// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) // Copyright(c) 2024 Intel Corporation /* * The MIPI SDCA specification is available for public downloads at * https://www.mipi.org/mipi-sdca-v1-0-download */ #define dev_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include /* * Should be long enough to encompass all the MIPI DisCo properties. */ #define SDCA_PROPERTY_LENGTH 64 static int patch_sdca_function_type(u32 interface_revision, u32 *function_type) { /* * Unfortunately early SDCA specifications used different indices for Functions, * for backwards compatibility we have to reorder the values found. */ if (interface_revision < 0x0801) { switch (*function_type) { case 1: *function_type = SDCA_FUNCTION_TYPE_SMART_AMP; break; case 2: *function_type = SDCA_FUNCTION_TYPE_SMART_MIC; break; case 3: *function_type = SDCA_FUNCTION_TYPE_SPEAKER_MIC; break; case 4: *function_type = SDCA_FUNCTION_TYPE_UAJ; break; case 5: *function_type = SDCA_FUNCTION_TYPE_RJ; break; case 6: *function_type = SDCA_FUNCTION_TYPE_HID; break; default: return -EINVAL; } } return 0; } static const char *get_sdca_function_name(u32 function_type) { switch (function_type) { case SDCA_FUNCTION_TYPE_SMART_AMP: return SDCA_FUNCTION_TYPE_SMART_AMP_NAME; case SDCA_FUNCTION_TYPE_SMART_MIC: return SDCA_FUNCTION_TYPE_SMART_MIC_NAME; case SDCA_FUNCTION_TYPE_UAJ: return SDCA_FUNCTION_TYPE_UAJ_NAME; case SDCA_FUNCTION_TYPE_HID: return SDCA_FUNCTION_TYPE_HID_NAME; case SDCA_FUNCTION_TYPE_SIMPLE_AMP: return SDCA_FUNCTION_TYPE_SIMPLE_AMP_NAME; case SDCA_FUNCTION_TYPE_SIMPLE_MIC: return SDCA_FUNCTION_TYPE_SIMPLE_MIC_NAME; case SDCA_FUNCTION_TYPE_SPEAKER_MIC: return SDCA_FUNCTION_TYPE_SPEAKER_MIC_NAME; case SDCA_FUNCTION_TYPE_RJ: return SDCA_FUNCTION_TYPE_RJ_NAME; case SDCA_FUNCTION_TYPE_IMP_DEF: return SDCA_FUNCTION_TYPE_IMP_DEF_NAME; default: return NULL; } } static int find_sdca_function(struct acpi_device *adev, void *data) { struct fwnode_handle *function_node = acpi_fwnode_handle(adev); struct sdca_device_data *sdca_data = data; struct device *dev = &adev->dev; struct fwnode_handle *control5; /* used to identify function type */ const char *function_name; u32 function_type; int function_index; u64 addr; int ret; if (sdca_data->num_functions >= SDCA_MAX_FUNCTION_COUNT) { dev_err(dev, "maximum number of functions exceeded\n"); return -EINVAL; } ret = acpi_get_local_u64_address(adev->handle, &addr); if (ret < 0) return ret; if (!addr || addr > 0x7) { dev_err(dev, "invalid addr: 0x%llx\n", addr); return -ENODEV; } /* * Extracting the topology type for an SDCA function is a * convoluted process. * The Function type is only visible as a result of a read * from a control. In theory this would mean reading from the hardware, * but the SDCA/DisCo specs defined the notion of "DC value" - a constant * represented with a DSD subproperty. * Drivers have to query the properties for the control * SDCA_CONTROL_ENTITY_0_FUNCTION_TOPOLOGY (0x05) */ control5 = fwnode_get_named_child_node(function_node, "mipi-sdca-control-0x5-subproperties"); if (!control5) return -ENODEV; ret = fwnode_property_read_u32(control5, "mipi-sdca-control-dc-value", &function_type); fwnode_handle_put(control5); if (ret < 0) { dev_err(dev, "function type only supported as DisCo constant\n"); return ret; } ret = patch_sdca_function_type(sdca_data->interface_revision, &function_type); if (ret < 0) { dev_err(dev, "SDCA version %#x invalid function type %d\n", sdca_data->interface_revision, function_type); return ret; } function_name = get_sdca_function_name(function_type); if (!function_name) { dev_err(dev, "invalid SDCA function type %d\n", function_type); return -EINVAL; } dev_info(dev, "SDCA function %s (type %d) at 0x%llx\n", function_name, function_type, addr); /* store results */ function_index = sdca_data->num_functions; sdca_data->function[function_index].adr = addr; sdca_data->function[function_index].type = function_type; sdca_data->function[function_index].name = function_name; sdca_data->function[function_index].node = function_node; sdca_data->num_functions++; return 0; } /** * sdca_lookup_functions - Parse sdca_device_desc for each Function * @slave: SoundWire slave device to be processed. * * Iterate through the available SDCA Functions and fill in a short * descriptor (struct sdca_function_desc) for each function, this * information is stored along with the SoundWire slave device and * used for adding drivers and quirks before the devices have fully * probed. */ void sdca_lookup_functions(struct sdw_slave *slave) { struct device *dev = &slave->dev; struct acpi_device *adev = to_acpi_device_node(dev->fwnode); if (!adev) { dev_info(dev, "no matching ACPI device found, ignoring peripheral\n"); return; } acpi_dev_for_each_child(adev, find_sdca_function, &slave->sdca_data); } EXPORT_SYMBOL_NS(sdca_lookup_functions, "SND_SOC_SDCA"); struct raw_init_write { __le32 addr; u8 val; } __packed; static int find_sdca_init_table(struct device *dev, struct fwnode_handle *function_node, struct sdca_function_data *function) { struct raw_init_write *raw __free(kfree) = NULL; struct sdca_init_write *init_write; int i, num_init_writes; num_init_writes = fwnode_property_count_u8(function_node, "mipi-sdca-function-initialization-table"); if (!num_init_writes || num_init_writes == -EINVAL) { return 0; } else if (num_init_writes < 0) { dev_err(dev, "%pfwP: failed to read initialization table: %d\n", function_node, num_init_writes); return num_init_writes; } else if (num_init_writes % sizeof(*raw) != 0) { dev_err(dev, "%pfwP: init table size invalid\n", function_node); return -EINVAL; } else if (num_init_writes > SDCA_MAX_INIT_COUNT) { dev_err(dev, "%pfwP: maximum init table size exceeded\n", function_node); return -EINVAL; } raw = kzalloc(num_init_writes, GFP_KERNEL); if (!raw) return -ENOMEM; fwnode_property_read_u8_array(function_node, "mipi-sdca-function-initialization-table", (u8 *)raw, num_init_writes); num_init_writes /= sizeof(*raw); init_write = devm_kcalloc(dev, num_init_writes, sizeof(*init_write), GFP_KERNEL); if (!init_write) return -ENOMEM; for (i = 0; i < num_init_writes; i++) { init_write[i].addr = le32_to_cpu(raw[i].addr); init_write[i].val = raw[i].val; } function->num_init_table = num_init_writes; function->init_table = init_write; return 0; } static const char *find_sdca_control_label(struct device *dev, const struct sdca_entity *entity, const struct sdca_control *control) { switch (SDCA_CTL_TYPE(entity->type, control->sel)) { case SDCA_CTL_TYPE_S(IT, MIC_BIAS): return SDCA_CTL_MIC_BIAS_NAME; case SDCA_CTL_TYPE_S(IT, USAGE): case SDCA_CTL_TYPE_S(OT, USAGE): return SDCA_CTL_USAGE_NAME; case SDCA_CTL_TYPE_S(IT, LATENCY): case SDCA_CTL_TYPE_S(OT, LATENCY): case SDCA_CTL_TYPE_S(MU, LATENCY): case SDCA_CTL_TYPE_S(SU, LATENCY): case SDCA_CTL_TYPE_S(FU, LATENCY): case SDCA_CTL_TYPE_S(XU, LATENCY): case SDCA_CTL_TYPE_S(CRU, LATENCY): case SDCA_CTL_TYPE_S(UDMPU, LATENCY): case SDCA_CTL_TYPE_S(MFPU, LATENCY): case SDCA_CTL_TYPE_S(SMPU, LATENCY): case SDCA_CTL_TYPE_S(SAPU, LATENCY): case SDCA_CTL_TYPE_S(PPU, LATENCY): return SDCA_CTL_LATENCY_NAME; case SDCA_CTL_TYPE_S(IT, CLUSTERINDEX): case SDCA_CTL_TYPE_S(CRU, CLUSTERINDEX): case SDCA_CTL_TYPE_S(UDMPU, CLUSTERINDEX): case SDCA_CTL_TYPE_S(MFPU, CLUSTERINDEX): return SDCA_CTL_CLUSTERINDEX_NAME; case SDCA_CTL_TYPE_S(IT, DATAPORT_SELECTOR): case SDCA_CTL_TYPE_S(OT, DATAPORT_SELECTOR): return SDCA_CTL_DATAPORT_SELECTOR_NAME; case SDCA_CTL_TYPE_S(IT, MATCHING_GUID): case SDCA_CTL_TYPE_S(OT, MATCHING_GUID): case SDCA_CTL_TYPE_S(ENTITY_0, MATCHING_GUID): return SDCA_CTL_MATCHING_GUID_NAME; case SDCA_CTL_TYPE_S(IT, KEEP_ALIVE): case SDCA_CTL_TYPE_S(OT, KEEP_ALIVE): return SDCA_CTL_KEEP_ALIVE_NAME; case SDCA_CTL_TYPE_S(IT, NDAI_STREAM): case SDCA_CTL_TYPE_S(OT, NDAI_STREAM): return SDCA_CTL_NDAI_STREAM_NAME; case SDCA_CTL_TYPE_S(IT, NDAI_CATEGORY): case SDCA_CTL_TYPE_S(OT, NDAI_CATEGORY): return SDCA_CTL_NDAI_CATEGORY_NAME; case SDCA_CTL_TYPE_S(IT, NDAI_CODINGTYPE): case SDCA_CTL_TYPE_S(OT, NDAI_CODINGTYPE): return SDCA_CTL_NDAI_CODINGTYPE_NAME; case SDCA_CTL_TYPE_S(IT, NDAI_PACKETTYPE): case SDCA_CTL_TYPE_S(OT, NDAI_PACKETTYPE): return SDCA_CTL_NDAI_PACKETTYPE_NAME; case SDCA_CTL_TYPE_S(MU, MIXER): return SDCA_CTL_MIXER_NAME; case SDCA_CTL_TYPE_S(SU, SELECTOR): return SDCA_CTL_SELECTOR_NAME; case SDCA_CTL_TYPE_S(FU, MUTE): return SDCA_CTL_MUTE_NAME; case SDCA_CTL_TYPE_S(FU, CHANNEL_VOLUME): return SDCA_CTL_CHANNEL_VOLUME_NAME; case SDCA_CTL_TYPE_S(FU, AGC): return SDCA_CTL_AGC_NAME; case SDCA_CTL_TYPE_S(FU, BASS_BOOST): return SDCA_CTL_BASS_BOOST_NAME; case SDCA_CTL_TYPE_S(FU, LOUDNESS): return SDCA_CTL_LOUDNESS_NAME; case SDCA_CTL_TYPE_S(FU, GAIN): return SDCA_CTL_GAIN_NAME; case SDCA_CTL_TYPE_S(XU, BYPASS): case SDCA_CTL_TYPE_S(MFPU, BYPASS): return SDCA_CTL_BYPASS_NAME; case SDCA_CTL_TYPE_S(XU, XU_ID): return SDCA_CTL_XU_ID_NAME; case SDCA_CTL_TYPE_S(XU, XU_VERSION): return SDCA_CTL_XU_VERSION_NAME; case SDCA_CTL_TYPE_S(XU, FDL_CURRENTOWNER): return SDCA_CTL_FDL_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(XU, FDL_MESSAGEOFFSET): return SDCA_CTL_FDL_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(XU, FDL_MESSAGELENGTH): return SDCA_CTL_FDL_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(XU, FDL_STATUS): return SDCA_CTL_FDL_STATUS_NAME; case SDCA_CTL_TYPE_S(XU, FDL_SET_INDEX): return SDCA_CTL_FDL_SET_INDEX_NAME; case SDCA_CTL_TYPE_S(XU, FDL_HOST_REQUEST): return SDCA_CTL_FDL_HOST_REQUEST_NAME; case SDCA_CTL_TYPE_S(CS, CLOCK_VALID): return SDCA_CTL_CLOCK_VALID_NAME; case SDCA_CTL_TYPE_S(CS, SAMPLERATEINDEX): return SDCA_CTL_SAMPLERATEINDEX_NAME; case SDCA_CTL_TYPE_S(CX, CLOCK_SELECT): return SDCA_CTL_CLOCK_SELECT_NAME; case SDCA_CTL_TYPE_S(PDE, REQUESTED_PS): return SDCA_CTL_REQUESTED_PS_NAME; case SDCA_CTL_TYPE_S(PDE, ACTUAL_PS): return SDCA_CTL_ACTUAL_PS_NAME; case SDCA_CTL_TYPE_S(GE, SELECTED_MODE): return SDCA_CTL_SELECTED_MODE_NAME; case SDCA_CTL_TYPE_S(GE, DETECTED_MODE): return SDCA_CTL_DETECTED_MODE_NAME; case SDCA_CTL_TYPE_S(SPE, PRIVATE): return SDCA_CTL_PRIVATE_NAME; case SDCA_CTL_TYPE_S(SPE, PRIVACY_POLICY): return SDCA_CTL_PRIVACY_POLICY_NAME; case SDCA_CTL_TYPE_S(SPE, PRIVACY_LOCKSTATE): return SDCA_CTL_PRIVACY_LOCKSTATE_NAME; case SDCA_CTL_TYPE_S(SPE, PRIVACY_OWNER): return SDCA_CTL_PRIVACY_OWNER_NAME; case SDCA_CTL_TYPE_S(SPE, AUTHTX_CURRENTOWNER): return SDCA_CTL_AUTHTX_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(SPE, AUTHTX_MESSAGEOFFSET): return SDCA_CTL_AUTHTX_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(SPE, AUTHTX_MESSAGELENGTH): return SDCA_CTL_AUTHTX_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(SPE, AUTHRX_CURRENTOWNER): return SDCA_CTL_AUTHRX_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(SPE, AUTHRX_MESSAGEOFFSET): return SDCA_CTL_AUTHRX_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(SPE, AUTHRX_MESSAGELENGTH): return SDCA_CTL_AUTHRX_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(UDMPU, ACOUSTIC_ENERGY_LEVEL_MONITOR): return SDCA_CTL_ACOUSTIC_ENERGY_LEVEL_MONITOR_NAME; case SDCA_CTL_TYPE_S(UDMPU, ULTRASOUND_LOOP_GAIN): return SDCA_CTL_ULTRASOUND_LOOP_GAIN_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_0): return SDCA_CTL_OPAQUESET_0_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_1): return SDCA_CTL_OPAQUESET_1_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_2): return SDCA_CTL_OPAQUESET_2_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_3): return SDCA_CTL_OPAQUESET_3_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_4): return SDCA_CTL_OPAQUESET_4_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_5): return SDCA_CTL_OPAQUESET_5_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_6): return SDCA_CTL_OPAQUESET_6_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_7): return SDCA_CTL_OPAQUESET_7_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_8): return SDCA_CTL_OPAQUESET_8_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_9): return SDCA_CTL_OPAQUESET_9_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_10): return SDCA_CTL_OPAQUESET_10_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_11): return SDCA_CTL_OPAQUESET_11_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_12): return SDCA_CTL_OPAQUESET_12_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_13): return SDCA_CTL_OPAQUESET_13_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_14): return SDCA_CTL_OPAQUESET_14_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_15): return SDCA_CTL_OPAQUESET_15_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_16): return SDCA_CTL_OPAQUESET_16_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_17): return SDCA_CTL_OPAQUESET_17_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_18): return SDCA_CTL_OPAQUESET_18_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_19): return SDCA_CTL_OPAQUESET_19_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_20): return SDCA_CTL_OPAQUESET_20_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_21): return SDCA_CTL_OPAQUESET_21_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_22): return SDCA_CTL_OPAQUESET_22_NAME; case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_23): return SDCA_CTL_OPAQUESET_23_NAME; case SDCA_CTL_TYPE_S(MFPU, ALGORITHM_READY): return SDCA_CTL_ALGORITHM_READY_NAME; case SDCA_CTL_TYPE_S(MFPU, ALGORITHM_ENABLE): return SDCA_CTL_ALGORITHM_ENABLE_NAME; case SDCA_CTL_TYPE_S(MFPU, ALGORITHM_PREPARE): return SDCA_CTL_ALGORITHM_PREPARE_NAME; case SDCA_CTL_TYPE_S(MFPU, CENTER_FREQUENCY_INDEX): return SDCA_CTL_CENTER_FREQUENCY_INDEX_NAME; case SDCA_CTL_TYPE_S(MFPU, ULTRASOUND_LEVEL): return SDCA_CTL_ULTRASOUND_LEVEL_NAME; case SDCA_CTL_TYPE_S(MFPU, AE_NUMBER): return SDCA_CTL_AE_NUMBER_NAME; case SDCA_CTL_TYPE_S(MFPU, AE_CURRENTOWNER): return SDCA_CTL_AE_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(MFPU, AE_MESSAGEOFFSET): return SDCA_CTL_AE_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(MFPU, AE_MESSAGELENGTH): return SDCA_CTL_AE_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(SMPU, TRIGGER_ENABLE): return SDCA_CTL_TRIGGER_ENABLE_NAME; case SDCA_CTL_TYPE_S(SMPU, TRIGGER_STATUS): return SDCA_CTL_TRIGGER_STATUS_NAME; case SDCA_CTL_TYPE_S(SMPU, HIST_BUFFER_MODE): return SDCA_CTL_HIST_BUFFER_MODE_NAME; case SDCA_CTL_TYPE_S(SMPU, HIST_BUFFER_PREAMBLE): return SDCA_CTL_HIST_BUFFER_PREAMBLE_NAME; case SDCA_CTL_TYPE_S(SMPU, HIST_ERROR): return SDCA_CTL_HIST_ERROR_NAME; case SDCA_CTL_TYPE_S(SMPU, TRIGGER_EXTENSION): return SDCA_CTL_TRIGGER_EXTENSION_NAME; case SDCA_CTL_TYPE_S(SMPU, TRIGGER_READY): return SDCA_CTL_TRIGGER_READY_NAME; case SDCA_CTL_TYPE_S(SMPU, HIST_CURRENTOWNER): return SDCA_CTL_HIST_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(SMPU, HIST_MESSAGEOFFSET): return SDCA_CTL_HIST_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(SMPU, HIST_MESSAGELENGTH): return SDCA_CTL_HIST_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(SMPU, DTODTX_CURRENTOWNER): return SDCA_CTL_DTODTX_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(SMPU, DTODTX_MESSAGEOFFSET): return SDCA_CTL_DTODTX_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(SMPU, DTODTX_MESSAGELENGTH): return SDCA_CTL_DTODTX_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(SMPU, DTODRX_CURRENTOWNER): return SDCA_CTL_DTODRX_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(SMPU, DTODRX_MESSAGEOFFSET): return SDCA_CTL_DTODRX_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(SMPU, DTODRX_MESSAGELENGTH): return SDCA_CTL_DTODRX_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(SAPU, PROTECTION_MODE): return SDCA_CTL_PROTECTION_MODE_NAME; case SDCA_CTL_TYPE_S(SAPU, PROTECTION_STATUS): return SDCA_CTL_PROTECTION_STATUS_NAME; case SDCA_CTL_TYPE_S(SAPU, OPAQUESETREQ_INDEX): return SDCA_CTL_OPAQUESETREQ_INDEX_NAME; case SDCA_CTL_TYPE_S(SAPU, DTODTX_CURRENTOWNER): return SDCA_CTL_DTODTX_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(SAPU, DTODTX_MESSAGEOFFSET): return SDCA_CTL_DTODTX_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(SAPU, DTODTX_MESSAGELENGTH): return SDCA_CTL_DTODTX_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(SAPU, DTODRX_CURRENTOWNER): return SDCA_CTL_DTODRX_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(SAPU, DTODRX_MESSAGEOFFSET): return SDCA_CTL_DTODRX_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(SAPU, DTODRX_MESSAGELENGTH): return SDCA_CTL_DTODRX_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(PPU, POSTURENUMBER): return SDCA_CTL_POSTURENUMBER_NAME; case SDCA_CTL_TYPE_S(PPU, POSTUREEXTENSION): return SDCA_CTL_POSTUREEXTENSION_NAME; case SDCA_CTL_TYPE_S(PPU, HORIZONTALBALANCE): return SDCA_CTL_HORIZONTALBALANCE_NAME; case SDCA_CTL_TYPE_S(PPU, VERTICALBALANCE): return SDCA_CTL_VERTICALBALANCE_NAME; case SDCA_CTL_TYPE_S(TG, TONE_DIVIDER): return SDCA_CTL_TONE_DIVIDER_NAME; case SDCA_CTL_TYPE_S(HIDE, HIDTX_CURRENTOWNER): return SDCA_CTL_HIDTX_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(HIDE, HIDTX_MESSAGEOFFSET): return SDCA_CTL_HIDTX_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(HIDE, HIDTX_MESSAGELENGTH): return SDCA_CTL_HIDTX_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(HIDE, HIDRX_CURRENTOWNER): return SDCA_CTL_HIDRX_CURRENTOWNER_NAME; case SDCA_CTL_TYPE_S(HIDE, HIDRX_MESSAGEOFFSET): return SDCA_CTL_HIDRX_MESSAGEOFFSET_NAME; case SDCA_CTL_TYPE_S(HIDE, HIDRX_MESSAGELENGTH): return SDCA_CTL_HIDRX_MESSAGELENGTH_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, COMMIT_GROUP_MASK): return SDCA_CTL_COMMIT_GROUP_MASK_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_SDCA_VERSION): return SDCA_CTL_FUNCTION_SDCA_VERSION_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_TYPE): return SDCA_CTL_FUNCTION_TYPE_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_MANUFACTURER_ID): return SDCA_CTL_FUNCTION_MANUFACTURER_ID_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_ID): return SDCA_CTL_FUNCTION_ID_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_VERSION): return SDCA_CTL_FUNCTION_VERSION_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_EXTENSION_ID): return SDCA_CTL_FUNCTION_EXTENSION_ID_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_EXTENSION_VERSION): return SDCA_CTL_FUNCTION_EXTENSION_VERSION_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_STATUS): return SDCA_CTL_FUNCTION_STATUS_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_ACTION): return SDCA_CTL_FUNCTION_ACTION_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_MANUFACTURER_ID): return SDCA_CTL_DEVICE_MANUFACTURER_ID_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_PART_ID): return SDCA_CTL_DEVICE_PART_ID_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_VERSION): return SDCA_CTL_DEVICE_VERSION_NAME; case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_SDCA_VERSION): return SDCA_CTL_DEVICE_SDCA_VERSION_NAME; default: return devm_kasprintf(dev, GFP_KERNEL, "Imp-Def %#x", control->sel); } } static unsigned int find_sdca_control_bits(const struct sdca_entity *entity, const struct sdca_control *control) { switch (SDCA_CTL_TYPE(entity->type, control->sel)) { case SDCA_CTL_TYPE_S(IT, LATENCY): case SDCA_CTL_TYPE_S(OT, LATENCY): case SDCA_CTL_TYPE_S(MU, LATENCY): case SDCA_CTL_TYPE_S(SU, LATENCY): case SDCA_CTL_TYPE_S(FU, LATENCY): case SDCA_CTL_TYPE_S(XU, LATENCY): case SDCA_CTL_TYPE_S(XU, FDL_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(XU, FDL_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SPE, AUTHTX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SPE, AUTHTX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SPE, AUTHRX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SPE, AUTHRX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(CRU, LATENCY): case SDCA_CTL_TYPE_S(UDMPU, LATENCY): case SDCA_CTL_TYPE_S(MFPU, LATENCY): case SDCA_CTL_TYPE_S(MFPU, AE_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(MFPU, AE_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SMPU, LATENCY): case SDCA_CTL_TYPE_S(SMPU, HIST_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SMPU, HIST_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SMPU, DTODTX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SMPU, DTODTX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SMPU, DTODRX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SMPU, DTODRX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SAPU, LATENCY): case SDCA_CTL_TYPE_S(SAPU, DTODTX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SAPU, DTODTX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SAPU, DTODRX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SAPU, DTODRX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(PPU, LATENCY): case SDCA_CTL_TYPE_S(HIDE, HIDTX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(HIDE, HIDTX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(HIDE, HIDRX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(HIDE, HIDRX_MESSAGELENGTH): return 32; case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_MANUFACTURER_ID): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_ID): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_EXTENSION_ID): case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_MANUFACTURER_ID): case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_PART_ID): case SDCA_CTL_TYPE_S(IT, DATAPORT_SELECTOR): case SDCA_CTL_TYPE_S(OT, DATAPORT_SELECTOR): case SDCA_CTL_TYPE_S(MU, MIXER): case SDCA_CTL_TYPE_S(FU, CHANNEL_VOLUME): case SDCA_CTL_TYPE_S(FU, GAIN): case SDCA_CTL_TYPE_S(XU, XU_ID): case SDCA_CTL_TYPE_S(UDMPU, ACOUSTIC_ENERGY_LEVEL_MONITOR): case SDCA_CTL_TYPE_S(UDMPU, ULTRASOUND_LOOP_GAIN): case SDCA_CTL_TYPE_S(MFPU, ULTRASOUND_LEVEL): case SDCA_CTL_TYPE_S(PPU, HORIZONTALBALANCE): case SDCA_CTL_TYPE_S(PPU, VERTICALBALANCE): return 16; case SDCA_CTL_TYPE_S(FU, MUTE): case SDCA_CTL_TYPE_S(FU, AGC): case SDCA_CTL_TYPE_S(FU, BASS_BOOST): case SDCA_CTL_TYPE_S(FU, LOUDNESS): case SDCA_CTL_TYPE_S(XU, BYPASS): case SDCA_CTL_TYPE_S(MFPU, BYPASS): return 1; default: return 8; } } static enum sdca_control_datatype find_sdca_control_datatype(const struct sdca_entity *entity, const struct sdca_control *control) { switch (SDCA_CTL_TYPE(entity->type, control->sel)) { case SDCA_CTL_TYPE_S(XU, BYPASS): case SDCA_CTL_TYPE_S(MFPU, BYPASS): case SDCA_CTL_TYPE_S(FU, MUTE): case SDCA_CTL_TYPE_S(FU, AGC): case SDCA_CTL_TYPE_S(FU, BASS_BOOST): case SDCA_CTL_TYPE_S(FU, LOUDNESS): return SDCA_CTL_DATATYPE_ONEBIT; case SDCA_CTL_TYPE_S(IT, LATENCY): case SDCA_CTL_TYPE_S(OT, LATENCY): case SDCA_CTL_TYPE_S(MU, LATENCY): case SDCA_CTL_TYPE_S(SU, LATENCY): case SDCA_CTL_TYPE_S(FU, LATENCY): case SDCA_CTL_TYPE_S(XU, LATENCY): case SDCA_CTL_TYPE_S(CRU, LATENCY): case SDCA_CTL_TYPE_S(UDMPU, LATENCY): case SDCA_CTL_TYPE_S(MFPU, LATENCY): case SDCA_CTL_TYPE_S(SMPU, LATENCY): case SDCA_CTL_TYPE_S(SAPU, LATENCY): case SDCA_CTL_TYPE_S(PPU, LATENCY): case SDCA_CTL_TYPE_S(SU, SELECTOR): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_0): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_1): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_2): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_3): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_4): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_5): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_6): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_7): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_8): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_9): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_10): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_11): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_12): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_13): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_14): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_15): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_16): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_17): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_18): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_19): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_20): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_21): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_22): case SDCA_CTL_TYPE_S(UDMPU, OPAQUESET_23): case SDCA_CTL_TYPE_S(SAPU, PROTECTION_MODE): case SDCA_CTL_TYPE_S(SMPU, HIST_BUFFER_PREAMBLE): case SDCA_CTL_TYPE_S(XU, FDL_HOST_REQUEST): case SDCA_CTL_TYPE_S(XU, XU_ID): case SDCA_CTL_TYPE_S(CX, CLOCK_SELECT): case SDCA_CTL_TYPE_S(TG, TONE_DIVIDER): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_MANUFACTURER_ID): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_ID): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_EXTENSION_ID): case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_MANUFACTURER_ID): case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_PART_ID): case SDCA_CTL_TYPE_S(XU, FDL_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(XU, FDL_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SPE, AUTHTX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SPE, AUTHTX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SPE, AUTHRX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SPE, AUTHRX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(MFPU, AE_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(MFPU, AE_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SMPU, HIST_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SMPU, HIST_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SMPU, DTODTX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SMPU, DTODTX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SMPU, DTODRX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SMPU, DTODRX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SAPU, DTODTX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SAPU, DTODTX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(SAPU, DTODRX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(SAPU, DTODRX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(HIDE, HIDTX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(HIDE, HIDTX_MESSAGELENGTH): case SDCA_CTL_TYPE_S(HIDE, HIDRX_MESSAGEOFFSET): case SDCA_CTL_TYPE_S(HIDE, HIDRX_MESSAGELENGTH): return SDCA_CTL_DATATYPE_INTEGER; case SDCA_CTL_TYPE_S(IT, MIC_BIAS): case SDCA_CTL_TYPE_S(SMPU, HIST_BUFFER_MODE): case SDCA_CTL_TYPE_S(PDE, REQUESTED_PS): case SDCA_CTL_TYPE_S(PDE, ACTUAL_PS): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_TYPE): return SDCA_CTL_DATATYPE_SPEC_ENCODED_VALUE; case SDCA_CTL_TYPE_S(XU, XU_VERSION): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_SDCA_VERSION): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_VERSION): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_EXTENSION_VERSION): case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_VERSION): case SDCA_CTL_TYPE_S(ENTITY_0, DEVICE_SDCA_VERSION): return SDCA_CTL_DATATYPE_BCD; case SDCA_CTL_TYPE_S(FU, CHANNEL_VOLUME): case SDCA_CTL_TYPE_S(FU, GAIN): case SDCA_CTL_TYPE_S(MU, MIXER): case SDCA_CTL_TYPE_S(PPU, HORIZONTALBALANCE): case SDCA_CTL_TYPE_S(PPU, VERTICALBALANCE): case SDCA_CTL_TYPE_S(MFPU, ULTRASOUND_LEVEL): case SDCA_CTL_TYPE_S(UDMPU, ACOUSTIC_ENERGY_LEVEL_MONITOR): case SDCA_CTL_TYPE_S(UDMPU, ULTRASOUND_LOOP_GAIN): return SDCA_CTL_DATATYPE_Q7P8DB; case SDCA_CTL_TYPE_S(IT, USAGE): case SDCA_CTL_TYPE_S(OT, USAGE): case SDCA_CTL_TYPE_S(IT, CLUSTERINDEX): case SDCA_CTL_TYPE_S(CRU, CLUSTERINDEX): case SDCA_CTL_TYPE_S(UDMPU, CLUSTERINDEX): case SDCA_CTL_TYPE_S(MFPU, CLUSTERINDEX): case SDCA_CTL_TYPE_S(MFPU, CENTER_FREQUENCY_INDEX): case SDCA_CTL_TYPE_S(MFPU, AE_NUMBER): case SDCA_CTL_TYPE_S(SAPU, OPAQUESETREQ_INDEX): case SDCA_CTL_TYPE_S(XU, FDL_SET_INDEX): case SDCA_CTL_TYPE_S(CS, SAMPLERATEINDEX): case SDCA_CTL_TYPE_S(GE, SELECTED_MODE): case SDCA_CTL_TYPE_S(GE, DETECTED_MODE): return SDCA_CTL_DATATYPE_BYTEINDEX; case SDCA_CTL_TYPE_S(PPU, POSTURENUMBER): return SDCA_CTL_DATATYPE_POSTURENUMBER; case SDCA_CTL_TYPE_S(IT, DATAPORT_SELECTOR): case SDCA_CTL_TYPE_S(OT, DATAPORT_SELECTOR): return SDCA_CTL_DATATYPE_DP_INDEX; case SDCA_CTL_TYPE_S(MFPU, ALGORITHM_READY): case SDCA_CTL_TYPE_S(MFPU, ALGORITHM_ENABLE): case SDCA_CTL_TYPE_S(MFPU, ALGORITHM_PREPARE): case SDCA_CTL_TYPE_S(SAPU, PROTECTION_STATUS): case SDCA_CTL_TYPE_S(SMPU, TRIGGER_ENABLE): case SDCA_CTL_TYPE_S(SMPU, TRIGGER_STATUS): case SDCA_CTL_TYPE_S(SMPU, TRIGGER_READY): case SDCA_CTL_TYPE_S(SPE, PRIVACY_POLICY): case SDCA_CTL_TYPE_S(SPE, PRIVACY_OWNER): return SDCA_CTL_DATATYPE_BITINDEX; case SDCA_CTL_TYPE_S(IT, KEEP_ALIVE): case SDCA_CTL_TYPE_S(OT, KEEP_ALIVE): case SDCA_CTL_TYPE_S(IT, NDAI_STREAM): case SDCA_CTL_TYPE_S(OT, NDAI_STREAM): case SDCA_CTL_TYPE_S(IT, NDAI_CATEGORY): case SDCA_CTL_TYPE_S(OT, NDAI_CATEGORY): case SDCA_CTL_TYPE_S(IT, NDAI_CODINGTYPE): case SDCA_CTL_TYPE_S(OT, NDAI_CODINGTYPE): case SDCA_CTL_TYPE_S(IT, NDAI_PACKETTYPE): case SDCA_CTL_TYPE_S(OT, NDAI_PACKETTYPE): case SDCA_CTL_TYPE_S(SMPU, HIST_ERROR): case SDCA_CTL_TYPE_S(XU, FDL_STATUS): case SDCA_CTL_TYPE_S(CS, CLOCK_VALID): case SDCA_CTL_TYPE_S(SPE, PRIVACY_LOCKSTATE): case SDCA_CTL_TYPE_S(ENTITY_0, COMMIT_GROUP_MASK): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_STATUS): case SDCA_CTL_TYPE_S(ENTITY_0, FUNCTION_ACTION): case SDCA_CTL_TYPE_S(XU, FDL_CURRENTOWNER): case SDCA_CTL_TYPE_S(SPE, AUTHTX_CURRENTOWNER): case SDCA_CTL_TYPE_S(SPE, AUTHRX_CURRENTOWNER): case SDCA_CTL_TYPE_S(MFPU, AE_CURRENTOWNER): case SDCA_CTL_TYPE_S(SMPU, HIST_CURRENTOWNER): case SDCA_CTL_TYPE_S(SMPU, DTODTX_CURRENTOWNER): case SDCA_CTL_TYPE_S(SMPU, DTODRX_CURRENTOWNER): case SDCA_CTL_TYPE_S(SAPU, DTODTX_CURRENTOWNER): case SDCA_CTL_TYPE_S(SAPU, DTODRX_CURRENTOWNER): case SDCA_CTL_TYPE_S(HIDE, HIDTX_CURRENTOWNER): case SDCA_CTL_TYPE_S(HIDE, HIDRX_CURRENTOWNER): return SDCA_CTL_DATATYPE_BITMAP; case SDCA_CTL_TYPE_S(IT, MATCHING_GUID): case SDCA_CTL_TYPE_S(OT, MATCHING_GUID): case SDCA_CTL_TYPE_S(ENTITY_0, MATCHING_GUID): return SDCA_CTL_DATATYPE_GUID; default: return SDCA_CTL_DATATYPE_IMPDEF; } } static int find_sdca_control_range(struct device *dev, struct fwnode_handle *control_node, struct sdca_control_range *range) { u8 *range_list; int num_range; u16 *limits; int i; num_range = fwnode_property_count_u8(control_node, "mipi-sdca-control-range"); if (!num_range || num_range == -EINVAL) return 0; else if (num_range < 0) return num_range; range_list = devm_kcalloc(dev, num_range, sizeof(*range_list), GFP_KERNEL); if (!range_list) return -ENOMEM; fwnode_property_read_u8_array(control_node, "mipi-sdca-control-range", range_list, num_range); limits = (u16 *)range_list; range->cols = le16_to_cpu(limits[0]); range->rows = le16_to_cpu(limits[1]); range->data = (u32 *)&limits[2]; num_range = (num_range - (2 * sizeof(*limits))) / sizeof(*range->data); if (num_range != range->cols * range->rows) return -EINVAL; for (i = 0; i < num_range; i++) range->data[i] = le32_to_cpu(range->data[i]); return 0; } /* * TODO: Add support for -cn- properties, allowing different channels to have * different defaults etc. */ static int find_sdca_entity_control(struct device *dev, struct sdca_entity *entity, struct fwnode_handle *control_node, struct sdca_control *control) { u32 tmp; int ret; ret = fwnode_property_read_u32(control_node, "mipi-sdca-control-access-mode", &tmp); if (ret) { dev_err(dev, "%s: control %#x: access mode missing: %d\n", entity->label, control->sel, ret); return ret; } control->mode = tmp; ret = fwnode_property_read_u32(control_node, "mipi-sdca-control-access-layer", &tmp); if (ret) { dev_err(dev, "%s: control %#x: access layer missing: %d\n", entity->label, control->sel, ret); return ret; } control->layers = tmp; switch (control->mode) { case SDCA_ACCESS_MODE_DC: ret = fwnode_property_read_u32(control_node, "mipi-sdca-control-dc-value", &tmp); if (ret) { dev_err(dev, "%s: control %#x: dc value missing: %d\n", entity->label, control->sel, ret); return ret; } control->value = tmp; control->has_fixed = true; break; case SDCA_ACCESS_MODE_RW: case SDCA_ACCESS_MODE_DUAL: ret = fwnode_property_read_u32(control_node, "mipi-sdca-control-default-value", &tmp); if (!ret) { control->value = tmp; control->has_default = true; } ret = fwnode_property_read_u32(control_node, "mipi-sdca-control-fixed-value", &tmp); if (!ret) { if (control->has_default && control->value != tmp) { dev_err(dev, "%s: control %#x: default and fixed value don't match\n", entity->label, control->sel); return -EINVAL; } control->value = tmp; control->has_fixed = true; } control->deferrable = fwnode_property_read_bool(control_node, "mipi-sdca-control-deferrable"); break; default: break; } ret = find_sdca_control_range(dev, control_node, &control->range); if (ret) { dev_err(dev, "%s: control %#x: range missing: %d\n", entity->label, control->sel, ret); return ret; } ret = fwnode_property_read_u64(control_node, "mipi-sdca-control-cn-list", &control->cn_list); if (ret == -EINVAL) { /* Spec allows not specifying cn-list if only the first number is used */ control->cn_list = 0x1; } else if (ret || !control->cn_list) { dev_err(dev, "%s: control %#x: cn list missing: %d\n", entity->label, control->sel, ret); return ret; } ret = fwnode_property_read_u32(control_node, "mipi-sdca-control-interrupt-position", &tmp); if (!ret) control->interrupt_position = tmp; control->label = find_sdca_control_label(dev, entity, control); if (!control->label) return -ENOMEM; control->type = find_sdca_control_datatype(entity, control); control->nbits = find_sdca_control_bits(entity, control); dev_info(dev, "%s: %s: control %#x mode %#x layers %#x cn %#llx int %d value %#x %s\n", entity->label, control->label, control->sel, control->mode, control->layers, control->cn_list, control->interrupt_position, control->value, control->deferrable ? "deferrable" : ""); return 0; } static int find_sdca_entity_controls(struct device *dev, struct fwnode_handle *entity_node, struct sdca_entity *entity) { struct sdca_control *controls; int num_controls; u64 control_list; int control_sel; int i, ret; ret = fwnode_property_read_u64(entity_node, "mipi-sdca-control-list", &control_list); if (ret == -EINVAL) { /* Allow missing control lists, assume no controls. */ dev_warn(dev, "%s: missing control list\n", entity->label); return 0; } else if (ret) { dev_err(dev, "%s: failed to read control list: %d\n", entity->label, ret); return ret; } else if (!control_list) { return 0; } num_controls = hweight64(control_list); controls = devm_kcalloc(dev, num_controls, sizeof(*controls), GFP_KERNEL); if (!controls) return -ENOMEM; i = 0; for_each_set_bit(control_sel, (unsigned long *)&control_list, BITS_PER_TYPE(control_list)) { struct fwnode_handle *control_node; char control_property[SDCA_PROPERTY_LENGTH]; /* DisCo uses upper-case for hex numbers */ snprintf(control_property, sizeof(control_property), "mipi-sdca-control-0x%X-subproperties", control_sel); control_node = fwnode_get_named_child_node(entity_node, control_property); if (!control_node) { dev_err(dev, "%s: control node %s not found\n", entity->label, control_property); return -EINVAL; } controls[i].sel = control_sel; ret = find_sdca_entity_control(dev, entity, control_node, &controls[i]); fwnode_handle_put(control_node); if (ret) return ret; i++; } entity->num_controls = num_controls; entity->controls = controls; return 0; } static bool find_sdca_iot_dataport(struct sdca_entity_iot *terminal) { switch (terminal->type) { case SDCA_TERM_TYPE_GENERIC: case SDCA_TERM_TYPE_ULTRASOUND: case SDCA_TERM_TYPE_CAPTURE_DIRECT_PCM_MIC: case SDCA_TERM_TYPE_RAW_PDM_MIC: case SDCA_TERM_TYPE_SPEECH: case SDCA_TERM_TYPE_VOICE: case SDCA_TERM_TYPE_SECONDARY_PCM_MIC: case SDCA_TERM_TYPE_ACOUSTIC_CONTEXT_AWARENESS: case SDCA_TERM_TYPE_DTOD_STREAM: case SDCA_TERM_TYPE_REFERENCE_STREAM: case SDCA_TERM_TYPE_SENSE_CAPTURE: case SDCA_TERM_TYPE_STREAMING_MIC: case SDCA_TERM_TYPE_OPTIMIZATION_STREAM: case SDCA_TERM_TYPE_PDM_RENDER_STREAM: case SDCA_TERM_TYPE_COMPANION_DATA: return true; default: return false; } } static int find_sdca_entity_iot(struct device *dev, struct fwnode_handle *entity_node, struct sdca_entity *entity) { struct sdca_entity_iot *terminal = &entity->iot; u32 tmp; int ret; ret = fwnode_property_read_u32(entity_node, "mipi-sdca-terminal-type", &tmp); if (ret) { dev_err(dev, "%s: terminal type missing: %d\n", entity->label, ret); return ret; } terminal->type = tmp; terminal->is_dataport = find_sdca_iot_dataport(terminal); ret = fwnode_property_read_u32(entity_node, "mipi-sdca-terminal-reference-number", &tmp); if (!ret) terminal->reference = tmp; ret = fwnode_property_read_u32(entity_node, "mipi-sdca-terminal-connector-type", &tmp); if (!ret) terminal->connector = tmp; ret = fwnode_property_read_u32(entity_node, "mipi-sdca-terminal-transducer-count", &tmp); if (!ret) terminal->num_transducer = tmp; dev_info(dev, "%s: terminal type %#x ref %#x conn %#x count %d\n", entity->label, terminal->type, terminal->reference, terminal->connector, terminal->num_transducer); return 0; } static int find_sdca_entity_cs(struct device *dev, struct fwnode_handle *entity_node, struct sdca_entity *entity) { struct sdca_entity_cs *clock = &entity->cs; u32 tmp; int ret; ret = fwnode_property_read_u32(entity_node, "mipi-sdca-cs-type", &tmp); if (ret) { dev_err(dev, "%s: clock type missing: %d\n", entity->label, ret); return ret; } clock->type = tmp; ret = fwnode_property_read_u32(entity_node, "mipi-sdca-clock-valid-max-delay", &tmp); if (!ret) clock->max_delay = tmp; dev_info(dev, "%s: clock type %#x delay %d\n", entity->label, clock->type, clock->max_delay); return 0; } static int find_sdca_entity_pde(struct device *dev, struct fwnode_handle *entity_node, struct sdca_entity *entity) { static const int mult_delay = 3; struct sdca_entity_pde *power = &entity->pde; u32 *delay_list __free(kfree) = NULL; struct sdca_pde_delay *delays; int num_delays; int i, j; num_delays = fwnode_property_count_u32(entity_node, "mipi-sdca-powerdomain-transition-max-delay"); if (num_delays <= 0) { dev_err(dev, "%s: max delay list missing: %d\n", entity->label, num_delays); return -EINVAL; } else if (num_delays % mult_delay != 0) { dev_err(dev, "%s: delays not multiple of %d\n", entity->label, mult_delay); return -EINVAL; } else if (num_delays > SDCA_MAX_DELAY_COUNT) { dev_err(dev, "%s: maximum number of transition delays exceeded\n", entity->label); return -EINVAL; } /* There are 3 values per delay */ delays = devm_kcalloc(dev, num_delays / mult_delay, sizeof(*delays), GFP_KERNEL); if (!delays) return -ENOMEM; delay_list = kcalloc(num_delays, sizeof(*delay_list), GFP_KERNEL); if (!delay_list) return -ENOMEM; fwnode_property_read_u32_array(entity_node, "mipi-sdca-powerdomain-transition-max-delay", delay_list, num_delays); num_delays /= mult_delay; for (i = 0, j = 0; i < num_delays; i++) { delays[i].from_ps = delay_list[j++]; delays[i].to_ps = delay_list[j++]; delays[i].us = delay_list[j++]; dev_info(dev, "%s: from %#x to %#x delay %dus\n", entity->label, delays[i].from_ps, delays[i].to_ps, delays[i].us); } power->num_max_delay = num_delays; power->max_delay = delays; return 0; } struct raw_ge_mode { u8 val; u8 num_controls; struct { u8 id; u8 sel; u8 cn; __le32 val; } __packed controls[] __counted_by(num_controls); } __packed; static int find_sdca_entity_ge(struct device *dev, struct fwnode_handle *entity_node, struct sdca_entity *entity) { struct sdca_entity_ge *group = &entity->ge; u8 *affected_list __free(kfree) = NULL; u8 *affected_iter; int num_affected; int i, j; num_affected = fwnode_property_count_u8(entity_node, "mipi-sdca-ge-selectedmode-controls-affected"); if (!num_affected) { return 0; } else if (num_affected < 0) { dev_err(dev, "%s: failed to read affected controls: %d\n", entity->label, num_affected); return num_affected; } else if (num_affected > SDCA_MAX_AFFECTED_COUNT) { dev_err(dev, "%s: maximum affected controls size exceeded\n", entity->label); return -EINVAL; } affected_list = kcalloc(num_affected, sizeof(*affected_list), GFP_KERNEL); if (!affected_list) return -ENOMEM; fwnode_property_read_u8_array(entity_node, "mipi-sdca-ge-selectedmode-controls-affected", affected_list, num_affected); group->num_modes = *affected_list; affected_iter = affected_list + 1; group->modes = devm_kcalloc(dev, group->num_modes, sizeof(*group->modes), GFP_KERNEL); if (!group->modes) return -ENOMEM; for (i = 0; i < group->num_modes; i++) { struct raw_ge_mode *raw = (struct raw_ge_mode *)affected_iter; struct sdca_ge_mode *mode = &group->modes[i]; affected_iter += sizeof(*raw); if (affected_iter > affected_list + num_affected) goto bad_list; mode->val = raw->val; mode->num_controls = raw->num_controls; affected_iter += mode->num_controls * sizeof(raw->controls[0]); if (affected_iter > affected_list + num_affected) goto bad_list; mode->controls = devm_kcalloc(dev, mode->num_controls, sizeof(*mode->controls), GFP_KERNEL); if (!mode->controls) return -ENOMEM; for (j = 0; j < mode->num_controls; j++) { mode->controls[j].id = raw->controls[j].id; mode->controls[j].sel = raw->controls[j].sel; mode->controls[j].cn = raw->controls[j].cn; mode->controls[j].val = le32_to_cpu(raw->controls[j].val); } } return 0; bad_list: dev_err(dev, "%s: malformed affected controls list\n", entity->label); return -EINVAL; } static int find_sdca_entity(struct device *dev, struct fwnode_handle *function_node, struct fwnode_handle *entity_node, struct sdca_entity *entity) { u32 tmp; int ret; ret = fwnode_property_read_string(entity_node, "mipi-sdca-entity-label", &entity->label); if (ret) { dev_err(dev, "%pfwP: entity %#x: label missing: %d\n", function_node, entity->id, ret); return ret; } ret = fwnode_property_read_u32(entity_node, "mipi-sdca-entity-type", &tmp); if (ret) { dev_err(dev, "%s: type missing: %d\n", entity->label, ret); return ret; } entity->type = tmp; dev_info(dev, "%s: entity %#x type %#x\n", entity->label, entity->id, entity->type); switch (entity->type) { case SDCA_ENTITY_TYPE_IT: case SDCA_ENTITY_TYPE_OT: ret = find_sdca_entity_iot(dev, entity_node, entity); break; case SDCA_ENTITY_TYPE_CS: ret = find_sdca_entity_cs(dev, entity_node, entity); break; case SDCA_ENTITY_TYPE_PDE: ret = find_sdca_entity_pde(dev, entity_node, entity); break; case SDCA_ENTITY_TYPE_GE: ret = find_sdca_entity_ge(dev, entity_node, entity); break; default: break; } if (ret) return ret; ret = find_sdca_entity_controls(dev, entity_node, entity); if (ret) return ret; return 0; } static int find_sdca_entities(struct device *dev, struct fwnode_handle *function_node, struct sdca_function_data *function) { u32 *entity_list __free(kfree) = NULL; struct sdca_entity *entities; int num_entities; int i, ret; num_entities = fwnode_property_count_u32(function_node, "mipi-sdca-entity-id-list"); if (num_entities <= 0) { dev_err(dev, "%pfwP: entity id list missing: %d\n", function_node, num_entities); return -EINVAL; } else if (num_entities > SDCA_MAX_ENTITY_COUNT) { dev_err(dev, "%pfwP: maximum number of entities exceeded\n", function_node); return -EINVAL; } /* Add 1 to make space for Entity 0 */ entities = devm_kcalloc(dev, num_entities + 1, sizeof(*entities), GFP_KERNEL); if (!entities) return -ENOMEM; entity_list = kcalloc(num_entities, sizeof(*entity_list), GFP_KERNEL); if (!entity_list) return -ENOMEM; fwnode_property_read_u32_array(function_node, "mipi-sdca-entity-id-list", entity_list, num_entities); for (i = 0; i < num_entities; i++) entities[i].id = entity_list[i]; /* now read subproperties */ for (i = 0; i < num_entities; i++) { char entity_property[SDCA_PROPERTY_LENGTH]; struct fwnode_handle *entity_node; /* DisCo uses upper-case for hex numbers */ snprintf(entity_property, sizeof(entity_property), "mipi-sdca-entity-id-0x%X-subproperties", entities[i].id); entity_node = fwnode_get_named_child_node(function_node, entity_property); if (!entity_node) { dev_err(dev, "%pfwP: entity node %s not found\n", function_node, entity_property); return -EINVAL; } ret = find_sdca_entity(dev, function_node, entity_node, &entities[i]); fwnode_handle_put(entity_node); if (ret) return ret; } /* * Add Entity 0 at end of the array, makes it easy to skip during * all the Entity searches involved in creating connections. */ entities[num_entities].label = "entity0"; ret = find_sdca_entity_controls(dev, function_node, &entities[num_entities]); if (ret) return ret; function->num_entities = num_entities + 1; function->entities = entities; return 0; } static struct sdca_entity *find_sdca_entity_by_label(struct sdca_function_data *function, const char *entity_label) { int i; for (i = 0; i < function->num_entities; i++) { struct sdca_entity *entity = &function->entities[i]; if (!strcmp(entity->label, entity_label)) return entity; } return NULL; } static struct sdca_entity *find_sdca_entity_by_id(struct sdca_function_data *function, const int id) { int i; for (i = 0; i < function->num_entities; i++) { struct sdca_entity *entity = &function->entities[i]; if (entity->id == id) return entity; } return NULL; } static int find_sdca_entity_connection_iot(struct device *dev, struct sdca_function_data *function, struct fwnode_handle *entity_node, struct sdca_entity *entity) { struct sdca_entity_iot *terminal = &entity->iot; struct fwnode_handle *clock_node; struct sdca_entity *clock_entity; const char *clock_label; int ret; clock_node = fwnode_get_named_child_node(entity_node, "mipi-sdca-terminal-clock-connection"); if (!clock_node) return 0; ret = fwnode_property_read_string(clock_node, "mipi-sdca-entity-label", &clock_label); if (ret) { dev_err(dev, "%s: clock label missing: %d\n", entity->label, ret); fwnode_handle_put(clock_node); return ret; } clock_entity = find_sdca_entity_by_label(function, clock_label); if (!clock_entity) { dev_err(dev, "%s: failed to find clock with label %s\n", entity->label, clock_label); fwnode_handle_put(clock_node); return -EINVAL; } terminal->clock = clock_entity; dev_info(dev, "%s -> %s\n", clock_entity->label, entity->label); fwnode_handle_put(clock_node); return 0; } static int find_sdca_entity_connection_pde(struct device *dev, struct sdca_function_data *function, struct fwnode_handle *entity_node, struct sdca_entity *entity) { struct sdca_entity_pde *power = &entity->pde; u32 *managed_list __free(kfree) = NULL; struct sdca_entity **managed; int num_managed; int i; num_managed = fwnode_property_count_u32(entity_node, "mipi-sdca-powerdomain-managed-list"); if (!num_managed) { return 0; } else if (num_managed < 0) { dev_err(dev, "%s: managed list missing: %d\n", entity->label, num_managed); return num_managed; } else if (num_managed > SDCA_MAX_ENTITY_COUNT) { dev_err(dev, "%s: maximum number of managed entities exceeded\n", entity->label); return -EINVAL; } managed = devm_kcalloc(dev, num_managed, sizeof(*managed), GFP_KERNEL); if (!managed) return -ENOMEM; managed_list = kcalloc(num_managed, sizeof(*managed_list), GFP_KERNEL); if (!managed_list) return -ENOMEM; fwnode_property_read_u32_array(entity_node, "mipi-sdca-powerdomain-managed-list", managed_list, num_managed); for (i = 0; i < num_managed; i++) { managed[i] = find_sdca_entity_by_id(function, managed_list[i]); if (!managed[i]) { dev_err(dev, "%s: failed to find entity with id %#x\n", entity->label, managed_list[i]); return -EINVAL; } dev_info(dev, "%s -> %s\n", managed[i]->label, entity->label); } power->num_managed = num_managed; power->managed = managed; return 0; } static int find_sdca_entity_connection_ge(struct device *dev, struct sdca_function_data *function, struct fwnode_handle *entity_node, struct sdca_entity *entity) { int i, j; for (i = 0; i < entity->ge.num_modes; i++) { struct sdca_ge_mode *mode = &entity->ge.modes[i]; for (j = 0; j < mode->num_controls; j++) { struct sdca_ge_control *affected = &mode->controls[j]; struct sdca_entity *managed; managed = find_sdca_entity_by_id(function, affected->id); if (!managed) { dev_err(dev, "%s: failed to find entity with id %#x\n", entity->label, affected->id); return -EINVAL; } if (managed->group && managed->group != entity) { dev_err(dev, "%s: entity controlled by two groups %s, %s\n", managed->label, managed->group->label, entity->label); return -EINVAL; } managed->group = entity; } } return 0; } static int find_sdca_entity_connection(struct device *dev, struct sdca_function_data *function, struct fwnode_handle *entity_node, struct sdca_entity *entity) { struct sdca_entity **pins; int num_pins, pin; u64 pin_list; int i, ret; switch (entity->type) { case SDCA_ENTITY_TYPE_IT: case SDCA_ENTITY_TYPE_OT: ret = find_sdca_entity_connection_iot(dev, function, entity_node, entity); break; case SDCA_ENTITY_TYPE_PDE: ret = find_sdca_entity_connection_pde(dev, function, entity_node, entity); break; case SDCA_ENTITY_TYPE_GE: ret = find_sdca_entity_connection_ge(dev, function, entity_node, entity); break; default: ret = 0; break; } if (ret) return ret; ret = fwnode_property_read_u64(entity_node, "mipi-sdca-input-pin-list", &pin_list); if (ret == -EINVAL) { /* Allow missing pin lists, assume no pins. */ dev_warn(dev, "%s: missing pin list\n", entity->label); return 0; } else if (ret) { dev_err(dev, "%s: failed to read pin list: %d\n", entity->label, ret); return ret; } else if (pin_list & BIT(0)) { /* * Each bit set in the pin-list refers to an entity_id in this * Function. Entity 0 is an illegal connection since it is used * for Function-level configurations. */ dev_err(dev, "%s: pin 0 used as input\n", entity->label); return -EINVAL; } else if (!pin_list) { return 0; } num_pins = hweight64(pin_list); pins = devm_kcalloc(dev, num_pins, sizeof(*pins), GFP_KERNEL); if (!pins) return -ENOMEM; i = 0; for_each_set_bit(pin, (unsigned long *)&pin_list, BITS_PER_TYPE(pin_list)) { char pin_property[SDCA_PROPERTY_LENGTH]; struct fwnode_handle *connected_node; struct sdca_entity *connected_entity; const char *connected_label; snprintf(pin_property, sizeof(pin_property), "mipi-sdca-input-pin-%d", pin); connected_node = fwnode_get_named_child_node(entity_node, pin_property); if (!connected_node) { dev_err(dev, "%s: pin node %s not found\n", entity->label, pin_property); return -EINVAL; } ret = fwnode_property_read_string(connected_node, "mipi-sdca-entity-label", &connected_label); if (ret) { dev_err(dev, "%s: pin %d label missing: %d\n", entity->label, pin, ret); fwnode_handle_put(connected_node); return ret; } connected_entity = find_sdca_entity_by_label(function, connected_label); if (!connected_entity) { dev_err(dev, "%s: failed to find entity with label %s\n", entity->label, connected_label); fwnode_handle_put(connected_node); return -EINVAL; } pins[i] = connected_entity; dev_info(dev, "%s -> %s\n", connected_entity->label, entity->label); i++; fwnode_handle_put(connected_node); } entity->num_sources = num_pins; entity->sources = pins; return 0; } static int find_sdca_connections(struct device *dev, struct fwnode_handle *function_node, struct sdca_function_data *function) { int i; /* Entity 0 cannot have connections */ for (i = 0; i < function->num_entities - 1; i++) { struct sdca_entity *entity = &function->entities[i]; char entity_property[SDCA_PROPERTY_LENGTH]; struct fwnode_handle *entity_node; int ret; /* DisCo uses upper-case for hex numbers */ snprintf(entity_property, sizeof(entity_property), "mipi-sdca-entity-id-0x%X-subproperties", entity->id); entity_node = fwnode_get_named_child_node(function_node, entity_property); if (!entity_node) { dev_err(dev, "%pfwP: entity node %s not found\n", function_node, entity_property); return -EINVAL; } ret = find_sdca_entity_connection(dev, function, entity_node, entity); fwnode_handle_put(entity_node); if (ret) return ret; } return 0; } static int find_sdca_cluster_channel(struct device *dev, struct sdca_cluster *cluster, struct fwnode_handle *channel_node, struct sdca_channel *channel) { u32 tmp; int ret; ret = fwnode_property_read_u32(channel_node, "mipi-sdca-cluster-channel-id", &tmp); if (ret) { dev_err(dev, "cluster %#x: missing channel id: %d\n", cluster->id, ret); return ret; } channel->id = tmp; ret = fwnode_property_read_u32(channel_node, "mipi-sdca-cluster-channel-purpose", &tmp); if (ret) { dev_err(dev, "cluster %#x: channel %#x: missing purpose: %d\n", cluster->id, channel->id, ret); return ret; } channel->purpose = tmp; ret = fwnode_property_read_u32(channel_node, "mipi-sdca-cluster-channel-relationship", &tmp); if (ret) { dev_err(dev, "cluster %#x: channel %#x: missing relationship: %d\n", cluster->id, channel->id, ret); return ret; } channel->relationship = tmp; dev_info(dev, "cluster %#x: channel id %#x purpose %#x relationship %#x\n", cluster->id, channel->id, channel->purpose, channel->relationship); return 0; } static int find_sdca_cluster_channels(struct device *dev, struct fwnode_handle *cluster_node, struct sdca_cluster *cluster) { struct sdca_channel *channels; u32 num_channels; int i, ret; ret = fwnode_property_read_u32(cluster_node, "mipi-sdca-channel-count", &num_channels); if (ret < 0) { dev_err(dev, "cluster %#x: failed to read channel list: %d\n", cluster->id, ret); return ret; } else if (num_channels > SDCA_MAX_CHANNEL_COUNT) { dev_err(dev, "cluster %#x: maximum number of channels exceeded\n", cluster->id); return -EINVAL; } channels = devm_kcalloc(dev, num_channels, sizeof(*channels), GFP_KERNEL); if (!channels) return -ENOMEM; for (i = 0; i < num_channels; i++) { char channel_property[SDCA_PROPERTY_LENGTH]; struct fwnode_handle *channel_node; /* DisCo uses upper-case for hex numbers */ snprintf(channel_property, sizeof(channel_property), "mipi-sdca-channel-%d-subproperties", i + 1); channel_node = fwnode_get_named_child_node(cluster_node, channel_property); if (!channel_node) { dev_err(dev, "cluster %#x: channel node %s not found\n", cluster->id, channel_property); return -EINVAL; } ret = find_sdca_cluster_channel(dev, cluster, channel_node, &channels[i]); fwnode_handle_put(channel_node); if (ret) return ret; } cluster->num_channels = num_channels; cluster->channels = channels; return 0; } static int find_sdca_clusters(struct device *dev, struct fwnode_handle *function_node, struct sdca_function_data *function) { u32 *cluster_list __free(kfree) = NULL; struct sdca_cluster *clusters; int num_clusters; int i, ret; num_clusters = fwnode_property_count_u32(function_node, "mipi-sdca-cluster-id-list"); if (!num_clusters || num_clusters == -EINVAL) { return 0; } else if (num_clusters < 0) { dev_err(dev, "%pfwP: failed to read cluster id list: %d\n", function_node, num_clusters); return num_clusters; } else if (num_clusters > SDCA_MAX_CLUSTER_COUNT) { dev_err(dev, "%pfwP: maximum number of clusters exceeded\n", function_node); return -EINVAL; } clusters = devm_kcalloc(dev, num_clusters, sizeof(*clusters), GFP_KERNEL); if (!clusters) return -ENOMEM; cluster_list = kcalloc(num_clusters, sizeof(*cluster_list), GFP_KERNEL); if (!cluster_list) return -ENOMEM; fwnode_property_read_u32_array(function_node, "mipi-sdca-cluster-id-list", cluster_list, num_clusters); for (i = 0; i < num_clusters; i++) clusters[i].id = cluster_list[i]; /* now read subproperties */ for (i = 0; i < num_clusters; i++) { char cluster_property[SDCA_PROPERTY_LENGTH]; struct fwnode_handle *cluster_node; /* DisCo uses upper-case for hex numbers */ snprintf(cluster_property, sizeof(cluster_property), "mipi-sdca-cluster-id-0x%X-subproperties", clusters[i].id); cluster_node = fwnode_get_named_child_node(function_node, cluster_property); if (!cluster_node) { dev_err(dev, "%pfwP: cluster node %s not found\n", function_node, cluster_property); return -EINVAL; } ret = find_sdca_cluster_channels(dev, cluster_node, &clusters[i]); fwnode_handle_put(cluster_node); if (ret) return ret; } function->num_clusters = num_clusters; function->clusters = clusters; return 0; } /** * sdca_parse_function - parse ACPI DisCo for a Function * @dev: Pointer to device against which function data will be allocated. * @function_desc: Pointer to the Function short descriptor. * @function: Pointer to the Function information, to be populated. * * Return: Returns 0 for success. */ int sdca_parse_function(struct device *dev, struct sdca_function_desc *function_desc, struct sdca_function_data *function) { u32 tmp; int ret; function->desc = function_desc; ret = fwnode_property_read_u32(function_desc->node, "mipi-sdca-function-busy-max-delay", &tmp); if (!ret) function->busy_max_delay = tmp; dev_info(dev, "%pfwP: name %s delay %dus\n", function->desc->node, function->desc->name, function->busy_max_delay); ret = find_sdca_init_table(dev, function_desc->node, function); if (ret) return ret; ret = find_sdca_entities(dev, function_desc->node, function); if (ret) return ret; ret = find_sdca_connections(dev, function_desc->node, function); if (ret) return ret; ret = find_sdca_clusters(dev, function_desc->node, function); if (ret < 0) return ret; return 0; } EXPORT_SYMBOL_NS(sdca_parse_function, "SND_SOC_SDCA"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("SDCA library");