// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include "data-vio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "logger.h" #include "memory-alloc.h" #include "murmurhash3.h" #include "permassert.h" #include "block-map.h" #include "dump.h" #include "encodings.h" #include "int-map.h" #include "io-submitter.h" #include "logical-zone.h" #include "packer.h" #include "recovery-journal.h" #include "slab-depot.h" #include "status-codes.h" #include "types.h" #include "vdo.h" #include "vio.h" #include "wait-queue.h" /** * DOC: Bio flags. * * For certain flags set on user bios, if the user bio has not yet been acknowledged, setting those * flags on our own bio(s) for that request may help underlying layers better fulfill the user * bio's needs. This constant contains the aggregate of those flags; VDO strips all the other * flags, as they convey incorrect information. * * These flags are always irrelevant if we have already finished the user bio as they are only * hints on IO importance. If VDO has finished the user bio, any remaining IO done doesn't care how * important finishing the finished bio was. * * Note that bio.c contains the complete list of flags we believe may be set; the following list * explains the action taken with each of those flags VDO could receive: * * * REQ_SYNC: Passed down if the user bio is not yet completed, since it indicates the user bio * completion is required for further work to be done by the issuer. * * REQ_META: Passed down if the user bio is not yet completed, since it may mean the lower layer * treats it as more urgent, similar to REQ_SYNC. * * REQ_PRIO: Passed down if the user bio is not yet completed, since it indicates the user bio is * important. * * REQ_NOMERGE: Set only if the incoming bio was split; irrelevant to VDO IO. * * REQ_IDLE: Set if the incoming bio had more IO quickly following; VDO's IO pattern doesn't * match incoming IO, so this flag is incorrect for it. * * REQ_FUA: Handled separately, and irrelevant to VDO IO otherwise. * * REQ_RAHEAD: Passed down, as, for reads, it indicates trivial importance. * * REQ_BACKGROUND: Not passed down, as VIOs are a limited resource and VDO needs them recycled * ASAP to service heavy load, which is the only place where REQ_BACKGROUND might aid in load * prioritization. */ static blk_opf_t PASSTHROUGH_FLAGS = (REQ_PRIO | REQ_META | REQ_SYNC | REQ_RAHEAD); /** * DOC: * * The data_vio_pool maintains the pool of data_vios which a vdo uses to service incoming bios. For * correctness, and in order to avoid potentially expensive or blocking memory allocations during * normal operation, the number of concurrently active data_vios is capped. Furthermore, in order * to avoid starvation of reads and writes, at most 75% of the data_vios may be used for * discards. The data_vio_pool is responsible for enforcing these limits. Threads submitting bios * for which a data_vio or discard permit are not available will block until the necessary * resources are available. The pool is also responsible for distributing resources to blocked * threads and waking them. Finally, the pool attempts to batch the work of recycling data_vios by * performing the work of actually assigning resources to blocked threads or placing data_vios back * into the pool on a single cpu at a time. * * The pool contains two "limiters", one for tracking data_vios and one for tracking discard * permits. The limiters also provide safe cross-thread access to pool statistics without the need * to take the pool's lock. When a thread submits a bio to a vdo device, it will first attempt to * get a discard permit if it is a discard, and then to get a data_vio. If the necessary resources * are available, the incoming bio will be assigned to the acquired data_vio, and it will be * launched. However, if either of these are unavailable, the arrival time of the bio is recorded * in the bio's bi_private field, the bio and its submitter are both queued on the appropriate * limiter and the submitting thread will then put itself to sleep. (note that this mechanism will * break if jiffies are only 32 bits.) * * Whenever a data_vio has completed processing for the bio it was servicing, release_data_vio() * will be called on it. This function will add the data_vio to a funnel queue, and then check the * state of the pool. If the pool is not currently processing released data_vios, the pool's * completion will be enqueued on a cpu queue. This obviates the need for the releasing threads to * hold the pool's lock, and also batches release work while avoiding starvation of the cpu * threads. * * Whenever the pool's completion is run on a cpu thread, it calls process_release_callback() which * processes a batch of returned data_vios (currently at most 32) from the pool's funnel queue. For * each data_vio, it first checks whether that data_vio was processing a discard. If so, and there * is a blocked bio waiting for a discard permit, that permit is notionally transferred to the * eldest discard waiter, and that waiter is moved to the end of the list of discard bios waiting * for a data_vio. If there are no discard waiters, the discard permit is returned to the pool. * Next, the data_vio is assigned to the oldest blocked bio which either has a discard permit, or * doesn't need one and relaunched. If neither of these exist, the data_vio is returned to the * pool. Finally, if any waiting bios were launched, the threads which blocked trying to submit * them are awakened. */ #define DATA_VIO_RELEASE_BATCH_SIZE 128 static const unsigned int VDO_SECTORS_PER_BLOCK_MASK = VDO_SECTORS_PER_BLOCK - 1; static const u32 COMPRESSION_STATUS_MASK = 0xff; static const u32 MAY_NOT_COMPRESS_MASK = 0x80000000; struct limiter; typedef void (*assigner_fn)(struct limiter *limiter); /* Bookkeeping structure for a single type of resource. */ struct limiter { /* The data_vio_pool to which this limiter belongs */ struct data_vio_pool *pool; /* The maximum number of data_vios available */ data_vio_count_t limit; /* The number of resources in use */ data_vio_count_t busy; /* The maximum number of resources ever simultaneously in use */ data_vio_count_t max_busy; /* The number of resources to release */ data_vio_count_t release_count; /* The number of waiters to wake */ data_vio_count_t wake_count; /* The list of waiting bios which are known to process_release_callback() */ struct bio_list waiters; /* The list of waiting bios which are not yet known to process_release_callback() */ struct bio_list new_waiters; /* The list of waiters which have their permits */ struct bio_list *permitted_waiters; /* The function for assigning a resource to a waiter */ assigner_fn assigner; /* The queue of blocked threads */ wait_queue_head_t blocked_threads; /* The arrival time of the eldest waiter */ u64 arrival; }; /* * A data_vio_pool is a collection of preallocated data_vios which may be acquired from any thread, * and are released in batches. */ struct data_vio_pool { /* Completion for scheduling releases */ struct vdo_completion completion; /* The administrative state of the pool */ struct admin_state state; /* Lock protecting the pool */ spinlock_t lock; /* The main limiter controlling the total data_vios in the pool. */ struct limiter limiter; /* The limiter controlling data_vios for discard */ struct limiter discard_limiter; /* The list of bios which have discard permits but still need a data_vio */ struct bio_list permitted_discards; /* The list of available data_vios */ struct list_head available; /* The queue of data_vios waiting to be returned to the pool */ struct funnel_queue *queue; /* Whether the pool is processing, or scheduled to process releases */ atomic_t processing; /* The data vios in the pool */ struct data_vio data_vios[]; }; static const char * const ASYNC_OPERATION_NAMES[] = { "launch", "acknowledge_write", "acquire_hash_lock", "attempt_logical_block_lock", "lock_duplicate_pbn", "check_for_duplication", "cleanup", "compress_data_vio", "find_block_map_slot", "get_mapped_block_for_read", "get_mapped_block_for_write", "hash_data_vio", "journal_remapping", "vdo_attempt_packing", "put_mapped_block", "read_data_vio", "update_dedupe_index", "update_reference_counts", "verify_duplication", "write_data_vio", }; /* The steps taken cleaning up a VIO, in the order they are performed. */ enum data_vio_cleanup_stage { VIO_CLEANUP_START, VIO_RELEASE_HASH_LOCK = VIO_CLEANUP_START, VIO_RELEASE_ALLOCATED, VIO_RELEASE_RECOVERY_LOCKS, VIO_RELEASE_LOGICAL, VIO_CLEANUP_DONE }; static inline struct data_vio_pool * __must_check as_data_vio_pool(struct vdo_completion *completion) { vdo_assert_completion_type(completion, VDO_DATA_VIO_POOL_COMPLETION); return container_of(completion, struct data_vio_pool, completion); } static inline u64 get_arrival_time(struct bio *bio) { return (u64) bio->bi_private; } /** * check_for_drain_complete_locked() - Check whether a data_vio_pool has no outstanding data_vios * or waiters while holding the pool's lock. */ static bool check_for_drain_complete_locked(struct data_vio_pool *pool) { if (pool->limiter.busy > 0) return false; VDO_ASSERT_LOG_ONLY((pool->discard_limiter.busy == 0), "no outstanding discard permits"); return (bio_list_empty(&pool->limiter.new_waiters) && bio_list_empty(&pool->discard_limiter.new_waiters)); } static void initialize_lbn_lock(struct data_vio *data_vio, logical_block_number_t lbn) { struct vdo *vdo = vdo_from_data_vio(data_vio); zone_count_t zone_number; struct lbn_lock *lock = &data_vio->logical; lock->lbn = lbn; lock->locked = false; vdo_waitq_init(&lock->waiters); zone_number = vdo_compute_logical_zone(data_vio); lock->zone = &vdo->logical_zones->zones[zone_number]; } static void launch_locked_request(struct data_vio *data_vio) { data_vio->logical.locked = true; if (data_vio->write) { struct vdo *vdo = vdo_from_data_vio(data_vio); if (vdo_is_read_only(vdo)) { continue_data_vio_with_error(data_vio, VDO_READ_ONLY); return; } } data_vio->last_async_operation = VIO_ASYNC_OP_FIND_BLOCK_MAP_SLOT; vdo_find_block_map_slot(data_vio); } static void acknowledge_data_vio(struct data_vio *data_vio) { struct vdo *vdo = vdo_from_data_vio(data_vio); struct bio *bio = data_vio->user_bio; int error = vdo_status_to_errno(data_vio->vio.completion.result); if (bio == NULL) return; VDO_ASSERT_LOG_ONLY((data_vio->remaining_discard <= (u32) (VDO_BLOCK_SIZE - data_vio->offset)), "data_vio to acknowledge is not an incomplete discard"); data_vio->user_bio = NULL; vdo_count_bios(&vdo->stats.bios_acknowledged, bio); if (data_vio->is_partial) vdo_count_bios(&vdo->stats.bios_acknowledged_partial, bio); bio->bi_status = errno_to_blk_status(error); bio_endio(bio); } static void copy_to_bio(struct bio *bio, char *data_ptr) { struct bio_vec biovec; struct bvec_iter iter; bio_for_each_segment(biovec, bio, iter) { memcpy_to_bvec(&biovec, data_ptr); data_ptr += biovec.bv_len; } } struct data_vio_compression_status get_data_vio_compression_status(struct data_vio *data_vio) { u32 packed = atomic_read(&data_vio->compression.status); /* pairs with cmpxchg in set_data_vio_compression_status */ smp_rmb(); return (struct data_vio_compression_status) { .stage = packed & COMPRESSION_STATUS_MASK, .may_not_compress = ((packed & MAY_NOT_COMPRESS_MASK) != 0), }; } /** * pack_status() - Convert a data_vio_compression_status into a u32 which may be stored * atomically. * @status: The state to convert. * * Return: The compression state packed into a u32. */ static u32 __must_check pack_status(struct data_vio_compression_status status) { return status.stage | (status.may_not_compress ? MAY_NOT_COMPRESS_MASK : 0); } /** * set_data_vio_compression_status() - Set the compression status of a data_vio. * @data_vio: The data_vio to change. * @status: The expected current status of the data_vio. * @new_status: The status to set. * * Return: true if the new status was set, false if the data_vio's compression status did not * match the expected state, and so was left unchanged. */ static bool __must_check set_data_vio_compression_status(struct data_vio *data_vio, struct data_vio_compression_status status, struct data_vio_compression_status new_status) { u32 actual; u32 expected = pack_status(status); u32 replacement = pack_status(new_status); /* * Extra barriers because this was original developed using a CAS operation that implicitly * had them. */ smp_mb__before_atomic(); actual = atomic_cmpxchg(&data_vio->compression.status, expected, replacement); /* same as before_atomic */ smp_mb__after_atomic(); return (expected == actual); } struct data_vio_compression_status advance_data_vio_compression_stage(struct data_vio *data_vio) { for (;;) { struct data_vio_compression_status status = get_data_vio_compression_status(data_vio); struct data_vio_compression_status new_status = status; if (status.stage == DATA_VIO_POST_PACKER) { /* We're already in the last stage. */ return status; } if (status.may_not_compress) { /* * Compression has been dis-allowed for this VIO, so skip the rest of the * path and go to the end. */ new_status.stage = DATA_VIO_POST_PACKER; } else { /* Go to the next state. */ new_status.stage++; } if (set_data_vio_compression_status(data_vio, status, new_status)) return new_status; /* Another thread changed the status out from under us so try again. */ } } /** * cancel_data_vio_compression() - Prevent this data_vio from being compressed or packed. * * Return: true if the data_vio is in the packer and the caller was the first caller to cancel it. */ bool cancel_data_vio_compression(struct data_vio *data_vio) { struct data_vio_compression_status status, new_status; for (;;) { status = get_data_vio_compression_status(data_vio); if (status.may_not_compress || (status.stage == DATA_VIO_POST_PACKER)) { /* This data_vio is already set up to not block in the packer. */ break; } new_status.stage = status.stage; new_status.may_not_compress = true; if (set_data_vio_compression_status(data_vio, status, new_status)) break; } return ((status.stage == DATA_VIO_PACKING) && !status.may_not_compress); } /** * attempt_logical_block_lock() - Attempt to acquire the lock on a logical block. * @completion: The data_vio for an external data request as a completion. * * This is the start of the path for all external requests. It is registered in launch_data_vio(). */ static void attempt_logical_block_lock(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); struct lbn_lock *lock = &data_vio->logical; struct vdo *vdo = vdo_from_data_vio(data_vio); struct data_vio *lock_holder; int result; assert_data_vio_in_logical_zone(data_vio); if (data_vio->logical.lbn >= vdo->states.vdo.config.logical_blocks) { continue_data_vio_with_error(data_vio, VDO_OUT_OF_RANGE); return; } result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn, data_vio, false, (void **) &lock_holder); if (result != VDO_SUCCESS) { continue_data_vio_with_error(data_vio, result); return; } if (lock_holder == NULL) { /* We got the lock */ launch_locked_request(data_vio); return; } result = VDO_ASSERT(lock_holder->logical.locked, "logical block lock held"); if (result != VDO_SUCCESS) { continue_data_vio_with_error(data_vio, result); return; } /* * If the new request is a pure read request (not read-modify-write) and the lock_holder is * writing and has received an allocation, service the read request immediately by copying * data from the lock_holder to avoid having to flush the write out of the packer just to * prevent the read from waiting indefinitely. If the lock_holder does not yet have an * allocation, prevent it from blocking in the packer and wait on it. This is necessary in * order to prevent returning data that may not have actually been written. */ if (!data_vio->write && READ_ONCE(lock_holder->allocation_succeeded)) { copy_to_bio(data_vio->user_bio, lock_holder->vio.data + data_vio->offset); acknowledge_data_vio(data_vio); complete_data_vio(completion); return; } data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_LOGICAL_BLOCK_LOCK; vdo_waitq_enqueue_waiter(&lock_holder->logical.waiters, &data_vio->waiter); /* * Prevent writes and read-modify-writes from blocking indefinitely on lock holders in the * packer. */ if (lock_holder->write && cancel_data_vio_compression(lock_holder)) { data_vio->compression.lock_holder = lock_holder; launch_data_vio_packer_callback(data_vio, vdo_remove_lock_holder_from_packer); } } /** * launch_data_vio() - (Re)initialize a data_vio to have a new logical block number, keeping the * same parent and other state and send it on its way. */ static void launch_data_vio(struct data_vio *data_vio, logical_block_number_t lbn) { struct vdo_completion *completion = &data_vio->vio.completion; /* * Clearing the tree lock must happen before initializing the LBN lock, which also adds * information to the tree lock. */ memset(&data_vio->tree_lock, 0, sizeof(data_vio->tree_lock)); initialize_lbn_lock(data_vio, lbn); INIT_LIST_HEAD(&data_vio->hash_lock_entry); INIT_LIST_HEAD(&data_vio->write_entry); memset(&data_vio->allocation, 0, sizeof(data_vio->allocation)); data_vio->is_duplicate = false; memset(&data_vio->record_name, 0, sizeof(data_vio->record_name)); memset(&data_vio->duplicate, 0, sizeof(data_vio->duplicate)); vdo_reset_completion(&data_vio->decrement_completion); vdo_reset_completion(completion); completion->error_handler = handle_data_vio_error; set_data_vio_logical_callback(data_vio, attempt_logical_block_lock); vdo_enqueue_completion(completion, VDO_DEFAULT_Q_MAP_BIO_PRIORITY); } static bool is_zero_block(char *block) { int i; for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) { if (*((u64 *) &block[i])) return false; } return true; } static void copy_from_bio(struct bio *bio, char *data_ptr) { struct bio_vec biovec; struct bvec_iter iter; bio_for_each_segment(biovec, bio, iter) { memcpy_from_bvec(data_ptr, &biovec); data_ptr += biovec.bv_len; } } static void launch_bio(struct vdo *vdo, struct data_vio *data_vio, struct bio *bio) { logical_block_number_t lbn; /* * Zero out the fields which don't need to be preserved (i.e. which are not pointers to * separately allocated objects). */ memset(data_vio, 0, offsetof(struct data_vio, vio)); memset(&data_vio->compression, 0, offsetof(struct compression_state, block)); data_vio->user_bio = bio; data_vio->offset = to_bytes(bio->bi_iter.bi_sector & VDO_SECTORS_PER_BLOCK_MASK); data_vio->is_partial = (bio->bi_iter.bi_size < VDO_BLOCK_SIZE) || (data_vio->offset != 0); /* * Discards behave very differently than other requests when coming in from device-mapper. * We have to be able to handle any size discards and various sector offsets within a * block. */ if (bio_op(bio) == REQ_OP_DISCARD) { data_vio->remaining_discard = bio->bi_iter.bi_size; data_vio->write = true; data_vio->is_discard = true; if (data_vio->is_partial) { vdo_count_bios(&vdo->stats.bios_in_partial, bio); data_vio->read = true; } } else if (data_vio->is_partial) { vdo_count_bios(&vdo->stats.bios_in_partial, bio); data_vio->read = true; if (bio_data_dir(bio) == WRITE) data_vio->write = true; } else if (bio_data_dir(bio) == READ) { data_vio->read = true; } else { /* * Copy the bio data to a char array so that we can continue to use the data after * we acknowledge the bio. */ copy_from_bio(bio, data_vio->vio.data); data_vio->is_zero = is_zero_block(data_vio->vio.data); data_vio->write = true; } if (data_vio->user_bio->bi_opf & REQ_FUA) data_vio->fua = true; lbn = (bio->bi_iter.bi_sector - vdo->starting_sector_offset) / VDO_SECTORS_PER_BLOCK; launch_data_vio(data_vio, lbn); } static void assign_data_vio(struct limiter *limiter, struct data_vio *data_vio) { struct bio *bio = bio_list_pop(limiter->permitted_waiters); launch_bio(limiter->pool->completion.vdo, data_vio, bio); limiter->wake_count++; bio = bio_list_peek(limiter->permitted_waiters); limiter->arrival = ((bio == NULL) ? U64_MAX : get_arrival_time(bio)); } static void assign_discard_permit(struct limiter *limiter) { struct bio *bio = bio_list_pop(&limiter->waiters); if (limiter->arrival == U64_MAX) limiter->arrival = get_arrival_time(bio); bio_list_add(limiter->permitted_waiters, bio); } static void get_waiters(struct limiter *limiter) { bio_list_merge_init(&limiter->waiters, &limiter->new_waiters); } static inline struct data_vio *get_available_data_vio(struct data_vio_pool *pool) { struct data_vio *data_vio = list_first_entry(&pool->available, struct data_vio, pool_entry); list_del_init(&data_vio->pool_entry); return data_vio; } static void assign_data_vio_to_waiter(struct limiter *limiter) { assign_data_vio(limiter, get_available_data_vio(limiter->pool)); } static void update_limiter(struct limiter *limiter) { struct bio_list *waiters = &limiter->waiters; data_vio_count_t available = limiter->limit - limiter->busy; VDO_ASSERT_LOG_ONLY((limiter->release_count <= limiter->busy), "Release count %u is not more than busy count %u", limiter->release_count, limiter->busy); get_waiters(limiter); for (; (limiter->release_count > 0) && !bio_list_empty(waiters); limiter->release_count--) limiter->assigner(limiter); if (limiter->release_count > 0) { WRITE_ONCE(limiter->busy, limiter->busy - limiter->release_count); limiter->release_count = 0; return; } for (; (available > 0) && !bio_list_empty(waiters); available--) limiter->assigner(limiter); WRITE_ONCE(limiter->busy, limiter->limit - available); if (limiter->max_busy < limiter->busy) WRITE_ONCE(limiter->max_busy, limiter->busy); } /** * schedule_releases() - Ensure that release processing is scheduled. * * If this call switches the state to processing, enqueue. Otherwise, some other thread has already * done so. */ static void schedule_releases(struct data_vio_pool *pool) { /* Pairs with the barrier in process_release_callback(). */ smp_mb__before_atomic(); if (atomic_cmpxchg(&pool->processing, false, true)) return; pool->completion.requeue = true; vdo_launch_completion_with_priority(&pool->completion, CPU_Q_COMPLETE_VIO_PRIORITY); } static void reuse_or_release_resources(struct data_vio_pool *pool, struct data_vio *data_vio, struct list_head *returned) { if (data_vio->remaining_discard > 0) { if (bio_list_empty(&pool->discard_limiter.waiters)) { /* Return the data_vio's discard permit. */ pool->discard_limiter.release_count++; } else { assign_discard_permit(&pool->discard_limiter); } } if (pool->limiter.arrival < pool->discard_limiter.arrival) { assign_data_vio(&pool->limiter, data_vio); } else if (pool->discard_limiter.arrival < U64_MAX) { assign_data_vio(&pool->discard_limiter, data_vio); } else { list_add(&data_vio->pool_entry, returned); pool->limiter.release_count++; } } /** * process_release_callback() - Process a batch of data_vio releases. * @completion: The pool with data_vios to release. */ static void process_release_callback(struct vdo_completion *completion) { struct data_vio_pool *pool = as_data_vio_pool(completion); bool reschedule; bool drained; data_vio_count_t processed; data_vio_count_t to_wake; data_vio_count_t discards_to_wake; LIST_HEAD(returned); spin_lock(&pool->lock); get_waiters(&pool->discard_limiter); get_waiters(&pool->limiter); spin_unlock(&pool->lock); if (pool->limiter.arrival == U64_MAX) { struct bio *bio = bio_list_peek(&pool->limiter.waiters); if (bio != NULL) pool->limiter.arrival = get_arrival_time(bio); } for (processed = 0; processed < DATA_VIO_RELEASE_BATCH_SIZE; processed++) { struct data_vio *data_vio; struct funnel_queue_entry *entry = vdo_funnel_queue_poll(pool->queue); if (entry == NULL) break; data_vio = as_data_vio(container_of(entry, struct vdo_completion, work_queue_entry_link)); acknowledge_data_vio(data_vio); reuse_or_release_resources(pool, data_vio, &returned); } spin_lock(&pool->lock); /* * There is a race where waiters could be added while we are in the unlocked section above. * Those waiters could not see the resources we are now about to release, so we assign * those resources now as we have no guarantee of being rescheduled. This is handled in * update_limiter(). */ update_limiter(&pool->discard_limiter); list_splice(&returned, &pool->available); update_limiter(&pool->limiter); to_wake = pool->limiter.wake_count; pool->limiter.wake_count = 0; discards_to_wake = pool->discard_limiter.wake_count; pool->discard_limiter.wake_count = 0; atomic_set(&pool->processing, false); /* Pairs with the barrier in schedule_releases(). */ smp_mb(); reschedule = !vdo_is_funnel_queue_empty(pool->queue); drained = (!reschedule && vdo_is_state_draining(&pool->state) && check_for_drain_complete_locked(pool)); spin_unlock(&pool->lock); if (to_wake > 0) wake_up_nr(&pool->limiter.blocked_threads, to_wake); if (discards_to_wake > 0) wake_up_nr(&pool->discard_limiter.blocked_threads, discards_to_wake); if (reschedule) schedule_releases(pool); else if (drained) vdo_finish_draining(&pool->state); } static void initialize_limiter(struct limiter *limiter, struct data_vio_pool *pool, assigner_fn assigner, data_vio_count_t limit) { limiter->pool = pool; limiter->assigner = assigner; limiter->limit = limit; limiter->arrival = U64_MAX; init_waitqueue_head(&limiter->blocked_threads); } /** * initialize_data_vio() - Allocate the components of a data_vio. * * The caller is responsible for cleaning up the data_vio on error. * * Return: VDO_SUCCESS or an error. */ static int initialize_data_vio(struct data_vio *data_vio, struct vdo *vdo) { struct bio *bio; int result; BUILD_BUG_ON(VDO_BLOCK_SIZE > PAGE_SIZE); result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "data_vio data", &data_vio->vio.data); if (result != VDO_SUCCESS) return vdo_log_error_strerror(result, "data_vio data allocation failure"); result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "compressed block", &data_vio->compression.block); if (result != VDO_SUCCESS) { return vdo_log_error_strerror(result, "data_vio compressed block allocation failure"); } result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "vio scratch", &data_vio->scratch_block); if (result != VDO_SUCCESS) return vdo_log_error_strerror(result, "data_vio scratch allocation failure"); result = vdo_create_bio(&bio); if (result != VDO_SUCCESS) return vdo_log_error_strerror(result, "data_vio data bio allocation failure"); vdo_initialize_completion(&data_vio->decrement_completion, vdo, VDO_DECREMENT_COMPLETION); initialize_vio(&data_vio->vio, bio, 1, VIO_TYPE_DATA, VIO_PRIORITY_DATA, vdo); return VDO_SUCCESS; } static void destroy_data_vio(struct data_vio *data_vio) { if (data_vio == NULL) return; vdo_free_bio(vdo_forget(data_vio->vio.bio)); vdo_free(vdo_forget(data_vio->vio.data)); vdo_free(vdo_forget(data_vio->compression.block)); vdo_free(vdo_forget(data_vio->scratch_block)); } /** * make_data_vio_pool() - Initialize a data_vio pool. * @vdo: The vdo to which the pool will belong. * @pool_size: The number of data_vios in the pool. * @discard_limit: The maximum number of data_vios which may be used for discards. * @pool_ptr: A pointer to hold the newly allocated pool. */ int make_data_vio_pool(struct vdo *vdo, data_vio_count_t pool_size, data_vio_count_t discard_limit, struct data_vio_pool **pool_ptr) { int result; struct data_vio_pool *pool; data_vio_count_t i; result = vdo_allocate_extended(struct data_vio_pool, pool_size, struct data_vio, __func__, &pool); if (result != VDO_SUCCESS) return result; VDO_ASSERT_LOG_ONLY((discard_limit <= pool_size), "discard limit does not exceed pool size"); initialize_limiter(&pool->discard_limiter, pool, assign_discard_permit, discard_limit); pool->discard_limiter.permitted_waiters = &pool->permitted_discards; initialize_limiter(&pool->limiter, pool, assign_data_vio_to_waiter, pool_size); pool->limiter.permitted_waiters = &pool->limiter.waiters; INIT_LIST_HEAD(&pool->available); spin_lock_init(&pool->lock); vdo_set_admin_state_code(&pool->state, VDO_ADMIN_STATE_NORMAL_OPERATION); vdo_initialize_completion(&pool->completion, vdo, VDO_DATA_VIO_POOL_COMPLETION); vdo_prepare_completion(&pool->completion, process_release_callback, process_release_callback, vdo->thread_config.cpu_thread, NULL); result = vdo_make_funnel_queue(&pool->queue); if (result != VDO_SUCCESS) { free_data_vio_pool(vdo_forget(pool)); return result; } for (i = 0; i < pool_size; i++) { struct data_vio *data_vio = &pool->data_vios[i]; result = initialize_data_vio(data_vio, vdo); if (result != VDO_SUCCESS) { destroy_data_vio(data_vio); free_data_vio_pool(pool); return result; } list_add(&data_vio->pool_entry, &pool->available); } *pool_ptr = pool; return VDO_SUCCESS; } /** * free_data_vio_pool() - Free a data_vio_pool and the data_vios in it. * * All data_vios must be returned to the pool before calling this function. */ void free_data_vio_pool(struct data_vio_pool *pool) { struct data_vio *data_vio, *tmp; if (pool == NULL) return; /* * Pairs with the barrier in process_release_callback(). Possibly not needed since it * caters to an enqueue vs. free race. */ smp_mb(); BUG_ON(atomic_read(&pool->processing)); spin_lock(&pool->lock); VDO_ASSERT_LOG_ONLY((pool->limiter.busy == 0), "data_vio pool must not have %u busy entries when being freed", pool->limiter.busy); VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->limiter.waiters) && bio_list_empty(&pool->limiter.new_waiters)), "data_vio pool must not have threads waiting to read or write when being freed"); VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->discard_limiter.waiters) && bio_list_empty(&pool->discard_limiter.new_waiters)), "data_vio pool must not have threads waiting to discard when being freed"); spin_unlock(&pool->lock); list_for_each_entry_safe(data_vio, tmp, &pool->available, pool_entry) { list_del_init(&data_vio->pool_entry); destroy_data_vio(data_vio); } vdo_free_funnel_queue(vdo_forget(pool->queue)); vdo_free(pool); } static bool acquire_permit(struct limiter *limiter) { if (limiter->busy >= limiter->limit) return false; WRITE_ONCE(limiter->busy, limiter->busy + 1); if (limiter->max_busy < limiter->busy) WRITE_ONCE(limiter->max_busy, limiter->busy); return true; } static void wait_permit(struct limiter *limiter, struct bio *bio) __releases(&limiter->pool->lock) { DEFINE_WAIT(wait); bio_list_add(&limiter->new_waiters, bio); prepare_to_wait_exclusive(&limiter->blocked_threads, &wait, TASK_UNINTERRUPTIBLE); spin_unlock(&limiter->pool->lock); io_schedule(); finish_wait(&limiter->blocked_threads, &wait); } /** * vdo_launch_bio() - Acquire a data_vio from the pool, assign the bio to it, and launch it. * * This will block if data_vios or discard permits are not available. */ void vdo_launch_bio(struct data_vio_pool *pool, struct bio *bio) { struct data_vio *data_vio; VDO_ASSERT_LOG_ONLY(!vdo_is_state_quiescent(&pool->state), "data_vio_pool not quiescent on acquire"); bio->bi_private = (void *) jiffies; spin_lock(&pool->lock); if ((bio_op(bio) == REQ_OP_DISCARD) && !acquire_permit(&pool->discard_limiter)) { wait_permit(&pool->discard_limiter, bio); return; } if (!acquire_permit(&pool->limiter)) { wait_permit(&pool->limiter, bio); return; } data_vio = get_available_data_vio(pool); spin_unlock(&pool->lock); launch_bio(pool->completion.vdo, data_vio, bio); } /* Implements vdo_admin_initiator_fn. */ static void initiate_drain(struct admin_state *state) { bool drained; struct data_vio_pool *pool = container_of(state, struct data_vio_pool, state); spin_lock(&pool->lock); drained = check_for_drain_complete_locked(pool); spin_unlock(&pool->lock); if (drained) vdo_finish_draining(state); } static void assert_on_vdo_cpu_thread(const struct vdo *vdo, const char *name) { VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.cpu_thread), "%s called on cpu thread", name); } /** * drain_data_vio_pool() - Wait asynchronously for all data_vios to be returned to the pool. * @completion: The completion to notify when the pool has drained. */ void drain_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion) { assert_on_vdo_cpu_thread(completion->vdo, __func__); vdo_start_draining(&pool->state, VDO_ADMIN_STATE_SUSPENDING, completion, initiate_drain); } /** * resume_data_vio_pool() - Resume a data_vio pool. * @completion: The completion to notify when the pool has resumed. */ void resume_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion) { assert_on_vdo_cpu_thread(completion->vdo, __func__); vdo_continue_completion(completion, vdo_resume_if_quiescent(&pool->state)); } static void dump_limiter(const char *name, struct limiter *limiter) { vdo_log_info("%s: %u of %u busy (max %u), %s", name, limiter->busy, limiter->limit, limiter->max_busy, ((bio_list_empty(&limiter->waiters) && bio_list_empty(&limiter->new_waiters)) ? "no waiters" : "has waiters")); } /** * dump_data_vio_pool() - Dump a data_vio pool to the log. * @dump_vios: Whether to dump the details of each busy data_vio as well. */ void dump_data_vio_pool(struct data_vio_pool *pool, bool dump_vios) { /* * In order that syslog can empty its buffer, sleep after 35 elements for 4ms (till the * second clock tick). These numbers were picked based on experiments with lab machines. */ static const int ELEMENTS_PER_BATCH = 35; static const int SLEEP_FOR_SYSLOG = 4000; if (pool == NULL) return; spin_lock(&pool->lock); dump_limiter("data_vios", &pool->limiter); dump_limiter("discard permits", &pool->discard_limiter); if (dump_vios) { int i; int dumped = 0; for (i = 0; i < pool->limiter.limit; i++) { struct data_vio *data_vio = &pool->data_vios[i]; if (!list_empty(&data_vio->pool_entry)) continue; dump_data_vio(data_vio); if (++dumped >= ELEMENTS_PER_BATCH) { spin_unlock(&pool->lock); dumped = 0; fsleep(SLEEP_FOR_SYSLOG); spin_lock(&pool->lock); } } } spin_unlock(&pool->lock); } data_vio_count_t get_data_vio_pool_active_requests(struct data_vio_pool *pool) { return READ_ONCE(pool->limiter.busy); } data_vio_count_t get_data_vio_pool_request_limit(struct data_vio_pool *pool) { return READ_ONCE(pool->limiter.limit); } data_vio_count_t get_data_vio_pool_maximum_requests(struct data_vio_pool *pool) { return READ_ONCE(pool->limiter.max_busy); } static void update_data_vio_error_stats(struct data_vio *data_vio) { u8 index = 0; static const char * const operations[] = { [0] = "empty", [1] = "read", [2] = "write", [3] = "read-modify-write", [5] = "read+fua", [6] = "write+fua", [7] = "read-modify-write+fua", }; if (data_vio->read) index = 1; if (data_vio->write) index += 2; if (data_vio->fua) index += 4; update_vio_error_stats(&data_vio->vio, "Completing %s vio for LBN %llu with error after %s", operations[index], (unsigned long long) data_vio->logical.lbn, get_data_vio_operation_name(data_vio)); } static void perform_cleanup_stage(struct data_vio *data_vio, enum data_vio_cleanup_stage stage); /** * release_allocated_lock() - Release the PBN lock and/or the reference on the allocated block at * the end of processing a data_vio. */ static void release_allocated_lock(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_in_allocated_zone(data_vio); release_data_vio_allocation_lock(data_vio, false); perform_cleanup_stage(data_vio, VIO_RELEASE_RECOVERY_LOCKS); } /** release_lock() - Release an uncontended LBN lock. */ static void release_lock(struct data_vio *data_vio, struct lbn_lock *lock) { struct int_map *lock_map = lock->zone->lbn_operations; struct data_vio *lock_holder; if (!lock->locked) { /* The lock is not locked, so it had better not be registered in the lock map. */ struct data_vio *lock_holder = vdo_int_map_get(lock_map, lock->lbn); VDO_ASSERT_LOG_ONLY((data_vio != lock_holder), "no logical block lock held for block %llu", (unsigned long long) lock->lbn); return; } /* Release the lock by removing the lock from the map. */ lock_holder = vdo_int_map_remove(lock_map, lock->lbn); VDO_ASSERT_LOG_ONLY((data_vio == lock_holder), "logical block lock mismatch for block %llu", (unsigned long long) lock->lbn); lock->locked = false; } /** transfer_lock() - Transfer a contended LBN lock to the eldest waiter. */ static void transfer_lock(struct data_vio *data_vio, struct lbn_lock *lock) { struct data_vio *lock_holder, *next_lock_holder; int result; VDO_ASSERT_LOG_ONLY(lock->locked, "lbn_lock with waiters is not locked"); /* Another data_vio is waiting for the lock, transfer it in a single lock map operation. */ next_lock_holder = vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters)); /* Transfer the remaining lock waiters to the next lock holder. */ vdo_waitq_transfer_all_waiters(&lock->waiters, &next_lock_holder->logical.waiters); result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn, next_lock_holder, true, (void **) &lock_holder); if (result != VDO_SUCCESS) { continue_data_vio_with_error(next_lock_holder, result); return; } VDO_ASSERT_LOG_ONLY((lock_holder == data_vio), "logical block lock mismatch for block %llu", (unsigned long long) lock->lbn); lock->locked = false; /* * If there are still waiters, other data_vios must be trying to get the lock we just * transferred. We must ensure that the new lock holder doesn't block in the packer. */ if (vdo_waitq_has_waiters(&next_lock_holder->logical.waiters)) cancel_data_vio_compression(next_lock_holder); /* * Avoid stack overflow on lock transfer. * FIXME: this is only an issue in the 1 thread config. */ next_lock_holder->vio.completion.requeue = true; launch_locked_request(next_lock_holder); } /** * release_logical_lock() - Release the logical block lock and flush generation lock at the end of * processing a data_vio. */ static void release_logical_lock(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); struct lbn_lock *lock = &data_vio->logical; assert_data_vio_in_logical_zone(data_vio); if (vdo_waitq_has_waiters(&lock->waiters)) transfer_lock(data_vio, lock); else release_lock(data_vio, lock); vdo_release_flush_generation_lock(data_vio); perform_cleanup_stage(data_vio, VIO_CLEANUP_DONE); } /** clean_hash_lock() - Release the hash lock at the end of processing a data_vio. */ static void clean_hash_lock(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_in_hash_zone(data_vio); if (completion->result != VDO_SUCCESS) { vdo_clean_failed_hash_lock(data_vio); return; } vdo_release_hash_lock(data_vio); perform_cleanup_stage(data_vio, VIO_RELEASE_LOGICAL); } /** * finish_cleanup() - Make some assertions about a data_vio which has finished cleaning up. * * If it is part of a multi-block discard, starts on the next block, otherwise, returns it to the * pool. */ static void finish_cleanup(struct data_vio *data_vio) { struct vdo_completion *completion = &data_vio->vio.completion; u32 discard_size = min_t(u32, data_vio->remaining_discard, VDO_BLOCK_SIZE - data_vio->offset); VDO_ASSERT_LOG_ONLY(data_vio->allocation.lock == NULL, "complete data_vio has no allocation lock"); VDO_ASSERT_LOG_ONLY(data_vio->hash_lock == NULL, "complete data_vio has no hash lock"); if ((data_vio->remaining_discard <= discard_size) || (completion->result != VDO_SUCCESS)) { struct data_vio_pool *pool = completion->vdo->data_vio_pool; vdo_funnel_queue_put(pool->queue, &completion->work_queue_entry_link); schedule_releases(pool); return; } data_vio->remaining_discard -= discard_size; data_vio->is_partial = (data_vio->remaining_discard < VDO_BLOCK_SIZE); data_vio->read = data_vio->is_partial; data_vio->offset = 0; completion->requeue = true; data_vio->first_reference_operation_complete = false; launch_data_vio(data_vio, data_vio->logical.lbn + 1); } /** perform_cleanup_stage() - Perform the next step in the process of cleaning up a data_vio. */ static void perform_cleanup_stage(struct data_vio *data_vio, enum data_vio_cleanup_stage stage) { struct vdo *vdo = vdo_from_data_vio(data_vio); switch (stage) { case VIO_RELEASE_HASH_LOCK: if (data_vio->hash_lock != NULL) { launch_data_vio_hash_zone_callback(data_vio, clean_hash_lock); return; } fallthrough; case VIO_RELEASE_ALLOCATED: if (data_vio_has_allocation(data_vio)) { launch_data_vio_allocated_zone_callback(data_vio, release_allocated_lock); return; } fallthrough; case VIO_RELEASE_RECOVERY_LOCKS: if ((data_vio->recovery_sequence_number > 0) && (READ_ONCE(vdo->read_only_notifier.read_only_error) == VDO_SUCCESS) && (data_vio->vio.completion.result != VDO_READ_ONLY)) vdo_log_warning("VDO not read-only when cleaning data_vio with RJ lock"); fallthrough; case VIO_RELEASE_LOGICAL: launch_data_vio_logical_callback(data_vio, release_logical_lock); return; default: finish_cleanup(data_vio); } } void complete_data_vio(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); completion->error_handler = NULL; data_vio->last_async_operation = VIO_ASYNC_OP_CLEANUP; perform_cleanup_stage(data_vio, (data_vio->write ? VIO_CLEANUP_START : VIO_RELEASE_LOGICAL)); } static void enter_read_only_mode(struct vdo_completion *completion) { if (vdo_is_read_only(completion->vdo)) return; if (completion->result != VDO_READ_ONLY) { struct data_vio *data_vio = as_data_vio(completion); vdo_log_error_strerror(completion->result, "Preparing to enter read-only mode: data_vio for LBN %llu (becoming mapped to %llu, previously mapped to %llu, allocated %llu) is completing with a fatal error after operation %s", (unsigned long long) data_vio->logical.lbn, (unsigned long long) data_vio->new_mapped.pbn, (unsigned long long) data_vio->mapped.pbn, (unsigned long long) data_vio->allocation.pbn, get_data_vio_operation_name(data_vio)); } vdo_enter_read_only_mode(completion->vdo, completion->result); } void handle_data_vio_error(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); if ((completion->result == VDO_READ_ONLY) || (data_vio->user_bio == NULL)) enter_read_only_mode(completion); update_data_vio_error_stats(data_vio); complete_data_vio(completion); } /** * get_data_vio_operation_name() - Get the name of the last asynchronous operation performed on a * data_vio. */ const char *get_data_vio_operation_name(struct data_vio *data_vio) { BUILD_BUG_ON((MAX_VIO_ASYNC_OPERATION_NUMBER - MIN_VIO_ASYNC_OPERATION_NUMBER) != ARRAY_SIZE(ASYNC_OPERATION_NAMES)); return ((data_vio->last_async_operation < MAX_VIO_ASYNC_OPERATION_NUMBER) ? ASYNC_OPERATION_NAMES[data_vio->last_async_operation] : "unknown async operation"); } /** * data_vio_allocate_data_block() - Allocate a data block. * * @write_lock_type: The type of write lock to obtain on the block. * @callback: The callback which will attempt an allocation in the current zone and continue if it * succeeds. * @error_handler: The handler for errors while allocating. */ void data_vio_allocate_data_block(struct data_vio *data_vio, enum pbn_lock_type write_lock_type, vdo_action_fn callback, vdo_action_fn error_handler) { struct allocation *allocation = &data_vio->allocation; VDO_ASSERT_LOG_ONLY((allocation->pbn == VDO_ZERO_BLOCK), "data_vio does not have an allocation"); allocation->write_lock_type = write_lock_type; allocation->zone = vdo_get_next_allocation_zone(data_vio->logical.zone); allocation->first_allocation_zone = allocation->zone->zone_number; data_vio->vio.completion.error_handler = error_handler; launch_data_vio_allocated_zone_callback(data_vio, callback); } /** * release_data_vio_allocation_lock() - Release the PBN lock on a data_vio's allocated block. * @reset: If true, the allocation will be reset (i.e. any allocated pbn will be forgotten). * * If the reference to the locked block is still provisional, it will be released as well. */ void release_data_vio_allocation_lock(struct data_vio *data_vio, bool reset) { struct allocation *allocation = &data_vio->allocation; physical_block_number_t locked_pbn = allocation->pbn; assert_data_vio_in_allocated_zone(data_vio); if (reset || vdo_pbn_lock_has_provisional_reference(allocation->lock)) allocation->pbn = VDO_ZERO_BLOCK; vdo_release_physical_zone_pbn_lock(allocation->zone, locked_pbn, vdo_forget(allocation->lock)); } /** * uncompress_data_vio() - Uncompress the data a data_vio has just read. * @mapping_state: The mapping state indicating which fragment to decompress. * @buffer: The buffer to receive the uncompressed data. */ int uncompress_data_vio(struct data_vio *data_vio, enum block_mapping_state mapping_state, char *buffer) { int size; u16 fragment_offset, fragment_size; struct compressed_block *block = data_vio->compression.block; int result = vdo_get_compressed_block_fragment(mapping_state, block, &fragment_offset, &fragment_size); if (result != VDO_SUCCESS) { vdo_log_debug("%s: compressed fragment error %d", __func__, result); return result; } size = LZ4_decompress_safe((block->data + fragment_offset), buffer, fragment_size, VDO_BLOCK_SIZE); if (size != VDO_BLOCK_SIZE) { vdo_log_debug("%s: lz4 error", __func__); return VDO_INVALID_FRAGMENT; } return VDO_SUCCESS; } /** * modify_for_partial_write() - Do the modify-write part of a read-modify-write cycle. * @completion: The data_vio which has just finished its read. * * This callback is registered in read_block(). */ static void modify_for_partial_write(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); char *data = data_vio->vio.data; struct bio *bio = data_vio->user_bio; assert_data_vio_on_cpu_thread(data_vio); if (bio_op(bio) == REQ_OP_DISCARD) { memset(data + data_vio->offset, '\0', min_t(u32, data_vio->remaining_discard, VDO_BLOCK_SIZE - data_vio->offset)); } else { copy_from_bio(bio, data + data_vio->offset); } data_vio->is_zero = is_zero_block(data); data_vio->read = false; launch_data_vio_logical_callback(data_vio, continue_data_vio_with_block_map_slot); } static void complete_read(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); char *data = data_vio->vio.data; bool compressed = vdo_is_state_compressed(data_vio->mapped.state); assert_data_vio_on_cpu_thread(data_vio); if (compressed) { int result = uncompress_data_vio(data_vio, data_vio->mapped.state, data); if (result != VDO_SUCCESS) { continue_data_vio_with_error(data_vio, result); return; } } if (data_vio->write) { modify_for_partial_write(completion); return; } if (compressed || data_vio->is_partial) copy_to_bio(data_vio->user_bio, data + data_vio->offset); acknowledge_data_vio(data_vio); complete_data_vio(completion); } static void read_endio(struct bio *bio) { struct data_vio *data_vio = vio_as_data_vio(bio->bi_private); int result = blk_status_to_errno(bio->bi_status); vdo_count_completed_bios(bio); if (result != VDO_SUCCESS) { continue_data_vio_with_error(data_vio, result); return; } launch_data_vio_cpu_callback(data_vio, complete_read, CPU_Q_COMPLETE_READ_PRIORITY); } static void complete_zero_read(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_on_cpu_thread(data_vio); if (data_vio->is_partial) { memset(data_vio->vio.data, 0, VDO_BLOCK_SIZE); if (data_vio->write) { modify_for_partial_write(completion); return; } } else { zero_fill_bio(data_vio->user_bio); } complete_read(completion); } /** * read_block() - Read a block asynchronously. * * This is the callback registered in read_block_mapping(). */ static void read_block(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); struct vio *vio = as_vio(completion); int result = VDO_SUCCESS; if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) { launch_data_vio_cpu_callback(data_vio, complete_zero_read, CPU_Q_COMPLETE_VIO_PRIORITY); return; } data_vio->last_async_operation = VIO_ASYNC_OP_READ_DATA_VIO; if (vdo_is_state_compressed(data_vio->mapped.state)) { result = vio_reset_bio(vio, (char *) data_vio->compression.block, read_endio, REQ_OP_READ, data_vio->mapped.pbn); } else { blk_opf_t opf = ((data_vio->user_bio->bi_opf & PASSTHROUGH_FLAGS) | REQ_OP_READ); if (data_vio->is_partial) { result = vio_reset_bio(vio, vio->data, read_endio, opf, data_vio->mapped.pbn); } else { /* A full 4k read. Use the incoming bio to avoid having to copy the data */ bio_reset(vio->bio, vio->bio->bi_bdev, opf); bio_init_clone(data_vio->user_bio->bi_bdev, vio->bio, data_vio->user_bio, GFP_KERNEL); /* Copy over the original bio iovec and opflags. */ vdo_set_bio_properties(vio->bio, vio, read_endio, opf, data_vio->mapped.pbn); } } if (result != VDO_SUCCESS) { continue_data_vio_with_error(data_vio, result); return; } vdo_submit_data_vio(data_vio); } static inline struct data_vio * reference_count_update_completion_as_data_vio(struct vdo_completion *completion) { if (completion->type == VIO_COMPLETION) return as_data_vio(completion); return container_of(completion, struct data_vio, decrement_completion); } /** * update_block_map() - Rendezvous of the data_vio and decrement completions after each has * made its reference updates. Handle any error from either, or proceed * to updating the block map. * @completion: The completion of the write in progress. */ static void update_block_map(struct vdo_completion *completion) { struct data_vio *data_vio = reference_count_update_completion_as_data_vio(completion); assert_data_vio_in_logical_zone(data_vio); if (!data_vio->first_reference_operation_complete) { /* Rendezvous, we're first */ data_vio->first_reference_operation_complete = true; return; } completion = &data_vio->vio.completion; vdo_set_completion_result(completion, data_vio->decrement_completion.result); if (completion->result != VDO_SUCCESS) { handle_data_vio_error(completion); return; } completion->error_handler = handle_data_vio_error; if (data_vio->hash_lock != NULL) set_data_vio_hash_zone_callback(data_vio, vdo_continue_hash_lock); else completion->callback = complete_data_vio; data_vio->last_async_operation = VIO_ASYNC_OP_PUT_MAPPED_BLOCK; vdo_put_mapped_block(data_vio); } static void decrement_reference_count(struct vdo_completion *completion) { struct data_vio *data_vio = container_of(completion, struct data_vio, decrement_completion); assert_data_vio_in_mapped_zone(data_vio); vdo_set_completion_callback(completion, update_block_map, data_vio->logical.zone->thread_id); completion->error_handler = update_block_map; vdo_modify_reference_count(completion, &data_vio->decrement_updater); } static void increment_reference_count(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_in_new_mapped_zone(data_vio); if (data_vio->downgrade_allocation_lock) { /* * Now that the data has been written, it's safe to deduplicate against the * block. Downgrade the allocation lock to a read lock so it can be used later by * the hash lock. This is done here since it needs to happen sometime before we * return to the hash zone, and we are currently on the correct thread. For * compressed blocks, the downgrade will have already been done. */ vdo_downgrade_pbn_write_lock(data_vio->allocation.lock, false); } set_data_vio_logical_callback(data_vio, update_block_map); completion->error_handler = update_block_map; vdo_modify_reference_count(completion, &data_vio->increment_updater); } /** journal_remapping() - Add a recovery journal entry for a data remapping. */ static void journal_remapping(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_in_journal_zone(data_vio); data_vio->decrement_updater.operation = VDO_JOURNAL_DATA_REMAPPING; data_vio->decrement_updater.zpbn = data_vio->mapped; if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) { data_vio->first_reference_operation_complete = true; if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) set_data_vio_logical_callback(data_vio, update_block_map); } else { set_data_vio_new_mapped_zone_callback(data_vio, increment_reference_count); } if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) { data_vio->first_reference_operation_complete = true; } else { vdo_set_completion_callback(&data_vio->decrement_completion, decrement_reference_count, data_vio->mapped.zone->thread_id); } data_vio->last_async_operation = VIO_ASYNC_OP_JOURNAL_REMAPPING; vdo_add_recovery_journal_entry(completion->vdo->recovery_journal, data_vio); } /** * read_old_block_mapping() - Get the previous PBN/LBN mapping of an in-progress write. * * Gets the previous PBN mapped to this LBN from the block map, so as to make an appropriate * journal entry referencing the removal of this LBN->PBN mapping. */ static void read_old_block_mapping(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_in_logical_zone(data_vio); data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_WRITE; set_data_vio_journal_callback(data_vio, journal_remapping); vdo_get_mapped_block(data_vio); } void update_metadata_for_data_vio_write(struct data_vio *data_vio, struct pbn_lock *lock) { data_vio->increment_updater = (struct reference_updater) { .operation = VDO_JOURNAL_DATA_REMAPPING, .increment = true, .zpbn = data_vio->new_mapped, .lock = lock, }; launch_data_vio_logical_callback(data_vio, read_old_block_mapping); } /** * pack_compressed_data() - Attempt to pack the compressed data_vio into a block. * * This is the callback registered in launch_compress_data_vio(). */ static void pack_compressed_data(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_in_packer_zone(data_vio); if (!vdo_get_compressing(vdo_from_data_vio(data_vio)) || get_data_vio_compression_status(data_vio).may_not_compress) { write_data_vio(data_vio); return; } data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_PACKING; vdo_attempt_packing(data_vio); } /** * compress_data_vio() - Do the actual work of compressing the data on a CPU queue. * * This callback is registered in launch_compress_data_vio(). */ static void compress_data_vio(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); int size; assert_data_vio_on_cpu_thread(data_vio); /* * By putting the compressed data at the start of the compressed block data field, we won't * need to copy it if this data_vio becomes a compressed write agent. */ size = LZ4_compress_default(data_vio->vio.data, data_vio->compression.block->data, VDO_BLOCK_SIZE, VDO_MAX_COMPRESSED_FRAGMENT_SIZE, (char *) vdo_get_work_queue_private_data()); if ((size > 0) && (size < VDO_COMPRESSED_BLOCK_DATA_SIZE)) { data_vio->compression.size = size; launch_data_vio_packer_callback(data_vio, pack_compressed_data); return; } write_data_vio(data_vio); } /** * launch_compress_data_vio() - Continue a write by attempting to compress the data. * * This is a re-entry point to vio_write used by hash locks. */ void launch_compress_data_vio(struct data_vio *data_vio) { VDO_ASSERT_LOG_ONLY(!data_vio->is_duplicate, "compressing a non-duplicate block"); VDO_ASSERT_LOG_ONLY(data_vio->hash_lock != NULL, "data_vio to compress has a hash_lock"); VDO_ASSERT_LOG_ONLY(data_vio_has_allocation(data_vio), "data_vio to compress has an allocation"); /* * There are 4 reasons why a data_vio which has reached this point will not be eligible for * compression: * * 1) Since data_vios can block indefinitely in the packer, it would be bad to do so if the * write request also requests FUA. * * 2) A data_vio should not be compressed when compression is disabled for the vdo. * * 3) A data_vio could be doing a partial write on behalf of a larger discard which has not * yet been acknowledged and hence blocking in the packer would be bad. * * 4) Some other data_vio may be waiting on this data_vio in which case blocking in the * packer would also be bad. */ if (data_vio->fua || !vdo_get_compressing(vdo_from_data_vio(data_vio)) || ((data_vio->user_bio != NULL) && (bio_op(data_vio->user_bio) == REQ_OP_DISCARD)) || (advance_data_vio_compression_stage(data_vio).stage != DATA_VIO_COMPRESSING)) { write_data_vio(data_vio); return; } data_vio->last_async_operation = VIO_ASYNC_OP_COMPRESS_DATA_VIO; launch_data_vio_cpu_callback(data_vio, compress_data_vio, CPU_Q_COMPRESS_BLOCK_PRIORITY); } /** * hash_data_vio() - Hash the data in a data_vio and set the hash zone (which also flags the record * name as set). * This callback is registered in prepare_for_dedupe(). */ static void hash_data_vio(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_on_cpu_thread(data_vio); VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "zero blocks should not be hashed"); murmurhash3_128(data_vio->vio.data, VDO_BLOCK_SIZE, 0x62ea60be, &data_vio->record_name); data_vio->hash_zone = vdo_select_hash_zone(vdo_from_data_vio(data_vio)->hash_zones, &data_vio->record_name); data_vio->last_async_operation = VIO_ASYNC_OP_ACQUIRE_VDO_HASH_LOCK; launch_data_vio_hash_zone_callback(data_vio, vdo_acquire_hash_lock); } /** prepare_for_dedupe() - Prepare for the dedupe path after attempting to get an allocation. */ static void prepare_for_dedupe(struct data_vio *data_vio) { /* We don't care what thread we are on. */ VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "must not prepare to dedupe zero blocks"); /* * Before we can dedupe, we need to know the record name, so the first * step is to hash the block data. */ data_vio->last_async_operation = VIO_ASYNC_OP_HASH_DATA_VIO; launch_data_vio_cpu_callback(data_vio, hash_data_vio, CPU_Q_HASH_BLOCK_PRIORITY); } /** * write_bio_finished() - This is the bio_end_io function registered in write_block() to be called * when a data_vio's write to the underlying storage has completed. */ static void write_bio_finished(struct bio *bio) { struct data_vio *data_vio = vio_as_data_vio((struct vio *) bio->bi_private); vdo_count_completed_bios(bio); vdo_set_completion_result(&data_vio->vio.completion, blk_status_to_errno(bio->bi_status)); data_vio->downgrade_allocation_lock = true; update_metadata_for_data_vio_write(data_vio, data_vio->allocation.lock); } /** write_data_vio() - Write a data block to storage without compression. */ void write_data_vio(struct data_vio *data_vio) { struct data_vio_compression_status status, new_status; int result; if (!data_vio_has_allocation(data_vio)) { /* * There was no space to write this block and we failed to deduplicate or compress * it. */ continue_data_vio_with_error(data_vio, VDO_NO_SPACE); return; } new_status = (struct data_vio_compression_status) { .stage = DATA_VIO_POST_PACKER, .may_not_compress = true, }; do { status = get_data_vio_compression_status(data_vio); } while ((status.stage != DATA_VIO_POST_PACKER) && !set_data_vio_compression_status(data_vio, status, new_status)); /* Write the data from the data block buffer. */ result = vio_reset_bio(&data_vio->vio, data_vio->vio.data, write_bio_finished, REQ_OP_WRITE, data_vio->allocation.pbn); if (result != VDO_SUCCESS) { continue_data_vio_with_error(data_vio, result); return; } data_vio->last_async_operation = VIO_ASYNC_OP_WRITE_DATA_VIO; vdo_submit_data_vio(data_vio); } /** * acknowledge_write_callback() - Acknowledge a write to the requestor. * * This callback is registered in allocate_block() and continue_write_with_block_map_slot(). */ static void acknowledge_write_callback(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); struct vdo *vdo = completion->vdo; VDO_ASSERT_LOG_ONLY((!vdo_uses_bio_ack_queue(vdo) || (vdo_get_callback_thread_id() == vdo->thread_config.bio_ack_thread)), "%s() called on bio ack queue", __func__); VDO_ASSERT_LOG_ONLY(data_vio_has_flush_generation_lock(data_vio), "write VIO to be acknowledged has a flush generation lock"); acknowledge_data_vio(data_vio); if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) { /* This is a zero write or discard */ update_metadata_for_data_vio_write(data_vio, NULL); return; } prepare_for_dedupe(data_vio); } /** * allocate_block() - Attempt to allocate a block in the current allocation zone. * * This callback is registered in continue_write_with_block_map_slot(). */ static void allocate_block(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_in_allocated_zone(data_vio); if (!vdo_allocate_block_in_zone(data_vio)) return; completion->error_handler = handle_data_vio_error; WRITE_ONCE(data_vio->allocation_succeeded, true); data_vio->new_mapped = (struct zoned_pbn) { .zone = data_vio->allocation.zone, .pbn = data_vio->allocation.pbn, .state = VDO_MAPPING_STATE_UNCOMPRESSED, }; if (data_vio->fua || data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) { prepare_for_dedupe(data_vio); return; } data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE; launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback); } /** * handle_allocation_error() - Handle an error attempting to allocate a block. * * This error handler is registered in continue_write_with_block_map_slot(). */ static void handle_allocation_error(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); if (completion->result == VDO_NO_SPACE) { /* We failed to get an allocation, but we can try to dedupe. */ vdo_reset_completion(completion); completion->error_handler = handle_data_vio_error; prepare_for_dedupe(data_vio); return; } /* We got a "real" error, not just a failure to allocate, so fail the request. */ handle_data_vio_error(completion); } static int assert_is_discard(struct data_vio *data_vio) { int result = VDO_ASSERT(data_vio->is_discard, "data_vio with no block map page is a discard"); return ((result == VDO_SUCCESS) ? result : VDO_READ_ONLY); } /** * continue_data_vio_with_block_map_slot() - Read the data_vio's mapping from the block map. * * This callback is registered in launch_read_data_vio(). */ void continue_data_vio_with_block_map_slot(struct vdo_completion *completion) { struct data_vio *data_vio = as_data_vio(completion); assert_data_vio_in_logical_zone(data_vio); if (data_vio->read) { set_data_vio_logical_callback(data_vio, read_block); data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_READ; vdo_get_mapped_block(data_vio); return; } vdo_acquire_flush_generation_lock(data_vio); if (data_vio->tree_lock.tree_slots[0].block_map_slot.pbn == VDO_ZERO_BLOCK) { /* * This is a discard for a block on a block map page which has not been allocated, so * there's nothing more we need to do. */ completion->callback = complete_data_vio; continue_data_vio_with_error(data_vio, assert_is_discard(data_vio)); return; } /* * We need an allocation if this is neither a full-block discard nor a * full-block zero write. */ if (!data_vio->is_zero && (!data_vio->is_discard || data_vio->is_partial)) { data_vio_allocate_data_block(data_vio, VIO_WRITE_LOCK, allocate_block, handle_allocation_error); return; } /* * We don't need to write any data, so skip allocation and just update the block map and * reference counts (via the journal). */ data_vio->new_mapped.pbn = VDO_ZERO_BLOCK; if (data_vio->is_zero) data_vio->new_mapped.state = VDO_MAPPING_STATE_UNCOMPRESSED; if (data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) { /* This is not the final block of a discard so we can't acknowledge it yet. */ update_metadata_for_data_vio_write(data_vio, NULL); return; } data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE; launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback); }