDM_TX_SLOT_EN_3, 0x00}, {CS35L34_TDM_TX_SLOT_EN_4, 0x00}, {CS35L34_TDM_RX_CTL_1_AUDIN, 0x40}, {CS35L34_TDM_RX_CTL_3_ALIVE, 0x04}, {CS35L34_MULT_DEV_SYNCH1, 0x00}, {CS35L34_MULT_DEV_SYNCH2, 0x80}, {CS35L34_PROT_RELEASE_CTL, 0x00}, {CS35L34_DIAG_MODE_REG_LOCK, 0x00}, {CS35L34_DIAG_MODE_CTL_1, 0x00}, {CS35L34_DIAG_MODE_CTL_2, 0x00}, {CS35L34_INT_MASK_1, 0xFF}, {CS35L34_INT_MASK_2, 0xFF}, {CS35L34_INT_MASK_3, 0xFF}, {CS35L34_INT_MASK_4, 0xFF}, {CS35L34_INT_STATUS_1, 0x30}, {CS35L34_INT_STATUS_2, 0x05}, {CS35L34_INT_STATUS_3, 0x00}, {CS35L34_INT_STATUS_4, 0x00}, {CS35L34_OTP_TRIM_STATUS, 0x00}, }; static bool cs35l34_volatile_register(struct device *dev, unsigned int reg) { switch (reg) { case CS35L34_DEVID_AB: case CS35L34_DEVID_CD: case CS35L34_DEVID_E: case CS35L34_FAB_ID: case CS35L34_REV_ID: case CS35L34_INT_STATUS_1: case CS35L34_INT_STATUS_2: case CS35L34_INT_STATUS_3: case CS35L34_INT_STATUS_4: case CS35L34_CLASS_H_STATUS: case CS35L34_VPBR_ATTEN_STATUS: case CS35L34_OTP_TRIM_STATUS: return true; default: return false; } } static bool cs35l34_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS35L34_DEVID_AB: case CS35L34_DEVID_CD: case CS35L34_DEVID_E: case CS35L34_FAB_ID: case CS35L34_REV_ID: case CS35L34_PWRCTL1: case CS35L34_PWRCTL2: case CS35L34_PWRCTL3: case CS35L34_ADSP_CLK_CTL: case CS35L34_MCLK_CTL: case CS35L34_AMP_INP_DRV_CTL: case CS35L34_AMP_DIG_VOL_CTL: case CS35L34_AMP_DIG_VOL: case CS35L34_AMP_ANLG_GAIN_CTL: case CS35L34_PROTECT_CTL: case CS35L34_AMP_KEEP_ALIVE_CTL: case CS35L34_BST_CVTR_V_CTL: case CS35L34_BST_PEAK_I: case CS35L34_BST_RAMP_CTL: case CS35L34_BST_CONV_COEF_1: case CS35L34_BST_CONV_COEF_2: case CS35L34_BST_CONV_SLOPE_COMP: case CS35L34_BST_CONV_SW_FREQ: case CS35L34_CLASS_H_CTL: case CS35L34_CLASS_H_HEADRM_CTL: case CS35L34_CLASS_H_RELEASE_RATE: case CS35L34_CLASS_H_FET_DRIVE_CTL: case CS35L34_CLASS_H_STATUS: case CS35L34_VPBR_CTL: case CS35L34_VPBR_VOL_CTL: case CS35L34_VPBR_TIMING_CTL: case CS35L34_PRED_MAX_ATTEN_SPK_LOAD: case CS35L34_PRED_BROWNOUT_THRESH: case CS35L34_PRED_BROWNOUT_VOL_CTL: case CS35L34_PRED_BROWNOUT_RATE_CTL: case CS35L34_PRED_WAIT_CTL: case CS35L34_PRED_ZVP_INIT_IMP_CTL: case CS35L34_PRED_MAN_SAFE_VPI_CTL: case CS35L34_VPBR_ATTEN_STATUS: case CS35L34_PRED_BRWNOUT_ATT_STATUS: case CS35L34_SPKR_MON_CTL: case CS35L34_ADSP_I2S_CTL: case CS35L34_ADSP_TDM_CTL: case CS35L34_TDM_TX_CTL_1_VMON: case CS35L34_TDM_TX_CTL_2_IMON: case CS35L34_TDM_TX_CTL_3_VPMON: case CS35L34_TDM_TX_CTL_4_VBSTMON: case CS35L34_TDM_TX_CTL_5_FLAG1: case CS35L34_TDM_TX_CTL_6_FLAG2: case CS35L34_TDM_TX_SLOT_EN_1: case CS35L34_TDM_TX_SLOT_EN_2: case CS35L34_TDM_TX_SLOT_EN_3: case CS35L34_TDM_TX_SLOT_EN_4: case CS35L34_TDM_RX_CTL_1_AUDIN: case CS35L34_TDM_RX_CTL_3_ALIVE: case CS35L34_MULT_DEV_SYNCH1: case CS35L34_MULT_DEV_SYNCH2: case CS35L34_PROT_RELEASE_CTL: case CS35L34_DIAG_MODE_REG_LOCK: case CS35L34_DIAG_MODE_CTL_1: case CS35L34_DIAG_MODE_CTL_2: case CS35L34_INT_MASK_1: case CS35L34_INT_MASK_2: case CS35L34_INT_MASK_3: case CS35L34_INT_MASK_4: case CS35L34_INT_STATUS_1: case CS35L34_INT_STATUS_2: case CS35L34_INT_STATUS_3: case CS35L34_INT_STATUS_4: case CS35L34_OTP_TRIM_STATUS: return true; default: return false; } } static bool cs35l34_precious_register(struct device *dev, unsigned int reg) { switch (reg) { case CS35L34_INT_STATUS_1: case CS35L34_INT_STATUS_2: case CS35L34_INT_STATUS_3: case CS35L34_INT_STATUS_4: return true; default: return false; } } static int cs35l34_sdin_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct cs35l34_private *priv = snd_soc_component_get_drvdata(component); int ret; switch (event) { case SND_SOC_DAPM_PRE_PMU: if (priv->tdm_mode) regmap_update_bits(priv->regmap, CS35L34_PWRCTL3, CS35L34_PDN_TDM, 0x00); ret = regmap_update_bits(priv->regmap, CS35L34_PWRCTL1, CS35L34_PDN_ALL, 0); if (ret < 0) { dev_err(component->dev, "Cannot set Power bits %d\n", ret); return ret; } usleep_range(5000, 5100); break; case SND_SOC_DAPM_POST_PMD: if (priv->tdm_mode) { regmap_update_bits(priv->regmap, CS35L34_PWRCTL3, CS35L34_PDN_TDM, CS35L34_PDN_TDM); } ret = regmap_update_bits(priv->regmap, CS35L34_PWRCTL1, CS35L34_PDN_ALL, CS35L34_PDN_ALL); break; default: pr_err("Invalid event = 0x%x\n", event); } return 0; } static int cs35l34_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = dai->component; struct cs35l34_private *priv = snd_soc_component_get_drvdata(component); unsigned int reg, bit_pos; int slot, slot_num; if (slot_width != 8) return -EINVAL; priv->tdm_mode = true; /* scan rx_mask for aud slot */ slot = ffs(rx_mask) - 1; if (slot >= 0) snd_soc_component_update_bits(component, CS35L34_TDM_RX_CTL_1_AUDIN, CS35L34_X_LOC, slot); /* scan tx_mask: vmon(2 slots); imon (2 slots); vpmon (1 slot) * vbstmon (1 slot) */ slot = ffs(tx_mask) - 1; slot_num = 0; /* disable vpmon/vbstmon: enable later if set in tx_mask */ snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_3_VPMON, CS35L34_X_STATE | CS35L34_X_LOC, CS35L34_X_STATE | CS35L34_X_LOC); snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_4_VBSTMON, CS35L34_X_STATE | CS35L34_X_LOC, CS35L34_X_STATE | CS35L34_X_LOC); /* disconnect {vp,vbst}_mon routes: eanble later if set in tx_mask*/ while (slot >= 0) { /* configure VMON_TX_LOC */ if (slot_num == 0) snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_1_VMON, CS35L34_X_STATE | CS35L34_X_LOC, slot); /* configure IMON_TX_LOC */ if (slot_num == 4) { snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_2_IMON, CS35L34_X_STATE | CS35L34_X_LOC, slot); } /* configure VPMON_TX_LOC */ if (slot_num == 3) { snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_3_VPMON, CS35L34_X_STATE | CS35L34_X_LOC, slot); } /* configure VBSTMON_TX_LOC */ if (slot_num == 7) { snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_4_VBSTMON, CS35L34_X_STATE | CS35L34_X_LOC, slot); } /* Enable the relevant tx slot */ reg = CS35L34_TDM_TX_SLOT_EN_4 - (slot/8); bit_pos = slot - ((slot / 8) * (8)); snd_soc_component_update_bits(component, reg, 1 << bit_pos, 1 << bit_pos); tx_mask &= ~(1 << slot); slot = ffs(tx_mask) - 1; slot_num++; } return 0; } static int cs35l34_main_amp_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct cs35l34_private *priv = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: regmap_update_bits(priv->regmap, CS35L34_BST_CVTR_V_CTL, CS35L34_BST_CVTL_MASK, priv->pdata.boost_vtge); usleep_range(5000, 5100); regmap_update_bits(priv->regmap, CS35L34_PROTECT_CTL, CS35L34_MUTE, 0); break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(priv->regmap, CS35L34_BST_CVTR_V_CTL, CS35L34_BST_CVTL_MASK, 0); regmap_update_bits(priv->regmap, CS35L34_PROTECT_CTL, CS35L34_MUTE, CS35L34_MUTE); usleep_range(5000, 5100); break; default: pr_err("Invalid event = 0x%x\n", event); } return 0; } static DECLARE_TLV_DB_SCALE(dig_vol_tlv, -10200, 50, 0); static DECLARE_TLV_DB_SCALE(amp_gain_tlv, 300, 100, 0); static const struct snd_kcontrol_new cs35l34_snd_controls[] = { SOC_SINGLE_SX_TLV("Digital Volume", CS35L34_AMP_DIG_VOL, 0, 0x34, 0xE4, dig_vol_tlv), SOC_SINGLE_TLV("Amp Gain Volume", CS35L34_AMP_ANLG_GAIN_CTL, 0, 0xF, 0, amp_gain_tlv), }; static int cs35l34_mclk_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct cs35l34_private *priv = snd_soc_component_get_drvdata(component); int ret, i; unsigned int reg; switch (event) { case SND_SOC_DAPM_PRE_PMD: ret = regmap_read(priv->regmap, CS35L34_AMP_DIG_VOL_CTL, ®); if (ret != 0) { pr_err("%s regmap read failure %d\n", __func__, ret); return ret; } if (reg & CS35L34_AMP_DIGSFT) msleep(40); else usleep_range(2000, 2100); for (i = 0; i < PDN_DONE_ATTEMPTS; i++) { ret = regmap_read(priv->regmap, CS35L34_INT_STATUS_2, ®); if (ret != 0) { pr_err("%s regmap read failure %d\n", __func__, ret); return ret; } if (reg & CS35L34_PDN_DONE) break; usleep_range(5000, 5100); } if (i == PDN_DONE_ATTEMPTS) pr_err("%s Device did not power down properly\n", __func__); break; default: pr_err("Invalid event = 0x%x\n", event); break; } return 0; } static const struct snd_soc_dapm_widget cs35l34_dapm_widgets[] = { SND_SOC_DAPM_AIF_IN_E("SDIN", NULL, 0, CS35L34_PWRCTL3, 1, 1, cs35l34_sdin_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT("SDOUT", NULL, 0, CS35L34_PWRCTL3, 2, 1), SND_SOC_DAPM_SUPPLY("EXTCLK", CS35L34_PWRCTL3, 7, 1, cs35l34_mclk_event, SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_OUTPUT("SPK"), SND_SOC_DAPM_INPUT("VP"), SND_SOC_DAPM_INPUT("VPST"), SND_SOC_DAPM_INPUT("ISENSE"), SND_SOC_DAPM_INPUT("VSENSE"), SND_SOC_DAPM_ADC("VMON ADC", NULL, CS35L34_PWRCTL2, 7, 1), SND_SOC_DAPM_ADC("IMON ADC", NULL, CS35L34_PWRCTL2, 6, 1), SND_SOC_DAPM_ADC("VPMON ADC", NULL, CS35L34_PWRCTL3, 3, 1), SND_SOC_DAPM_ADC("VBSTMON ADC", NULL, CS35L34_PWRCTL3, 4, 1), SND_SOC_DAPM_ADC("CLASS H", NULL, CS35L34_PWRCTL2, 5, 1), SND_SOC_DAPM_ADC("BOOST", NULL, CS35L34_PWRCTL2, 2, 1), SND_SOC_DAPM_OUT_DRV_E("Main AMP", CS35L34_PWRCTL2, 0, 1, NULL, 0, cs35l34_main_amp_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), }; static const struct snd_soc_dapm_route cs35l34_audio_map[] = { {"SDIN", NULL, "AMP Playback"}, {"BOOST", NULL, "SDIN"}, {"CLASS H", NULL, "BOOST"}, {"Main AMP", NULL, "CLASS H"}, {"SPK", NULL, "Main AMP"}, {"VPMON ADC", NULL, "CLASS H"}, {"VBSTMON ADC", NULL, "CLASS H"}, {"SPK", NULL, "VPMON ADC"}, {"SPK", NULL, "VBSTMON ADC"}, {"IMON ADC", NULL, "ISENSE"}, {"VMON ADC", NULL, "VSENSE"}, {"SDOUT", NULL, "IMON ADC"}, {"SDOUT", NULL, "VMON ADC"}, {"AMP Capture", NULL, "SDOUT"}, {"SDIN", NULL, "EXTCLK"}, {"SDOUT", NULL, "EXTCLK"}, }; struct cs35l34_mclk_div { int mclk; int srate; u8 adsp_rate; }; static struct cs35l34_mclk_div cs35l34_mclk_coeffs[] = { /* MCLK, Sample Rate, adsp_rate */ {5644800, 11025, 0x1}, {5644800, 22050, 0x4}, {5644800, 44100, 0x7}, {6000000, 8000, 0x0}, {6000000, 11025, 0x1}, {6000000, 12000, 0x2}, {6000000, 16000, 0x3}, {6000000, 22050, 0x4}, {6000000, 24000, 0x5}, {6000000, 32000, 0x6}, {6000000, 44100, 0x7}, {6000000, 48000, 0x8}, {6144000, 8000, 0x0}, {6144000, 11025, 0x1}, {6144000, 12000, 0x2}, {6144000, 16000, 0x3}, {6144000, 22050, 0x4}, {6144000, 24000, 0x5}, {6144000, 32000, 0x6}, {6144000, 44100, 0x7}, {6144000, 48000, 0x8}, }; static int cs35l34_get_mclk_coeff(int mclk, int srate) { int i; for (i = 0; i < ARRAY_SIZE(cs35l34_mclk_coeffs); i++) { if (cs35l34_mclk_coeffs[i].mclk == mclk && cs35l34_mclk_coeffs[i].srate == srate) return i; } return -EINVAL; } static int cs35l34_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct cs35l34_private *priv = snd_soc_component_get_drvdata(component); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: regmap_update_bits(priv->regmap, CS35L34_ADSP_CLK_CTL, 0x80, 0x80); break; case SND_SOC_DAIFMT_CBS_CFS: regmap_update_bits(priv->regmap, CS35L34_ADSP_CLK_CTL, 0x80, 0x00); break; default: return -EINVAL; } return 0; } static int cs35l34_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct cs35l34_private *priv = snd_soc_component_get_drvdata(component); int srate = params_rate(params); int ret; int coeff = cs35l34_get_mclk_coeff(priv->mclk_int, srate); if (coeff < 0) { dev_err(component->dev, "ERROR: Invalid mclk %d and/or srate %d\n", priv->mclk_int, srate); return coeff; } ret = regmap_update_bits(priv->regmap, CS35L34_ADSP_CLK_CTL, CS35L34_ADSP_RATE, cs35l34_mclk_coeffs[coeff].adsp_rate); if (ret != 0) dev_err(component->dev, "Failed to set clock state %d\n", ret); return ret; } static int cs35l34_set_tristate(struct snd_soc_dai *dai, int tristate) { struct snd_soc_component *component = dai->component; if (tristate) snd_soc_component_update_bits(component, CS35L34_PWRCTL3, CS35L34_PDN_SDOUT, CS35L34_PDN_SDOUT); else snd_soc_component_update_bits(component, CS35L34_PWRCTL3, CS35L34_PDN_SDOUT, 0); return 0; } static int cs35l34_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = dai->component; struct cs35l34_private *cs35l34 = snd_soc_component_get_drvdata(component); unsigned int value; switch (freq) { case CS35L34_MCLK_5644: value = CS35L34_MCLK_RATE_5P6448; cs35l34->mclk_int = freq; break; case CS35L34_MCLK_6: value = CS35L34_MCLK_RATE_6P0000; cs35l34->mclk_int = freq; break; case CS35L34_MCLK_6144: value = CS35L34_MCLK_RATE_6P1440; cs35l34->mclk_int = freq; break; case CS35L34_MCLK_11289: value = CS35L34_MCLK_DIV | CS35L34_MCLK_RATE_5P6448; cs35l34->mclk_int = freq / 2; break; case CS35L34_MCLK_12: value = CS35L34_MCLK_DIV | CS35L34_MCLK_RATE_6P0000; cs35l34->mclk_int = freq / 2; break; case CS35L34_MCLK_12288: value = CS35L34_MCLK_DIV | CS35L34_MCLK_RATE_6P1440; cs35l34->mclk_int = freq / 2; break; default: dev_err(component->dev, "ERROR: Invalid Frequency %d\n", freq); cs35l34->mclk_int = 0; return -EINVAL; } regmap_update_bits(cs35l34->regmap, CS35L34_MCLK_CTL, CS35L34_MCLK_DIV | CS35L34_MCLK_RATE_MASK, value); return 0; } static const struct snd_soc_dai_ops cs35l34_ops = { .set_tristate = cs35l34_set_tristate, .set_fmt = cs35l34_set_dai_fmt, .hw_params = cs35l34_pcm_hw_params, .set_sysclk = cs35l34_dai_set_sysclk, .set_tdm_slot = cs35l34_set_tdm_slot, }; static struct snd_soc_dai_driver cs35l34_dai = { .name = "cs35l34", .id = 0, .playback = { .stream_name = "AMP Playback", .channels_min = 1, .channels_max = 8, .rates = CS35L34_RATES, .formats = CS35L34_FORMATS, }, .capture = { .stream_name = "AMP Capture", .channels_min = 1, .channels_max = 8, .rates = CS35L34_RATES, .formats = CS35L34_FORMATS, }, .ops = &cs35l34_ops, .symmetric_rate = 1, }; static int cs35l34_boost_inductor(struct cs35l34_private *cs35l34, unsigned int inductor) { struct snd_soc_component *component = cs35l34->component; switch (inductor) { case 1000: /* 1 uH */ regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_1, 0x24); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_2, 0x24); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SLOPE_COMP, 0x4E); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SW_FREQ, 0); break; case 1200: /* 1.2 uH */ regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_1, 0x20); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_2, 0x20); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SLOPE_COMP, 0x47); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SW_FREQ, 1); break; case 1500: /* 1.5uH */ regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_1, 0x20); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_2, 0x20); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SLOPE_COMP, 0x3C); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SW_FREQ, 2); break; case 2200: /* 2.2uH */ regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_1, 0x19); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_2, 0x25); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SLOPE_COMP, 0x23); regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SW_FREQ, 3); break; default: dev_err(component->dev, "%s Invalid Inductor Value %d uH\n", __func__, inductor); return -EINVAL; } return 0; } static int cs35l34_probe(struct snd_soc_component *component) { int ret = 0; struct cs35l34_private *cs35l34 = snd_soc_component_get_drvdata(component); pm_runtime_get_sync(component->dev); /* Set over temperature warning attenuation to 6 dB */ regmap_update_bits(cs35l34->regmap, CS35L34_PROTECT_CTL, CS35L34_OTW_ATTN_MASK, 0x8); /* Set Power control registers 2 and 3 to have everything * powered down at initialization */ regmap_write(cs35l34->regmap, CS35L34_PWRCTL2, 0xFD); regmap_write(cs35l34->regmap, CS35L34_PWRCTL3, 0x1F); /* Set mute bit at startup */ regmap_update_bits(cs35l34->regmap, CS35L34_PROTECT_CTL, CS35L34_MUTE, CS35L34_MUTE); /* Set Platform Data */ if (cs35l34->pdata.boost_peak) regmap_update_bits(cs35l34->regmap, CS35L34_BST_PEAK_I, CS35L34_BST_PEAK_MASK, cs35l34->pdata.boost_peak); if (cs35l34->pdata.gain_zc_disable) regmap_update_bits(cs35l34->regmap, CS35L34_PROTECT_CTL, CS35L34_GAIN_ZC_MASK, 0); else regmap_update_bits(cs35l34->regmap, CS35L34_PROTECT_CTL, CS35L34_GAIN_ZC_MASK, CS35L34_GAIN_ZC_MASK); if (cs35l34->pdata.aif_half_drv) regmap_update_bits(cs35l34->regmap, CS35L34_ADSP_CLK_CTL, CS35L34_ADSP_DRIVE, 0); if (cs35l34->pdata.digsft_disable) regmap_update_bits(cs35l34->regmap, CS35L34_AMP_DIG_VOL_CTL, CS35L34_AMP_DIGSFT, 0); if (cs35l34->pdata.amp_inv) regmap_update_bits(cs35l34->regmap, CS35L34_AMP_DIG_VOL_CTL, CS35L34_INV, CS35L34_INV); if (cs35l34->pdata.boost_ind) ret = cs35l34_boost_inductor(cs35l34, cs35l34->pdata.boost_ind); if (cs35l34->pdata.i2s_sdinloc) regmap_update_bits(cs35l34->regmap, CS35L34_ADSP_I2S_CTL, CS35L34_I2S_LOC_MASK, cs35l34->pdata.i2s_sdinloc << CS35L34_I2S_LOC_SHIFT); if (cs35l34->pdata.tdm_rising_edge) regmap_update_bits(cs35l34->regmap, CS35L34_ADSP_TDM_CTL, 1, 1); pm_runtime_put_sync(component->dev); return ret; } static const struct snd_soc_component_driver soc_component_dev_cs35l34 = { .probe = cs35l34_probe, .dapm_widgets = cs35l34_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cs35l34_dapm_widgets), .dapm_routes = cs35l34_audio_map, .num_dapm_routes = ARRAY_SIZE(cs35l34_audio_map), .controls = cs35l34_snd_controls, .num_controls = ARRAY_SIZE(cs35l34_snd_controls), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct regmap_config cs35l34_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = CS35L34_MAX_REGISTER, .reg_defaults = cs35l34_reg, .num_reg_defaults = ARRAY_SIZE(cs35l34_reg), .volatile_reg = cs35l34_volatile_register, .readable_reg = cs35l34_readable_register, .precious_reg = cs35l34_precious_register, .cache_type = REGCACHE_MAPLE, .use_single_read = true, .use_single_write = true, }; static int cs35l34_handle_of_data(struct i2c_client *i2c_client, struct cs35l34_platform_data *pdata) { struct device_node *np = i2c_client->dev.of_node; unsigned int val; if (of_property_read_u32(np, "cirrus,boost-vtge-millivolt", &val) >= 0) { /* Boost Voltage has a maximum of 8V */ if (val > 8000 || (val < 3300 && val > 0)) { dev_err(&i2c_client->dev, "Invalid Boost Voltage %d mV\n", val); return -EINVAL; } if (val == 0) pdata->boost_vtge = 0; /* Use VP */ else pdata->boost_vtge = ((val - 3300)/100) + 1; } else { dev_warn(&i2c_client->dev, "Boost Voltage not specified. Using VP\n"); } if (of_property_read_u32(np, "cirrus,boost-ind-nanohenry", &val) >= 0) { pdata->boost_ind = val; } else { dev_err(&i2c_client->dev, "Inductor not specified.\n"); return -EINVAL; } if (of_property_read_u32(np, "cirrus,boost-peak-milliamp", &val) >= 0) { if (val > 3840 || val < 1200) { dev_err(&i2c_client->dev, "Invalid Boost Peak Current %d mA\n", val); return -EINVAL; } pdata->boost_peak = ((val - 1200)/80) + 1; } pdata->aif_half_drv = of_property_read_bool(np, "cirrus,aif-half-drv"); pdata->digsft_disable = of_property_read_bool(np, "cirrus,digsft-disable"); pdata->gain_zc_disable = of_property_read_bool(np, "cirrus,gain-zc-disable"); pdata->amp_inv = of_property_read_bool(np, "cirrus,amp-inv"); if (of_property_read_u32(np, "cirrus,i2s-sdinloc", &val) >= 0) pdata->i2s_sdinloc = val; if (of_property_read_u32(np, "cirrus,tdm-rising-edge", &val) >= 0) pdata->tdm_rising_edge = val; return 0; } static irqreturn_t cs35l34_irq_thread(int irq, void *data) { struct cs35l34_private *cs35l34 = data; struct snd_soc_component *component = cs35l34->component; unsigned int sticky1, sticky2, sticky3, sticky4; unsigned int mask1, mask2, mask3, mask4, current1; /* ack the irq by reading all status registers */ regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_4, &sticky4); regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_3, &sticky3); regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_2, &sticky2); regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_1, &sticky1); regmap_read(cs35l34->regmap, CS35L34_INT_MASK_4, &mask4); regmap_read(cs35l34->regmap, CS35L34_INT_MASK_3, &mask3); regmap_read(cs35l34->regmap, CS35L34_INT_MASK_2, &mask2); regmap_read(cs35l34->regmap, CS35L34_INT_MASK_1, &mask1); if (!(sticky1 & ~mask1) && !(sticky2 & ~mask2) && !(sticky3 & ~mask3) && !(sticky4 & ~mask4)) return IRQ_NONE; regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_1, ¤t1); if (sticky1 & CS35L34_CAL_ERR) { dev_err(component->dev, "Cal error\n"); /* error is no longer asserted; safe to reset */ if (!(current1 & CS35L34_CAL_ERR)) { dev_dbg(component->dev, "Cal error release\n"); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_CAL_ERR_RLS, 0); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_CAL_ERR_RLS, CS35L34_CAL_ERR_RLS); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_CAL_ERR_RLS, 0); /* note: amp will re-calibrate on next resume */ } } if (sticky1 & CS35L34_ALIVE_ERR) dev_err(component->dev, "Alive error\n"); if (sticky1 & CS35L34_AMP_SHORT) { dev_crit(component->dev, "Amp short error\n"); /* error is no longer asserted; safe to reset */ if (!(current1 & CS35L34_AMP_SHORT)) { dev_dbg(component->dev, "Amp short error release\n"); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_SHORT_RLS, 0); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_SHORT_RLS, CS35L34_SHORT_RLS); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_SHORT_RLS, 0); } } if (sticky1 & CS35L34_OTW) { dev_crit(component->dev, "Over temperature warning\n"); /* error is no longer asserted; safe to reset */ if (!(current1 & CS35L34_OTW)) { dev_dbg(component->dev, "Over temperature warning release\n"); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_OTW_RLS, 0); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_OTW_RLS, CS35L34_OTW_RLS); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_OTW_RLS, 0); } } if (sticky1 & CS35L34_OTE) { dev_crit(component->dev, "Over temperature error\n"); /* error is no longer asserted; safe to reset */ if (!(current1 & CS35L34_OTE)) { dev_dbg(component->dev, "Over temperature error release\n"); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_OTE_RLS, 0); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_OTE_RLS, CS35L34_OTE_RLS); regmap_update_bits(cs35l34->regmap, CS35L34_PROT_RELEASE_CTL, CS35L34_OTE_RLS, 0); } } if (sticky3 & CS35L34_BST_HIGH) { dev_crit(component->dev, "VBST too high error; powering off!\n"); regmap_update_bits(cs35l34->regmap, CS35L34_PWRCTL2, CS35L34_PDN_AMP, CS35L34_PDN_AMP); regmap_update_bits(cs35l34->regmap, CS35L34_PWRCTL1, CS35L34_PDN_ALL, CS35L34_PDN_ALL); } if (sticky3 & CS35L34_LBST_SHORT) { dev_crit(component->dev, "LBST short error; powering off!\n"); regmap_update_bits(cs35l34->regmap, CS35L34_PWRCTL2, CS35L34_PDN_AMP, CS35L34_PDN_AMP); regmap_update_bits(cs35l34->regmap, CS35L34_PWRCTL1, CS35L34_PDN_ALL, CS35L34_PDN_ALL); } return IRQ_HANDLED; } static const char * const cs35l34_core_supplies[] = { "VA", "VP", }; static int cs35l34_i2c_probe(struct i2c_client *i2c_client) { struct cs35l34_private *cs35l34; struct cs35l34_platform_data *pdata = dev_get_platdata(&i2c_client->dev); int i, devid; int ret; unsigned int reg; cs35l34 = devm_kzalloc(&i2c_client->dev, sizeof(*cs35l34), GFP_KERNEL); if (!cs35l34) return -ENOMEM; i2c_set_clientdata(i2c_client, cs35l34); cs35l34->regmap = devm_regmap_init_i2c(i2c_client, &cs35l34_regmap); if (IS_ERR(cs35l34->regmap)) { ret = PTR_ERR(cs35l34->regmap); dev_err(&i2c_client->dev, "regmap_init() failed: %d\n", ret); return ret; } cs35l34->num_core_supplies = ARRAY_SIZE(cs35l34_core_supplies); for (i = 0; i < ARRAY_SIZE(cs35l34_core_supplies); i++) cs35l34->core_supplies[i].supply = cs35l34_core_supplies[i]; ret = devm_regulator_bulk_get(&i2c_client->dev, cs35l34->num_core_supplies, cs35l34->core_supplies); if (ret != 0) { dev_err(&i2c_client->dev, "Failed to request core supplies %d\n", ret); return ret; } ret = regulator_bulk_enable(cs35l34->num_core_supplies, cs35l34->core_supplies); if (ret != 0) { dev_err(&i2c_client->dev, "Failed to enable core supplies: %d\n", ret); return ret; } if (pdata) { cs35l34->pdata = *pdata; } else { pdata = devm_kzalloc(&i2c_client->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { ret = -ENOMEM; goto err_regulator; } if (i2c_client->dev.of_node) { ret = cs35l34_handle_of_data(i2c_client, pdata); if (ret != 0) goto err_regulator; } cs35l34->pdata = *pdata; } ret = devm_request_threaded_irq(&i2c_client->dev, i2c_client->irq, NULL, cs35l34_irq_thread, IRQF_ONESHOT | IRQF_TRIGGER_LOW, "cs35l34", cs35l34); if (ret != 0) dev_err(&i2c_client->dev, "Failed to request IRQ: %d\n", ret); cs35l34->reset_gpio = devm_gpiod_get_optional(&i2c_client->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(cs35l34->reset_gpio)) { ret = PTR_ERR(cs35l34->reset_gpio); goto err_regulator; } gpiod_set_value_cansleep(cs35l34->reset_gpio, 1); msleep(CS35L34_START_DELAY); devid = cirrus_read_device_id(cs35l34->regmap, CS35L34_DEVID_AB); if (devid < 0) { ret = devid; dev_err(&i2c_client->dev, "Failed to read device ID: %d\n", ret); goto err_reset; } if (devid != CS35L34_CHIP_ID) { dev_err(&i2c_client->dev, "CS35l34 Device ID (%X). Expected ID %X\n", devid, CS35L34_CHIP_ID); ret = -ENODEV; goto err_reset; } ret = regmap_read(cs35l34->regmap, CS35L34_REV_ID, ®); if (ret < 0) { dev_err(&i2c_client->dev, "Get Revision ID failed\n"); goto err_reset; } dev_info(&i2c_client->dev, "Cirrus Logic CS35l34 (%x), Revision: %02X\n", devid, reg & 0xFF); /* Unmask critical interrupts */ regmap_update_bits(cs35l34->regmap, CS35L34_INT_MASK_1, CS35L34_M_CAL_ERR | CS35L34_M_ALIVE_ERR | CS35L34_M_AMP_SHORT | CS35L34_M_OTW | CS35L34_M_OTE, 0); regmap_update_bits(cs35l34->regmap, CS35L34_INT_MASK_3, CS35L34_M_BST_HIGH | CS35L34_M_LBST_SHORT, 0); pm_runtime_set_autosuspend_delay(&i2c_client->dev, 100); pm_runtime_use_autosuspend(&i2c_client->dev); pm_runtime_set_active(&i2c_client->dev); pm_runtime_enable(&i2c_client->dev); ret = devm_snd_soc_register_component(&i2c_client->dev, &soc_component_dev_cs35l34, &cs35l34_dai, 1); if (ret < 0) { dev_err(&i2c_client->dev, "%s: Register component failed\n", __func__); goto err_reset; } return 0; err_reset: gpiod_set_value_cansleep(cs35l34->reset_gpio, 0); err_regulator: regulator_bulk_disable(cs35l34->num_core_supplies, cs35l34->core_supplies); return ret; } static void cs35l34_i2c_remove(struct i2c_client *client) { struct cs35l34_private *cs35l34 = i2c_get_clientdata(client); gpiod_set_value_cansleep(cs35l34->reset_gpio, 0); pm_runtime_disable(&client->dev); regulator_bulk_disable(cs35l34->num_core_supplies, cs35l34->core_supplies); } static int __maybe_unused cs35l34_runtime_resume(struct device *dev) { struct cs35l34_private *cs35l34 = dev_get_drvdata(dev); int ret; ret = regulator_bulk_enable(cs35l34->num_core_supplies, cs35l34->core_supplies); if (ret != 0) { dev_err(dev, "Failed to enable core supplies: %d\n", ret); return ret; } regcache_cache_only(cs35l34->regmap, false); gpiod_set_value_cansleep(cs35l34->reset_gpio, 1); msleep(CS35L34_START_DELAY); ret = regcache_sync(cs35l34->regmap); if (ret != 0) { dev_err(dev, "Failed to restore register cache\n"); goto err; } return 0; err: regcache_cache_only(cs35l34->regmap, true); regulator_bulk_disable(cs35l34->num_core_supplies, cs35l34->core_supplies); return ret; } static int __maybe_unused cs35l34_runtime_suspend(struct device *dev) { struct cs35l34_private *cs35l34 = dev_get_drvdata(dev); regcache_cache_only(cs35l34->regmap, true); regcache_mark_dirty(cs35l34->regmap); gpiod_set_value_cansleep(cs35l34->reset_gpio, 0); regulator_bulk_disable(cs35l34->num_core_supplies, cs35l34->core_supplies); return 0; } static const struct dev_pm_ops cs35l34_pm_ops = { SET_RUNTIME_PM_OPS(cs35l34_runtime_suspend, cs35l34_runtime_resume, NULL) }; static const struct of_device_id cs35l34_of_match[] = { {.compatible = "cirrus,cs35l34"}, {}, }; MODULE_DEVICE_TABLE(of, cs35l34_of_match); static const struct i2c_device_id cs35l34_id[] = { {"cs35l34"}, {} }; MODULE_DEVICE_TABLE(i2c, cs35l34_id); static struct i2c_driver cs35l34_i2c_driver = { .driver = { .name = "cs35l34", .pm = &cs35l34_pm_ops, .of_match_table = cs35l34_of_match, }, .id_table = cs35l34_id, .probe = cs35l34_i2c_probe, .remove = cs35l34_i2c_remove, }; static int __init cs35l34_modinit(void) { int ret; ret = i2c_add_driver(&cs35l34_i2c_driver); if (ret != 0) { pr_err("Failed to register CS35l34 I2C driver: %d\n", ret); return ret; } return 0; } module_init(cs35l34_modinit); static void __exit cs35l34_exit(void) { i2c_del_driver(&cs35l34_i2c_driver); } module_exit(cs35l34_exit); MODULE_DESCRIPTION("ASoC CS35l34 driver"); MODULE_AUTHOR("Paul Handrigan, Cirrus Logic Inc, "); MODULE_LICENSE("GPL");