// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015 Endless Mobile, Inc. * Author: Carlo Caione * * Copyright (c) 2018 Baylibre, SAS. * Author: Jerome Brunet */ /* * In the most basic form, a Meson PLL is composed as follows: * * PLL * +--------------------------------+ * | | * | +--+ | * in >>-----[ /N ]--->| | +-----+ | * | | |------| DCO |---->> out * | +--------->| | +--v--+ | * | | +--+ | | * | | | | * | +--[ *(M + (F/Fmax) ]<--+ | * | | * +--------------------------------+ * * out = in * (m + frac / frac_max) / n */ #include #include #include #include #include #include #include "clk-regmap.h" #include "clk-pll.h" static inline struct meson_clk_pll_data * meson_clk_pll_data(struct clk_regmap *clk) { return (struct meson_clk_pll_data *)clk->data; } static int __pll_round_closest_mult(struct meson_clk_pll_data *pll) { if ((pll->flags & CLK_MESON_PLL_ROUND_CLOSEST) && !MESON_PARM_APPLICABLE(&pll->frac)) return 1; return 0; } static unsigned long __pll_params_to_rate(unsigned long parent_rate, unsigned int m, unsigned int n, unsigned int frac, struct meson_clk_pll_data *pll) { u64 rate = (u64)parent_rate * m; unsigned int frac_max = pll->frac_max ? pll->frac_max : (1 << pll->frac.width); if (frac && MESON_PARM_APPLICABLE(&pll->frac)) { u64 frac_rate = (u64)parent_rate * frac; rate += DIV_ROUND_UP_ULL(frac_rate, frac_max); } return DIV_ROUND_UP_ULL(rate, n); } static unsigned long meson_clk_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_regmap *clk = to_clk_regmap(hw); struct meson_clk_pll_data *pll = meson_clk_pll_data(clk); unsigned int m, n, frac; n = meson_parm_read(clk->map, &pll->n); /* * On some HW, N is set to zero on init. This value is invalid as * it would result in a division by zero. The rate can't be * calculated in this case */ if (n == 0) return 0; m = meson_parm_read(clk->map, &pll->m); frac = MESON_PARM_APPLICABLE(&pll->frac) ? meson_parm_read(clk->map, &pll->frac) : 0; return __pll_params_to_rate(parent_rate, m, n, frac, pll); } static unsigned int __pll_params_with_frac(unsigned long rate, unsigned long parent_rate, unsigned int m, unsigned int n, struct meson_clk_pll_data *pll) { unsigned int frac_max = pll->frac_max ? pll->frac_max : (1 << pll->frac.width); u64 val = (u64)rate * n; /* Bail out if we are already over the requested rate */ if (rate < parent_rate * m / n) return 0; if (pll->flags & CLK_MESON_PLL_ROUND_CLOSEST) val = DIV_ROUND_CLOSEST_ULL(val * frac_max, parent_rate); else val = div_u64(val * frac_max, parent_rate); val -= m * frac_max; return min((unsigned int)val, (frac_max - 1)); } static bool meson_clk_pll_is_better(unsigned long rate, unsigned long best, unsigned long now, struct meson_clk_pll_data *pll) { if (__pll_round_closest_mult(pll)) { /* Round Closest */ if (abs(now - rate) < abs(best - rate)) return true; } else { /* Round down */ if (now <= rate && best < now) return true; } return false; } static int meson_clk_get_pll_table_index(unsigned int index, unsigned int *m, unsigned int *n, struct meson_clk_pll_data *pll) { if (!pll->table[index].n) return -EINVAL; *m = pll->table[index].m; *n = pll->table[index].n; return 0; } static unsigned int meson_clk_get_pll_range_m(unsigned long rate, unsigned long parent_rate, unsigned int n, struct meson_clk_pll_data *pll) { u64 val = (u64)rate * n; if (__pll_round_closest_mult(pll)) return DIV_ROUND_CLOSEST_ULL(val, parent_rate); return div_u64(val, parent_rate); } static int meson_clk_get_pll_range_index(unsigned long rate, unsigned long parent_rate, unsigned int index, unsigned int *m, unsigned int *n, struct meson_clk_pll_data *pll) { *n = index + 1; /* Check the predivider range */ if (*n >= (1 << pll->n.width)) return -EINVAL; if (*n == 1) { /* Get the boundaries out the way */ if (rate <= pll->range->min * parent_rate) { *m = pll->range->min; return -ENODATA; } else if (rate >= pll->range->max * parent_rate) { *m = pll->range->max; return -ENODATA; } } *m = meson_clk_get_pll_range_m(rate, parent_rate, *n, pll); /* the pre-divider gives a multiplier too big - stop */ if (*m >= (1 << pll->m.width)) return -EINVAL; return 0; } static int meson_clk_get_pll_get_index(unsigned long rate, unsigned long parent_rate, unsigned int index, unsigned int *m, unsigned int *n, struct meson_clk_pll_data *pll) { if (pll->range) return meson_clk_get_pll_range_index(rate, parent_rate, index, m, n, pll); else if (pll->table) return meson_clk_get_pll_table_index(index, m, n, pll); return -EINVAL; } static int meson_clk_get_pll_settings(unsigned long rate, unsigned long parent_rate, unsigned int *best_m, unsigned int *best_n, struct meson_clk_pll_data *pll) { unsigned long best = 0, now = 0; unsigned int i, m, n; int ret; for (i = 0, ret = 0; !ret; i++) { ret = meson_clk_get_pll_get_index(rate, parent_rate, i, &m, &n, pll); if (ret == -EINVAL) break; now = __pll_params_to_rate(parent_rate, m, n, 0, pll); if (meson_clk_pll_is_better(rate, best, now, pll)) { best = now; *best_m = m; *best_n = n; if (now == rate) break; } } return best ? 0 : -EINVAL; } static int meson_clk_pll_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_regmap *clk = to_clk_regmap(hw); struct meson_clk_pll_data *pll = meson_clk_pll_data(clk); unsigned int m, n, frac; unsigned long round; int ret; ret = meson_clk_get_pll_settings(req->rate, req->best_parent_rate, &m, &n, pll); if (ret) return ret; round = __pll_params_to_rate(req->best_parent_rate, m, n, 0, pll); if (!MESON_PARM_APPLICABLE(&pll->frac) || req->rate == round) { req->rate = round; return 0; } /* * The rate provided by the setting is not an exact match, let's * try to improve the result using the fractional parameter */ frac = __pll_params_with_frac(req->rate, req->best_parent_rate, m, n, pll); req->rate = __pll_params_to_rate(req->best_parent_rate, m, n, frac, pll); return 0; } static int meson_clk_pll_wait_lock(struct clk_hw *hw) { struct clk_regmap *clk = to_clk_regmap(hw); struct meson_clk_pll_data *pll = meson_clk_pll_data(clk); int delay = 5000; do { /* Is the clock locked now ? Time out after 100ms. */ if (meson_parm_read(clk->map, &pll->l)) return 0; udelay(20); } while (--delay); return -ETIMEDOUT; } static int meson_clk_pll_is_enabled(struct clk_hw *hw) { struct clk_regmap *clk = to_clk_regmap(hw); struct meson_clk_pll_data *pll = meson_clk_pll_data(clk); if (MESON_PARM_APPLICABLE(&pll->rst) && meson_parm_read(clk->map, &pll->rst)) return 0; if (!meson_parm_read(clk->map, &pll->en) || !meson_parm_read(clk->map, &pll->l)) return 0; return 1; } static int meson_clk_pll_init(struct clk_hw *hw) { struct clk_regmap *clk = to_clk_regmap(hw); struct meson_clk_pll_data *pll = meson_clk_pll_data(clk); /* * Keep the clock running, which was already initialized and enabled * from the bootloader stage, to avoid any glitches. */ if ((pll->flags & CLK_MESON_PLL_NOINIT_ENABLED) && meson_clk_pll_is_enabled(hw)) return 0; if (pll->init_count) { if (MESON_PARM_APPLICABLE(&pll->rst)) meson_parm_write(clk->map, &pll->rst, 1); regmap_multi_reg_write(clk->map, pll->init_regs, pll->init_count); if (MESON_PARM_APPLICABLE(&pll->rst)) meson_parm_write(clk->map, &pll->rst, 0); } return 0; } static int meson_clk_pcie_pll_enable(struct clk_hw *hw) { int retries = 10; do { meson_clk_pll_init(hw); if (!meson_clk_pll_wait_lock(hw)) return 0; pr_info("Retry enabling PCIe PLL clock\n"); } while (--retries); return -EIO; } static int meson_clk_pll_enable(struct clk_hw *hw) { struct clk_regmap *clk = to_clk_regmap(hw); struct meson_clk_pll_data *pll = meson_clk_pll_data(clk); /* do nothing if the PLL is already enabled */ if (clk_hw_is_enabled(hw)) return 0; /* Make sure the pll is in reset */ if (MESON_PARM_APPLICABLE(&pll->rst)) meson_parm_write(clk->map, &pll->rst, 1); /* Enable the pll */ meson_parm_write(clk->map, &pll->en, 1); /* Take the pll out reset */ if (MESON_PARM_APPLICABLE(&pll->rst)) meson_parm_write(clk->map, &pll->rst, 0); /* * Compared with the previous SoCs, self-adaption current module * is newly added for A1, keep the new power-on sequence to enable the * PLL. The sequence is: * 1. enable the pll, delay for 10us * 2. enable the pll self-adaption current module, delay for 40us * 3. enable the lock detect module */ if (MESON_PARM_APPLICABLE(&pll->current_en)) { udelay(10); meson_parm_write(clk->map, &pll->current_en, 1); udelay(40); } if (MESON_PARM_APPLICABLE(&pll->l_detect)) { meson_parm_write(clk->map, &pll->l_detect, 1); meson_parm_write(clk->map, &pll->l_detect, 0); } if (meson_clk_pll_wait_lock(hw)) return -EIO; return 0; } static void meson_clk_pll_disable(struct clk_hw *hw) { struct clk_regmap *clk = to_clk_regmap(hw); struct meson_clk_pll_data *pll = meson_clk_pll_data(clk); /* Put the pll is in reset */ if (MESON_PARM_APPLICABLE(&pll->rst)) meson_parm_write(clk->map, &pll->rst, 1); /* Disable the pll */ meson_parm_write(clk->map, &pll->en, 0); /* Disable PLL internal self-adaption current module */ if (MESON_PARM_APPLICABLE(&pll->current_en)) meson_parm_write(clk->map, &pll->current_en, 0); } static int meson_clk_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_regmap *clk = to_clk_regmap(hw); struct meson_clk_pll_data *pll = meson_clk_pll_data(clk); unsigned int enabled, m, n, frac = 0; unsigned long old_rate; int ret; if (parent_rate == 0 || rate == 0) return -EINVAL; old_rate = clk_hw_get_rate(hw); ret = meson_clk_get_pll_settings(rate, parent_rate, &m, &n, pll); if (ret) return ret; enabled = meson_parm_read(clk->map, &pll->en); if (enabled) meson_clk_pll_disable(hw); meson_parm_write(clk->map, &pll->n, n); meson_parm_write(clk->map, &pll->m, m); if (MESON_PARM_APPLICABLE(&pll->frac)) { frac = __pll_params_with_frac(rate, parent_rate, m, n, pll); meson_parm_write(clk->map, &pll->frac, frac); } /* If the pll is stopped, bail out now */ if (!enabled) return 0; ret = meson_clk_pll_enable(hw); if (ret) { pr_warn("%s: pll %s didn't lock, trying to set old rate %lu\n", __func__, clk_hw_get_name(hw), old_rate); /* * FIXME: Do we really need/want this HACK ? * It looks unsafe. what happens if the clock gets into a * broken state and we can't lock back on the old_rate ? Looks * like an infinite recursion is possible */ meson_clk_pll_set_rate(hw, old_rate, parent_rate); } return ret; } /* * The Meson G12A PCIE PLL is fined tuned to deliver a very precise * 100MHz reference clock for the PCIe Analog PHY, and thus requires * a strict register sequence to enable the PLL. * To simplify, re-use the _init() op to enable the PLL and keep * the other ops except set_rate since the rate is fixed. */ const struct clk_ops meson_clk_pcie_pll_ops = { .recalc_rate = meson_clk_pll_recalc_rate, .determine_rate = meson_clk_pll_determine_rate, .is_enabled = meson_clk_pll_is_enabled, .enable = meson_clk_pcie_pll_enable, .disable = meson_clk_pll_disable }; EXPORT_SYMBOL_NS_GPL(meson_clk_pcie_pll_ops, "CLK_MESON"); const struct clk_ops meson_clk_pll_ops = { .init = meson_clk_pll_init, .recalc_rate = meson_clk_pll_recalc_rate, .determine_rate = meson_clk_pll_determine_rate, .set_rate = meson_clk_pll_set_rate, .is_enabled = meson_clk_pll_is_enabled, .enable = meson_clk_pll_enable, .disable = meson_clk_pll_disable }; EXPORT_SYMBOL_NS_GPL(meson_clk_pll_ops, "CLK_MESON"); const struct clk_ops meson_clk_pll_ro_ops = { .recalc_rate = meson_clk_pll_recalc_rate, .is_enabled = meson_clk_pll_is_enabled, }; EXPORT_SYMBOL_NS_GPL(meson_clk_pll_ro_ops, "CLK_MESON"); MODULE_DESCRIPTION("Amlogic PLL driver"); MODULE_AUTHOR("Carlo Caione "); MODULE_AUTHOR("Jerome Brunet "); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS("CLK_MESON");