// SPDX-License-Identifier: GPL-2.0-or-later /* rfc8009 AES Encryption with HMAC-SHA2 for Kerberos 5 * * Copyright (C) 2025 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include "internal.h" static const struct krb5_buffer rfc8009_no_context = { .len = 0, .data = "" }; /* * Calculate the key derivation function KDF-HMAC-SHA2(key, label, [context,] k) * * KDF-HMAC-SHA2(key, label, [context,] k) = k-truncate(K1) * * Using the appropriate one of: * K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | k) * K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | k) * K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | context | k) * K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | context | k) * [rfc8009 sec 3] */ static int rfc8009_calc_KDF_HMAC_SHA2(const struct krb5_enctype *krb5, const struct krb5_buffer *key, const struct krb5_buffer *label, const struct krb5_buffer *context, unsigned int k, struct krb5_buffer *result, gfp_t gfp) { struct crypto_shash *shash; struct krb5_buffer K1, data; struct shash_desc *desc; __be32 tmp; size_t bsize; void *buffer; u8 *p; int ret = -ENOMEM; if (WARN_ON(result->len != k / 8)) return -EINVAL; shash = crypto_alloc_shash(krb5->cksum_name, 0, 0); if (IS_ERR(shash)) return (PTR_ERR(shash) == -ENOENT) ? -ENOPKG : PTR_ERR(shash); ret = crypto_shash_setkey(shash, key->data, key->len); if (ret < 0) goto error_shash; ret = -EINVAL; if (WARN_ON(crypto_shash_digestsize(shash) * 8 < k)) goto error_shash; ret = -ENOMEM; data.len = 4 + label->len + 1 + context->len + 4; bsize = krb5_shash_size(shash) + krb5_digest_size(shash) + crypto_roundup(data.len); buffer = kzalloc(bsize, GFP_NOFS); if (!buffer) goto error_shash; desc = buffer; desc->tfm = shash; ret = crypto_shash_init(desc); if (ret < 0) goto error; p = data.data = buffer + krb5_shash_size(shash) + krb5_digest_size(shash); *(__be32 *)p = htonl(0x00000001); p += 4; memcpy(p, label->data, label->len); p += label->len; *p++ = 0; memcpy(p, context->data, context->len); p += context->len; tmp = htonl(k); memcpy(p, &tmp, 4); p += 4; ret = -EINVAL; if (WARN_ON(p - (u8 *)data.data != data.len)) goto error; K1.len = crypto_shash_digestsize(shash); K1.data = buffer + krb5_shash_size(shash); ret = crypto_shash_finup(desc, data.data, data.len, K1.data); if (ret < 0) goto error; memcpy(result->data, K1.data, result->len); error: kfree_sensitive(buffer); error_shash: crypto_free_shash(shash); return ret; } /* * Calculate the pseudo-random function, PRF(). * * PRF = KDF-HMAC-SHA2(input-key, "prf", octet-string, 256) * PRF = KDF-HMAC-SHA2(input-key, "prf", octet-string, 384) * * The "prfconstant" used in the PRF operation is the three-octet string * "prf". * [rfc8009 sec 5] */ static int rfc8009_calc_PRF(const struct krb5_enctype *krb5, const struct krb5_buffer *input_key, const struct krb5_buffer *octet_string, struct krb5_buffer *result, gfp_t gfp) { static const struct krb5_buffer prfconstant = { 3, "prf" }; return rfc8009_calc_KDF_HMAC_SHA2(krb5, input_key, &prfconstant, octet_string, krb5->prf_len * 8, result, gfp); } /* * Derive Ke. * Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 128) * Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 256) * [rfc8009 sec 5] */ static int rfc8009_calc_Ke(const struct krb5_enctype *krb5, const struct krb5_buffer *base_key, const struct krb5_buffer *usage_constant, struct krb5_buffer *result, gfp_t gfp) { return rfc8009_calc_KDF_HMAC_SHA2(krb5, base_key, usage_constant, &rfc8009_no_context, krb5->key_bytes * 8, result, gfp); } /* * Derive Kc/Ki * Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 128) * Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 128) * Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 192) * Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 192) * [rfc8009 sec 5] */ static int rfc8009_calc_Ki(const struct krb5_enctype *krb5, const struct krb5_buffer *base_key, const struct krb5_buffer *usage_constant, struct krb5_buffer *result, gfp_t gfp) { return rfc8009_calc_KDF_HMAC_SHA2(krb5, base_key, usage_constant, &rfc8009_no_context, krb5->cksum_len * 8, result, gfp); } /* * Apply encryption and checksumming functions to a message. Unlike for * RFC3961, for RFC8009, we have to chuck the starting IV into the hash first. */ static ssize_t rfc8009_encrypt(const struct krb5_enctype *krb5, struct crypto_aead *aead, struct scatterlist *sg, unsigned int nr_sg, size_t sg_len, size_t data_offset, size_t data_len, bool preconfounded) { struct aead_request *req; struct scatterlist bsg[2]; ssize_t ret, done; size_t bsize, base_len, secure_offset, secure_len, pad_len, cksum_offset; void *buffer; u8 *iv, *ad; if (WARN_ON(data_offset != krb5->conf_len)) return -EINVAL; /* Data is in wrong place */ secure_offset = 0; base_len = krb5->conf_len + data_len; pad_len = 0; secure_len = base_len + pad_len; cksum_offset = secure_len; if (WARN_ON(cksum_offset + krb5->cksum_len > sg_len)) return -EFAULT; bsize = krb5_aead_size(aead) + krb5_aead_ivsize(aead) * 2; buffer = kzalloc(bsize, GFP_NOFS); if (!buffer) return -ENOMEM; req = buffer; iv = buffer + krb5_aead_size(aead); ad = buffer + krb5_aead_size(aead) + krb5_aead_ivsize(aead); /* Insert the confounder into the buffer */ ret = -EFAULT; if (!preconfounded) { get_random_bytes(buffer, krb5->conf_len); done = sg_pcopy_from_buffer(sg, nr_sg, buffer, krb5->conf_len, secure_offset); if (done != krb5->conf_len) goto error; } /* We may need to pad out to the crypto blocksize. */ if (pad_len) { done = sg_zero_buffer(sg, nr_sg, pad_len, data_offset + data_len); if (done != pad_len) goto error; } /* We need to include the starting IV in the hash. */ sg_init_table(bsg, 2); sg_set_buf(&bsg[0], ad, krb5_aead_ivsize(aead)); sg_chain(bsg, 2, sg); /* Hash and encrypt the message. */ aead_request_set_tfm(req, aead); aead_request_set_callback(req, 0, NULL, NULL); aead_request_set_ad(req, krb5_aead_ivsize(aead)); aead_request_set_crypt(req, bsg, bsg, secure_len, iv); ret = crypto_aead_encrypt(req); if (ret < 0) goto error; ret = secure_len + krb5->cksum_len; error: kfree_sensitive(buffer); return ret; } /* * Apply decryption and checksumming functions to a message. Unlike for * RFC3961, for RFC8009, we have to chuck the starting IV into the hash first. * * The offset and length are updated to reflect the actual content of the * encrypted region. */ static int rfc8009_decrypt(const struct krb5_enctype *krb5, struct crypto_aead *aead, struct scatterlist *sg, unsigned int nr_sg, size_t *_offset, size_t *_len) { struct aead_request *req; struct scatterlist bsg[2]; size_t bsize; void *buffer; int ret; u8 *iv, *ad; if (WARN_ON(*_offset != 0)) return -EINVAL; /* Can't set offset on aead */ if (*_len < krb5->conf_len + krb5->cksum_len) return -EPROTO; bsize = krb5_aead_size(aead) + krb5_aead_ivsize(aead) * 2; buffer = kzalloc(bsize, GFP_NOFS); if (!buffer) return -ENOMEM; req = buffer; iv = buffer + krb5_aead_size(aead); ad = buffer + krb5_aead_size(aead) + krb5_aead_ivsize(aead); /* We need to include the starting IV in the hash. */ sg_init_table(bsg, 2); sg_set_buf(&bsg[0], ad, krb5_aead_ivsize(aead)); sg_chain(bsg, 2, sg); /* Decrypt the message and verify its checksum. */ aead_request_set_tfm(req, aead); aead_request_set_callback(req, 0, NULL, NULL); aead_request_set_ad(req, krb5_aead_ivsize(aead)); aead_request_set_crypt(req, bsg, bsg, *_len, iv); ret = crypto_aead_decrypt(req); if (ret < 0) goto error; /* Adjust the boundaries of the data. */ *_offset += krb5->conf_len; *_len -= krb5->conf_len + krb5->cksum_len; ret = 0; error: kfree_sensitive(buffer); return ret; } static const struct krb5_crypto_profile rfc8009_crypto_profile = { .calc_PRF = rfc8009_calc_PRF, .calc_Kc = rfc8009_calc_Ki, .calc_Ke = rfc8009_calc_Ke, .calc_Ki = rfc8009_calc_Ki, .derive_encrypt_keys = authenc_derive_encrypt_keys, .load_encrypt_keys = authenc_load_encrypt_keys, .derive_checksum_key = rfc3961_derive_checksum_key, .load_checksum_key = rfc3961_load_checksum_key, .encrypt = rfc8009_encrypt, .decrypt = rfc8009_decrypt, .get_mic = rfc3961_get_mic, .verify_mic = rfc3961_verify_mic, }; const struct krb5_enctype krb5_aes128_cts_hmac_sha256_128 = { .etype = KRB5_ENCTYPE_AES128_CTS_HMAC_SHA256_128, .ctype = KRB5_CKSUMTYPE_HMAC_SHA256_128_AES128, .name = "aes128-cts-hmac-sha256-128", .encrypt_name = "authenc(hmac(sha256),cts(cbc(aes)))", .cksum_name = "hmac(sha256)", .hash_name = "sha256", .derivation_enc = "cts(cbc(aes))", .key_bytes = 16, .key_len = 16, .Kc_len = 16, .Ke_len = 16, .Ki_len = 16, .block_len = 16, .conf_len = 16, .cksum_len = 16, .hash_len = 20, .prf_len = 32, .keyed_cksum = true, .random_to_key = NULL, /* Identity */ .profile = &rfc8009_crypto_profile, }; const struct krb5_enctype krb5_aes256_cts_hmac_sha384_192 = { .etype = KRB5_ENCTYPE_AES256_CTS_HMAC_SHA384_192, .ctype = KRB5_CKSUMTYPE_HMAC_SHA384_192_AES256, .name = "aes256-cts-hmac-sha384-192", .encrypt_name = "authenc(hmac(sha384),cts(cbc(aes)))", .cksum_name = "hmac(sha384)", .hash_name = "sha384", .derivation_enc = "cts(cbc(aes))", .key_bytes = 32, .key_len = 32, .Kc_len = 24, .Ke_len = 32, .Ki_len = 24, .block_len = 16, .conf_len = 16, .cksum_len = 24, .hash_len = 20, .prf_len = 48, .keyed_cksum = true, .random_to_key = NULL, /* Identity */ .profile = &rfc8009_crypto_profile, };