// SPDX-License-Identifier: GPL-2.0-only /* * vsock test utilities * * Copyright (C) 2017 Red Hat, Inc. * * Author: Stefan Hajnoczi */ #include #include #include #include #include #include #include #include #include #include #include "timeout.h" #include "control.h" #include "util.h" /* Install signal handlers */ void init_signals(void) { struct sigaction act = { .sa_handler = sigalrm, }; sigaction(SIGALRM, &act, NULL); signal(SIGPIPE, SIG_IGN); } static unsigned int parse_uint(const char *str, const char *err_str) { char *endptr = NULL; unsigned long n; errno = 0; n = strtoul(str, &endptr, 10); if (errno || *endptr != '\0') { fprintf(stderr, "malformed %s \"%s\"\n", err_str, str); exit(EXIT_FAILURE); } return n; } /* Parse a CID in string representation */ unsigned int parse_cid(const char *str) { return parse_uint(str, "CID"); } /* Parse a port in string representation */ unsigned int parse_port(const char *str) { return parse_uint(str, "port"); } /* Wait for the remote to close the connection */ void vsock_wait_remote_close(int fd) { struct epoll_event ev; int epollfd, nfds; epollfd = epoll_create1(0); if (epollfd == -1) { perror("epoll_create1"); exit(EXIT_FAILURE); } ev.events = EPOLLRDHUP | EPOLLHUP; ev.data.fd = fd; if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) { perror("epoll_ctl"); exit(EXIT_FAILURE); } nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000); if (nfds == -1) { perror("epoll_wait"); exit(EXIT_FAILURE); } if (nfds == 0) { fprintf(stderr, "epoll_wait timed out\n"); exit(EXIT_FAILURE); } assert(nfds == 1); assert(ev.events & (EPOLLRDHUP | EPOLLHUP)); assert(ev.data.fd == fd); close(epollfd); } /* Bind to , connect to and return the file descriptor. */ int vsock_bind_connect(unsigned int cid, unsigned int port, unsigned int bind_port, int type) { struct sockaddr_vm sa_client = { .svm_family = AF_VSOCK, .svm_cid = VMADDR_CID_ANY, .svm_port = bind_port, }; struct sockaddr_vm sa_server = { .svm_family = AF_VSOCK, .svm_cid = cid, .svm_port = port, }; int client_fd, ret; client_fd = socket(AF_VSOCK, type, 0); if (client_fd < 0) { perror("socket"); exit(EXIT_FAILURE); } if (bind(client_fd, (struct sockaddr *)&sa_client, sizeof(sa_client))) { perror("bind"); exit(EXIT_FAILURE); } timeout_begin(TIMEOUT); do { ret = connect(client_fd, (struct sockaddr *)&sa_server, sizeof(sa_server)); timeout_check("connect"); } while (ret < 0 && errno == EINTR); timeout_end(); if (ret < 0) { perror("connect"); exit(EXIT_FAILURE); } return client_fd; } /* Connect to and return the file descriptor. */ int vsock_connect(unsigned int cid, unsigned int port, int type) { union { struct sockaddr sa; struct sockaddr_vm svm; } addr = { .svm = { .svm_family = AF_VSOCK, .svm_port = port, .svm_cid = cid, }, }; int ret; int fd; control_expectln("LISTENING"); fd = socket(AF_VSOCK, type, 0); if (fd < 0) { perror("socket"); exit(EXIT_FAILURE); } timeout_begin(TIMEOUT); do { ret = connect(fd, &addr.sa, sizeof(addr.svm)); timeout_check("connect"); } while (ret < 0 && errno == EINTR); timeout_end(); if (ret < 0) { int old_errno = errno; close(fd); fd = -1; errno = old_errno; } return fd; } int vsock_stream_connect(unsigned int cid, unsigned int port) { return vsock_connect(cid, port, SOCK_STREAM); } int vsock_seqpacket_connect(unsigned int cid, unsigned int port) { return vsock_connect(cid, port, SOCK_SEQPACKET); } /* Listen on and return the file descriptor. */ static int vsock_listen(unsigned int cid, unsigned int port, int type) { union { struct sockaddr sa; struct sockaddr_vm svm; } addr = { .svm = { .svm_family = AF_VSOCK, .svm_port = port, .svm_cid = cid, }, }; int fd; fd = socket(AF_VSOCK, type, 0); if (fd < 0) { perror("socket"); exit(EXIT_FAILURE); } if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) { perror("bind"); exit(EXIT_FAILURE); } if (listen(fd, 1) < 0) { perror("listen"); exit(EXIT_FAILURE); } return fd; } /* Listen on and return the first incoming connection. The remote * address is stored to clientaddrp. clientaddrp may be NULL. */ int vsock_accept(unsigned int cid, unsigned int port, struct sockaddr_vm *clientaddrp, int type) { union { struct sockaddr sa; struct sockaddr_vm svm; } clientaddr; socklen_t clientaddr_len = sizeof(clientaddr.svm); int fd, client_fd, old_errno; fd = vsock_listen(cid, port, type); control_writeln("LISTENING"); timeout_begin(TIMEOUT); do { client_fd = accept(fd, &clientaddr.sa, &clientaddr_len); timeout_check("accept"); } while (client_fd < 0 && errno == EINTR); timeout_end(); old_errno = errno; close(fd); errno = old_errno; if (client_fd < 0) return client_fd; if (clientaddr_len != sizeof(clientaddr.svm)) { fprintf(stderr, "unexpected addrlen from accept(2), %zu\n", (size_t)clientaddr_len); exit(EXIT_FAILURE); } if (clientaddr.sa.sa_family != AF_VSOCK) { fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n", clientaddr.sa.sa_family); exit(EXIT_FAILURE); } if (clientaddrp) *clientaddrp = clientaddr.svm; return client_fd; } int vsock_stream_accept(unsigned int cid, unsigned int port, struct sockaddr_vm *clientaddrp) { return vsock_accept(cid, port, clientaddrp, SOCK_STREAM); } int vsock_stream_listen(unsigned int cid, unsigned int port) { return vsock_listen(cid, port, SOCK_STREAM); } int vsock_seqpacket_accept(unsigned int cid, unsigned int port, struct sockaddr_vm *clientaddrp) { return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET); } /* Transmit bytes from a buffer and check the return value. * * expected_ret: * <0 Negative errno (for testing errors) * 0 End-of-file * >0 Success (bytes successfully written) */ void send_buf(int fd, const void *buf, size_t len, int flags, ssize_t expected_ret) { ssize_t nwritten = 0; ssize_t ret; timeout_begin(TIMEOUT); do { ret = send(fd, buf + nwritten, len - nwritten, flags); timeout_check("send"); if (ret == 0 || (ret < 0 && errno != EINTR)) break; nwritten += ret; } while (nwritten < len); timeout_end(); if (expected_ret < 0) { if (ret != -1) { fprintf(stderr, "bogus send(2) return value %zd (expected %zd)\n", ret, expected_ret); exit(EXIT_FAILURE); } if (errno != -expected_ret) { perror("send"); exit(EXIT_FAILURE); } return; } if (ret < 0) { perror("send"); exit(EXIT_FAILURE); } if (nwritten != expected_ret) { if (ret == 0) fprintf(stderr, "unexpected EOF while sending bytes\n"); fprintf(stderr, "bogus send(2) bytes written %zd (expected %zd)\n", nwritten, expected_ret); exit(EXIT_FAILURE); } } /* Receive bytes in a buffer and check the return value. * * expected_ret: * <0 Negative errno (for testing errors) * 0 End-of-file * >0 Success (bytes successfully read) */ void recv_buf(int fd, void *buf, size_t len, int flags, ssize_t expected_ret) { ssize_t nread = 0; ssize_t ret; timeout_begin(TIMEOUT); do { ret = recv(fd, buf + nread, len - nread, flags); timeout_check("recv"); if (ret == 0 || (ret < 0 && errno != EINTR)) break; nread += ret; } while (nread < len); timeout_end(); if (expected_ret < 0) { if (ret != -1) { fprintf(stderr, "bogus recv(2) return value %zd (expected %zd)\n", ret, expected_ret); exit(EXIT_FAILURE); } if (errno != -expected_ret) { perror("recv"); exit(EXIT_FAILURE); } return; } if (ret < 0) { perror("recv"); exit(EXIT_FAILURE); } if (nread != expected_ret) { if (ret == 0) fprintf(stderr, "unexpected EOF while receiving bytes\n"); fprintf(stderr, "bogus recv(2) bytes read %zd (expected %zd)\n", nread, expected_ret); exit(EXIT_FAILURE); } } /* Transmit one byte and check the return value. * * expected_ret: * <0 Negative errno (for testing errors) * 0 End-of-file * 1 Success */ void send_byte(int fd, int expected_ret, int flags) { static const uint8_t byte = 'A'; send_buf(fd, &byte, sizeof(byte), flags, expected_ret); } /* Receive one byte and check the return value. * * expected_ret: * <0 Negative errno (for testing errors) * 0 End-of-file * 1 Success */ void recv_byte(int fd, int expected_ret, int flags) { uint8_t byte; recv_buf(fd, &byte, sizeof(byte), flags, expected_ret); if (byte != 'A') { fprintf(stderr, "unexpected byte read 0x%02x\n", byte); exit(EXIT_FAILURE); } } /* Run test cases. The program terminates if a failure occurs. */ void run_tests(const struct test_case *test_cases, const struct test_opts *opts) { int i; for (i = 0; test_cases[i].name; i++) { void (*run)(const struct test_opts *opts); char *line; printf("%d - %s...", i, test_cases[i].name); fflush(stdout); /* Full barrier before executing the next test. This * ensures that client and server are executing the * same test case. In particular, it means whoever is * faster will not see the peer still executing the * last test. This is important because port numbers * can be used by multiple test cases. */ if (test_cases[i].skip) control_writeln("SKIP"); else control_writeln("NEXT"); line = control_readln(); if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) { printf("skipped\n"); free(line); continue; } control_cmpln(line, "NEXT", true); free(line); if (opts->mode == TEST_MODE_CLIENT) run = test_cases[i].run_client; else run = test_cases[i].run_server; if (run) run(opts); printf("ok\n"); } } void list_tests(const struct test_case *test_cases) { int i; printf("ID\tTest name\n"); for (i = 0; test_cases[i].name; i++) printf("%d\t%s\n", i, test_cases[i].name); exit(EXIT_FAILURE); } static unsigned long parse_test_id(const char *test_id_str, size_t test_cases_len) { unsigned long test_id; char *endptr = NULL; errno = 0; test_id = strtoul(test_id_str, &endptr, 10); if (errno || *endptr != '\0') { fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str); exit(EXIT_FAILURE); } if (test_id >= test_cases_len) { fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n", test_id, test_cases_len - 1); exit(EXIT_FAILURE); } return test_id; } void skip_test(struct test_case *test_cases, size_t test_cases_len, const char *test_id_str) { unsigned long test_id = parse_test_id(test_id_str, test_cases_len); test_cases[test_id].skip = true; } void pick_test(struct test_case *test_cases, size_t test_cases_len, const char *test_id_str) { static bool skip_all = true; unsigned long test_id; if (skip_all) { unsigned long i; for (i = 0; i < test_cases_len; ++i) test_cases[i].skip = true; skip_all = false; } test_id = parse_test_id(test_id_str, test_cases_len); test_cases[test_id].skip = false; } unsigned long hash_djb2(const void *data, size_t len) { unsigned long hash = 5381; int i = 0; while (i < len) { hash = ((hash << 5) + hash) + ((unsigned char *)data)[i]; i++; } return hash; } size_t iovec_bytes(const struct iovec *iov, size_t iovnum) { size_t bytes; int i; for (bytes = 0, i = 0; i < iovnum; i++) bytes += iov[i].iov_len; return bytes; } unsigned long iovec_hash_djb2(const struct iovec *iov, size_t iovnum) { unsigned long hash; size_t iov_bytes; size_t offs; void *tmp; int i; iov_bytes = iovec_bytes(iov, iovnum); tmp = malloc(iov_bytes); if (!tmp) { perror("malloc"); exit(EXIT_FAILURE); } for (offs = 0, i = 0; i < iovnum; i++) { memcpy(tmp + offs, iov[i].iov_base, iov[i].iov_len); offs += iov[i].iov_len; } hash = hash_djb2(tmp, iov_bytes); free(tmp); return hash; } /* Allocates and returns new 'struct iovec *' according pattern * in the 'test_iovec'. For each element in the 'test_iovec' it * allocates new element in the resulting 'iovec'. 'iov_len' * of the new element is copied from 'test_iovec'. 'iov_base' is * allocated depending on the 'iov_base' of 'test_iovec': * * 'iov_base' == NULL -> valid buf: mmap('iov_len'). * * 'iov_base' == MAP_FAILED -> invalid buf: * mmap('iov_len'), then munmap('iov_len'). * 'iov_base' still contains result of * mmap(). * * 'iov_base' == number -> unaligned valid buf: * mmap('iov_len') + number. * * 'iovnum' is number of elements in 'test_iovec'. * * Returns new 'iovec' or calls 'exit()' on error. */ struct iovec *alloc_test_iovec(const struct iovec *test_iovec, int iovnum) { struct iovec *iovec; int i; iovec = malloc(sizeof(*iovec) * iovnum); if (!iovec) { perror("malloc"); exit(EXIT_FAILURE); } for (i = 0; i < iovnum; i++) { iovec[i].iov_len = test_iovec[i].iov_len; iovec[i].iov_base = mmap(NULL, iovec[i].iov_len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_POPULATE, -1, 0); if (iovec[i].iov_base == MAP_FAILED) { perror("mmap"); exit(EXIT_FAILURE); } if (test_iovec[i].iov_base != MAP_FAILED) iovec[i].iov_base += (uintptr_t)test_iovec[i].iov_base; } /* Unmap "invalid" elements. */ for (i = 0; i < iovnum; i++) { if (test_iovec[i].iov_base == MAP_FAILED) { if (munmap(iovec[i].iov_base, iovec[i].iov_len)) { perror("munmap"); exit(EXIT_FAILURE); } } } for (i = 0; i < iovnum; i++) { int j; if (test_iovec[i].iov_base == MAP_FAILED) continue; for (j = 0; j < iovec[i].iov_len; j++) ((uint8_t *)iovec[i].iov_base)[j] = rand() & 0xff; } return iovec; } /* Frees 'iovec *', previously allocated by 'alloc_test_iovec()'. * On error calls 'exit()'. */ void free_test_iovec(const struct iovec *test_iovec, struct iovec *iovec, int iovnum) { int i; for (i = 0; i < iovnum; i++) { if (test_iovec[i].iov_base != MAP_FAILED) { if (test_iovec[i].iov_base) iovec[i].iov_base -= (uintptr_t)test_iovec[i].iov_base; if (munmap(iovec[i].iov_base, iovec[i].iov_len)) { perror("munmap"); exit(EXIT_FAILURE); } } } free(iovec); } /* Set "unsigned long long" socket option and check that it's indeed set */ void setsockopt_ull_check(int fd, int level, int optname, unsigned long long val, char const *errmsg) { unsigned long long chkval; socklen_t chklen; int err; err = setsockopt(fd, level, optname, &val, sizeof(val)); if (err) { fprintf(stderr, "setsockopt err: %s (%d)\n", strerror(errno), errno); goto fail; } chkval = ~val; /* just make storage != val */ chklen = sizeof(chkval); err = getsockopt(fd, level, optname, &chkval, &chklen); if (err) { fprintf(stderr, "getsockopt err: %s (%d)\n", strerror(errno), errno); goto fail; } if (chklen != sizeof(chkval)) { fprintf(stderr, "size mismatch: set %zu got %d\n", sizeof(val), chklen); goto fail; } if (chkval != val) { fprintf(stderr, "value mismatch: set %llu got %llu\n", val, chkval); goto fail; } return; fail: fprintf(stderr, "%s val %llu\n", errmsg, val); exit(EXIT_FAILURE); ; } /* Set "int" socket option and check that it's indeed set */ void setsockopt_int_check(int fd, int level, int optname, int val, char const *errmsg) { int chkval; socklen_t chklen; int err; err = setsockopt(fd, level, optname, &val, sizeof(val)); if (err) { fprintf(stderr, "setsockopt err: %s (%d)\n", strerror(errno), errno); goto fail; } chkval = ~val; /* just make storage != val */ chklen = sizeof(chkval); err = getsockopt(fd, level, optname, &chkval, &chklen); if (err) { fprintf(stderr, "getsockopt err: %s (%d)\n", strerror(errno), errno); goto fail; } if (chklen != sizeof(chkval)) { fprintf(stderr, "size mismatch: set %zu got %d\n", sizeof(val), chklen); goto fail; } if (chkval != val) { fprintf(stderr, "value mismatch: set %d got %d\n", val, chkval); goto fail; } return; fail: fprintf(stderr, "%s val %d\n", errmsg, val); exit(EXIT_FAILURE); } static void mem_invert(unsigned char *mem, size_t size) { size_t i; for (i = 0; i < size; i++) mem[i] = ~mem[i]; } /* Set "timeval" socket option and check that it's indeed set */ void setsockopt_timeval_check(int fd, int level, int optname, struct timeval val, char const *errmsg) { struct timeval chkval; socklen_t chklen; int err; err = setsockopt(fd, level, optname, &val, sizeof(val)); if (err) { fprintf(stderr, "setsockopt err: %s (%d)\n", strerror(errno), errno); goto fail; } /* just make storage != val */ chkval = val; mem_invert((unsigned char *)&chkval, sizeof(chkval)); chklen = sizeof(chkval); err = getsockopt(fd, level, optname, &chkval, &chklen); if (err) { fprintf(stderr, "getsockopt err: %s (%d)\n", strerror(errno), errno); goto fail; } if (chklen != sizeof(chkval)) { fprintf(stderr, "size mismatch: set %zu got %d\n", sizeof(val), chklen); goto fail; } if (memcmp(&chkval, &val, sizeof(val)) != 0) { fprintf(stderr, "value mismatch: set %ld:%ld got %ld:%ld\n", val.tv_sec, val.tv_usec, chkval.tv_sec, chkval.tv_usec); goto fail; } return; fail: fprintf(stderr, "%s val %ld:%ld\n", errmsg, val.tv_sec, val.tv_usec); exit(EXIT_FAILURE); } void enable_so_zerocopy_check(int fd) { setsockopt_int_check(fd, SOL_SOCKET, SO_ZEROCOPY, 1, "setsockopt SO_ZEROCOPY"); }