// SPDX-License-Identifier: GPL-2.0-or-later /* * Asynchronous Compression operations * * Copyright (c) 2016, Intel Corporation * Authors: Weigang Li * Giovanni Cabiddu */ #include #include #include #include #include #include #include #include #include #include #include "compress.h" struct crypto_scomp; static const struct crypto_type crypto_acomp_type; static void acomp_reqchain_done(void *data, int err); static inline struct acomp_alg *__crypto_acomp_alg(struct crypto_alg *alg) { return container_of(alg, struct acomp_alg, calg.base); } static inline struct acomp_alg *crypto_acomp_alg(struct crypto_acomp *tfm) { return __crypto_acomp_alg(crypto_acomp_tfm(tfm)->__crt_alg); } static int __maybe_unused crypto_acomp_report( struct sk_buff *skb, struct crypto_alg *alg) { struct crypto_report_acomp racomp; memset(&racomp, 0, sizeof(racomp)); strscpy(racomp.type, "acomp", sizeof(racomp.type)); return nla_put(skb, CRYPTOCFGA_REPORT_ACOMP, sizeof(racomp), &racomp); } static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg) __maybe_unused; static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg) { seq_puts(m, "type : acomp\n"); } static void crypto_acomp_exit_tfm(struct crypto_tfm *tfm) { struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm); struct acomp_alg *alg = crypto_acomp_alg(acomp); if (alg->exit) alg->exit(acomp); if (acomp_is_async(acomp)) crypto_free_acomp(acomp->fb); } static int crypto_acomp_init_tfm(struct crypto_tfm *tfm) { struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm); struct acomp_alg *alg = crypto_acomp_alg(acomp); struct crypto_acomp *fb = NULL; int err; acomp->fb = acomp; if (tfm->__crt_alg->cra_type != &crypto_acomp_type) return crypto_init_scomp_ops_async(tfm); if (acomp_is_async(acomp)) { fb = crypto_alloc_acomp(crypto_acomp_alg_name(acomp), 0, CRYPTO_ALG_ASYNC); if (IS_ERR(fb)) return PTR_ERR(fb); err = -EINVAL; if (crypto_acomp_reqsize(fb) > MAX_SYNC_COMP_REQSIZE) goto out_free_fb; acomp->fb = fb; } acomp->compress = alg->compress; acomp->decompress = alg->decompress; acomp->reqsize = alg->reqsize; acomp->base.exit = crypto_acomp_exit_tfm; if (!alg->init) return 0; err = alg->init(acomp); if (err) goto out_free_fb; return 0; out_free_fb: crypto_free_acomp(fb); return err; } static unsigned int crypto_acomp_extsize(struct crypto_alg *alg) { int extsize = crypto_alg_extsize(alg); if (alg->cra_type != &crypto_acomp_type) extsize += sizeof(struct crypto_scomp *); return extsize; } static const struct crypto_type crypto_acomp_type = { .extsize = crypto_acomp_extsize, .init_tfm = crypto_acomp_init_tfm, #ifdef CONFIG_PROC_FS .show = crypto_acomp_show, #endif #if IS_ENABLED(CONFIG_CRYPTO_USER) .report = crypto_acomp_report, #endif .maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_ACOMPRESS_MASK, .type = CRYPTO_ALG_TYPE_ACOMPRESS, .tfmsize = offsetof(struct crypto_acomp, base), }; struct crypto_acomp *crypto_alloc_acomp(const char *alg_name, u32 type, u32 mask) { return crypto_alloc_tfm(alg_name, &crypto_acomp_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_alloc_acomp); struct crypto_acomp *crypto_alloc_acomp_node(const char *alg_name, u32 type, u32 mask, int node) { return crypto_alloc_tfm_node(alg_name, &crypto_acomp_type, type, mask, node); } EXPORT_SYMBOL_GPL(crypto_alloc_acomp_node); static void acomp_save_req(struct acomp_req *req, crypto_completion_t cplt) { struct acomp_req_chain *state = &req->chain; state->compl = req->base.complete; state->data = req->base.data; req->base.complete = cplt; req->base.data = state; state->req0 = req; } static void acomp_restore_req(struct acomp_req *req) { struct acomp_req_chain *state = req->base.data; req->base.complete = state->compl; req->base.data = state->data; } static void acomp_reqchain_virt(struct acomp_req_chain *state, int err) { struct acomp_req *req = state->cur; unsigned int slen = req->slen; unsigned int dlen = req->dlen; req->base.err = err; state = &req->chain; if (state->flags & CRYPTO_ACOMP_REQ_SRC_VIRT) acomp_request_set_src_dma(req, state->src, slen); else if (state->flags & CRYPTO_ACOMP_REQ_SRC_FOLIO) acomp_request_set_src_folio(req, state->sfolio, state->soff, slen); if (state->flags & CRYPTO_ACOMP_REQ_DST_VIRT) acomp_request_set_dst_dma(req, state->dst, dlen); else if (state->flags & CRYPTO_ACOMP_REQ_DST_FOLIO) acomp_request_set_dst_folio(req, state->dfolio, state->doff, dlen); } static void acomp_virt_to_sg(struct acomp_req *req) { struct acomp_req_chain *state = &req->chain; state->flags = req->base.flags & (CRYPTO_ACOMP_REQ_SRC_VIRT | CRYPTO_ACOMP_REQ_DST_VIRT | CRYPTO_ACOMP_REQ_SRC_FOLIO | CRYPTO_ACOMP_REQ_DST_FOLIO); if (acomp_request_src_isvirt(req)) { unsigned int slen = req->slen; const u8 *svirt = req->svirt; state->src = svirt; sg_init_one(&state->ssg, svirt, slen); acomp_request_set_src_sg(req, &state->ssg, slen); } else if (acomp_request_src_isfolio(req)) { struct folio *folio = req->sfolio; unsigned int slen = req->slen; size_t off = req->soff; state->sfolio = folio; state->soff = off; sg_init_table(&state->ssg, 1); sg_set_page(&state->ssg, folio_page(folio, off / PAGE_SIZE), slen, off % PAGE_SIZE); acomp_request_set_src_sg(req, &state->ssg, slen); } if (acomp_request_dst_isvirt(req)) { unsigned int dlen = req->dlen; u8 *dvirt = req->dvirt; state->dst = dvirt; sg_init_one(&state->dsg, dvirt, dlen); acomp_request_set_dst_sg(req, &state->dsg, dlen); } else if (acomp_request_dst_isfolio(req)) { struct folio *folio = req->dfolio; unsigned int dlen = req->dlen; size_t off = req->doff; state->dfolio = folio; state->doff = off; sg_init_table(&state->dsg, 1); sg_set_page(&state->dsg, folio_page(folio, off / PAGE_SIZE), dlen, off % PAGE_SIZE); acomp_request_set_src_sg(req, &state->dsg, dlen); } } static int acomp_do_nondma(struct acomp_req_chain *state, struct acomp_req *req) { u32 keep = CRYPTO_ACOMP_REQ_SRC_VIRT | CRYPTO_ACOMP_REQ_SRC_NONDMA | CRYPTO_ACOMP_REQ_DST_VIRT | CRYPTO_ACOMP_REQ_DST_NONDMA; ACOMP_REQUEST_ON_STACK(fbreq, crypto_acomp_reqtfm(req)); int err; acomp_request_set_callback(fbreq, req->base.flags, NULL, NULL); fbreq->base.flags &= ~keep; fbreq->base.flags |= req->base.flags & keep; fbreq->src = req->src; fbreq->dst = req->dst; fbreq->slen = req->slen; fbreq->dlen = req->dlen; if (state->op == crypto_acomp_reqtfm(req)->compress) err = crypto_acomp_compress(fbreq); else err = crypto_acomp_decompress(fbreq); req->dlen = fbreq->dlen; return err; } static int acomp_do_one_req(struct acomp_req_chain *state, struct acomp_req *req) { state->cur = req; if (acomp_request_isnondma(req)) return acomp_do_nondma(state, req); acomp_virt_to_sg(req); return state->op(req); } static int acomp_reqchain_finish(struct acomp_req *req0, int err, u32 mask) { struct acomp_req_chain *state = req0->base.data; struct acomp_req *req = state->cur; struct acomp_req *n; acomp_reqchain_virt(state, err); if (req != req0) list_add_tail(&req->base.list, &req0->base.list); list_for_each_entry_safe(req, n, &state->head, base.list) { list_del_init(&req->base.list); req->base.flags &= mask; req->base.complete = acomp_reqchain_done; req->base.data = state; err = acomp_do_one_req(state, req); if (err == -EINPROGRESS) { if (!list_empty(&state->head)) err = -EBUSY; goto out; } if (err == -EBUSY) goto out; acomp_reqchain_virt(state, err); list_add_tail(&req->base.list, &req0->base.list); } acomp_restore_req(req0); out: return err; } static void acomp_reqchain_done(void *data, int err) { struct acomp_req_chain *state = data; crypto_completion_t compl = state->compl; data = state->data; if (err == -EINPROGRESS) { if (!list_empty(&state->head)) return; goto notify; } err = acomp_reqchain_finish(state->req0, err, CRYPTO_TFM_REQ_MAY_BACKLOG); if (err == -EBUSY) return; notify: compl(data, err); } static int acomp_do_req_chain(struct acomp_req *req, int (*op)(struct acomp_req *req)) { struct crypto_acomp *tfm = crypto_acomp_reqtfm(req); struct acomp_req_chain *state; int err; if (crypto_acomp_req_chain(tfm) || (!acomp_request_chained(req) && acomp_request_issg(req))) return op(req); acomp_save_req(req, acomp_reqchain_done); state = req->base.data; state->op = op; state->src = NULL; INIT_LIST_HEAD(&state->head); list_splice_init(&req->base.list, &state->head); err = acomp_do_one_req(state, req); if (err == -EBUSY || err == -EINPROGRESS) return -EBUSY; return acomp_reqchain_finish(req, err, ~0); } int crypto_acomp_compress(struct acomp_req *req) { return acomp_do_req_chain(req, crypto_acomp_reqtfm(req)->compress); } EXPORT_SYMBOL_GPL(crypto_acomp_compress); int crypto_acomp_decompress(struct acomp_req *req) { return acomp_do_req_chain(req, crypto_acomp_reqtfm(req)->decompress); } EXPORT_SYMBOL_GPL(crypto_acomp_decompress); void comp_prepare_alg(struct comp_alg_common *alg) { struct crypto_alg *base = &alg->base; base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK; } int crypto_register_acomp(struct acomp_alg *alg) { struct crypto_alg *base = &alg->calg.base; comp_prepare_alg(&alg->calg); base->cra_type = &crypto_acomp_type; base->cra_flags |= CRYPTO_ALG_TYPE_ACOMPRESS; return crypto_register_alg(base); } EXPORT_SYMBOL_GPL(crypto_register_acomp); void crypto_unregister_acomp(struct acomp_alg *alg) { crypto_unregister_alg(&alg->base); } EXPORT_SYMBOL_GPL(crypto_unregister_acomp); int crypto_register_acomps(struct acomp_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_register_acomp(&algs[i]); if (ret) goto err; } return 0; err: for (--i; i >= 0; --i) crypto_unregister_acomp(&algs[i]); return ret; } EXPORT_SYMBOL_GPL(crypto_register_acomps); void crypto_unregister_acomps(struct acomp_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_unregister_acomp(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_acomps); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Asynchronous compression type");