// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ /* * This file contains the main entry points for normal operations on a vdo as well as functions for * constructing and destroying vdo instances (in memory). */ /** * DOC: * * A read_only_notifier has a single completion which is used to perform read-only notifications, * however, vdo_enter_read_only_mode() may be called from any thread. A pair of fields, protected * by a spinlock, are used to control the read-only mode entry process. The first field holds the * read-only error. The second is the state field, which may hold any of the four special values * enumerated here. * * When vdo_enter_read_only_mode() is called from some vdo thread, if the read_only_error field * already contains an error (i.e. its value is not VDO_SUCCESS), then some other error has already * initiated the read-only process, and nothing more is done. Otherwise, the new error is stored in * the read_only_error field, and the state field is consulted. If the state is MAY_NOTIFY, it is * set to NOTIFYING, and the notification process begins. If the state is MAY_NOT_NOTIFY, then * notifications are currently disallowed, generally due to the vdo being suspended. In this case, * the nothing more will be done until the vdo is resumed, at which point the notification will be * performed. In any other case, the vdo is already read-only, and there is nothing more to do. */ #include "vdo.h" #include #include #include #include #include #include #include #include #include "logger.h" #include "memory-alloc.h" #include "permassert.h" #include "string-utils.h" #include "block-map.h" #include "completion.h" #include "data-vio.h" #include "dedupe.h" #include "encodings.h" #include "funnel-workqueue.h" #include "io-submitter.h" #include "logical-zone.h" #include "packer.h" #include "physical-zone.h" #include "recovery-journal.h" #include "slab-depot.h" #include "statistics.h" #include "status-codes.h" #include "vio.h" #define PARANOID_THREAD_CONSISTENCY_CHECKS 0 struct sync_completion { struct vdo_completion vdo_completion; struct completion completion; }; /* A linked list is adequate for the small number of entries we expect. */ struct device_registry { struct list_head links; /* TODO: Convert to rcu per kernel recommendation. */ rwlock_t lock; }; static struct device_registry registry; /** * vdo_initialize_device_registry_once() - Initialize the necessary structures for the device * registry. */ void vdo_initialize_device_registry_once(void) { INIT_LIST_HEAD(®istry.links); rwlock_init(®istry.lock); } /** vdo_is_equal() - Implements vdo_filter_fn. */ static bool vdo_is_equal(struct vdo *vdo, const void *context) { return (vdo == context); } /** * filter_vdos_locked() - Find a vdo in the registry if it exists there. * @filter: The filter function to apply to devices. * @context: A bit of context to provide the filter. * * Context: Must be called holding the lock. * * Return: the vdo object found, if any. */ static struct vdo * __must_check filter_vdos_locked(vdo_filter_fn filter, const void *context) { struct vdo *vdo; list_for_each_entry(vdo, ®istry.links, registration) { if (filter(vdo, context)) return vdo; } return NULL; } /** * vdo_find_matching() - Find and return the first (if any) vdo matching a given filter function. * @filter: The filter function to apply to vdos. * @context: A bit of context to provide the filter. */ struct vdo *vdo_find_matching(vdo_filter_fn filter, const void *context) { struct vdo *vdo; read_lock(®istry.lock); vdo = filter_vdos_locked(filter, context); read_unlock(®istry.lock); return vdo; } static void start_vdo_request_queue(void *ptr) { struct vdo_thread *thread = vdo_get_work_queue_owner(vdo_get_current_work_queue()); vdo_register_allocating_thread(&thread->allocating_thread, &thread->vdo->allocations_allowed); } static void finish_vdo_request_queue(void *ptr) { vdo_unregister_allocating_thread(); } #ifdef MODULE #define MODULE_NAME THIS_MODULE->name #else #define MODULE_NAME "dm-vdo" #endif /* MODULE */ static const struct vdo_work_queue_type default_queue_type = { .start = start_vdo_request_queue, .finish = finish_vdo_request_queue, .max_priority = VDO_DEFAULT_Q_MAX_PRIORITY, .default_priority = VDO_DEFAULT_Q_COMPLETION_PRIORITY, }; static const struct vdo_work_queue_type bio_ack_q_type = { .start = NULL, .finish = NULL, .max_priority = BIO_ACK_Q_MAX_PRIORITY, .default_priority = BIO_ACK_Q_ACK_PRIORITY, }; static const struct vdo_work_queue_type cpu_q_type = { .start = NULL, .finish = NULL, .max_priority = CPU_Q_MAX_PRIORITY, .default_priority = CPU_Q_MAX_PRIORITY, }; static void uninitialize_thread_config(struct thread_config *config) { vdo_free(vdo_forget(config->logical_threads)); vdo_free(vdo_forget(config->physical_threads)); vdo_free(vdo_forget(config->hash_zone_threads)); vdo_free(vdo_forget(config->bio_threads)); memset(config, 0, sizeof(struct thread_config)); } static void assign_thread_ids(struct thread_config *config, thread_id_t thread_ids[], zone_count_t count) { zone_count_t zone; for (zone = 0; zone < count; zone++) thread_ids[zone] = config->thread_count++; } /** * initialize_thread_config() - Initialize the thread mapping * * If the logical, physical, and hash zone counts are all 0, a single thread will be shared by all * three plus the packer and recovery journal. Otherwise, there must be at least one of each type, * and each will have its own thread, as will the packer and recovery journal. * * Return: VDO_SUCCESS or an error. */ static int __must_check initialize_thread_config(struct thread_count_config counts, struct thread_config *config) { int result; bool single = ((counts.logical_zones + counts.physical_zones + counts.hash_zones) == 0); config->bio_thread_count = counts.bio_threads; if (single) { config->logical_zone_count = 1; config->physical_zone_count = 1; config->hash_zone_count = 1; } else { config->logical_zone_count = counts.logical_zones; config->physical_zone_count = counts.physical_zones; config->hash_zone_count = counts.hash_zones; } result = vdo_allocate(config->logical_zone_count, thread_id_t, "logical thread array", &config->logical_threads); if (result != VDO_SUCCESS) { uninitialize_thread_config(config); return result; } result = vdo_allocate(config->physical_zone_count, thread_id_t, "physical thread array", &config->physical_threads); if (result != VDO_SUCCESS) { uninitialize_thread_config(config); return result; } result = vdo_allocate(config->hash_zone_count, thread_id_t, "hash thread array", &config->hash_zone_threads); if (result != VDO_SUCCESS) { uninitialize_thread_config(config); return result; } result = vdo_allocate(config->bio_thread_count, thread_id_t, "bio thread array", &config->bio_threads); if (result != VDO_SUCCESS) { uninitialize_thread_config(config); return result; } if (single) { config->logical_threads[0] = config->thread_count; config->physical_threads[0] = config->thread_count; config->hash_zone_threads[0] = config->thread_count++; } else { config->admin_thread = config->thread_count; config->journal_thread = config->thread_count++; config->packer_thread = config->thread_count++; assign_thread_ids(config, config->logical_threads, counts.logical_zones); assign_thread_ids(config, config->physical_threads, counts.physical_zones); assign_thread_ids(config, config->hash_zone_threads, counts.hash_zones); } config->dedupe_thread = config->thread_count++; config->bio_ack_thread = ((counts.bio_ack_threads > 0) ? config->thread_count++ : VDO_INVALID_THREAD_ID); config->cpu_thread = config->thread_count++; assign_thread_ids(config, config->bio_threads, counts.bio_threads); return VDO_SUCCESS; } /** * read_geometry_block() - Synchronously read the geometry block from a vdo's underlying block * device. * @vdo: The vdo whose geometry is to be read. * * Return: VDO_SUCCESS or an error code. */ static int __must_check read_geometry_block(struct vdo *vdo) { struct vio *vio; char *block; int result; result = vdo_allocate(VDO_BLOCK_SIZE, u8, __func__, &block); if (result != VDO_SUCCESS) return result; result = create_metadata_vio(vdo, VIO_TYPE_GEOMETRY, VIO_PRIORITY_HIGH, NULL, block, &vio); if (result != VDO_SUCCESS) { vdo_free(block); return result; } /* * This is only safe because, having not already loaded the geometry, the vdo's geometry's * bio_offset field is 0, so the fact that vio_reset_bio() will subtract that offset from * the supplied pbn is not a problem. */ result = vio_reset_bio(vio, block, NULL, REQ_OP_READ, VDO_GEOMETRY_BLOCK_LOCATION); if (result != VDO_SUCCESS) { free_vio(vdo_forget(vio)); vdo_free(block); return result; } bio_set_dev(vio->bio, vdo_get_backing_device(vdo)); submit_bio_wait(vio->bio); result = blk_status_to_errno(vio->bio->bi_status); free_vio(vdo_forget(vio)); if (result != 0) { vdo_log_error_strerror(result, "synchronous read failed"); vdo_free(block); return -EIO; } result = vdo_parse_geometry_block((u8 *) block, &vdo->geometry); vdo_free(block); return result; } static bool get_zone_thread_name(const thread_id_t thread_ids[], zone_count_t count, thread_id_t id, const char *prefix, char *buffer, size_t buffer_length) { if (id >= thread_ids[0]) { thread_id_t index = id - thread_ids[0]; if (index < count) { snprintf(buffer, buffer_length, "%s%d", prefix, index); return true; } } return false; } /** * get_thread_name() - Format the name of the worker thread desired to support a given work queue. * @thread_config: The thread configuration. * @thread_id: The thread id. * @buffer: Where to put the formatted name. * @buffer_length: Size of the output buffer. * * The physical layer may add a prefix identifying the product; the output from this function * should just identify the thread. */ static void get_thread_name(const struct thread_config *thread_config, thread_id_t thread_id, char *buffer, size_t buffer_length) { if (thread_id == thread_config->journal_thread) { if (thread_config->packer_thread == thread_id) { /* * This is the "single thread" config where one thread is used for the * journal, packer, logical, physical, and hash zones. In that case, it is * known as the "request queue." */ snprintf(buffer, buffer_length, "reqQ"); return; } snprintf(buffer, buffer_length, "journalQ"); return; } else if (thread_id == thread_config->admin_thread) { /* Theoretically this could be different from the journal thread. */ snprintf(buffer, buffer_length, "adminQ"); return; } else if (thread_id == thread_config->packer_thread) { snprintf(buffer, buffer_length, "packerQ"); return; } else if (thread_id == thread_config->dedupe_thread) { snprintf(buffer, buffer_length, "dedupeQ"); return; } else if (thread_id == thread_config->bio_ack_thread) { snprintf(buffer, buffer_length, "ackQ"); return; } else if (thread_id == thread_config->cpu_thread) { snprintf(buffer, buffer_length, "cpuQ"); return; } if (get_zone_thread_name(thread_config->logical_threads, thread_config->logical_zone_count, thread_id, "logQ", buffer, buffer_length)) return; if (get_zone_thread_name(thread_config->physical_threads, thread_config->physical_zone_count, thread_id, "physQ", buffer, buffer_length)) return; if (get_zone_thread_name(thread_config->hash_zone_threads, thread_config->hash_zone_count, thread_id, "hashQ", buffer, buffer_length)) return; if (get_zone_thread_name(thread_config->bio_threads, thread_config->bio_thread_count, thread_id, "bioQ", buffer, buffer_length)) return; /* Some sort of misconfiguration? */ snprintf(buffer, buffer_length, "reqQ%d", thread_id); } /** * vdo_make_thread() - Construct a single vdo work_queue and its associated thread (or threads for * round-robin queues). * @vdo: The vdo which owns the thread. * @thread_id: The id of the thread to create (as determined by the thread_config). * @type: The description of the work queue for this thread. * @queue_count: The number of actual threads/queues contained in the "thread". * @contexts: An array of queue_count contexts, one for each individual queue; may be NULL. * * Each "thread" constructed by this method is represented by a unique thread id in the thread * config, and completions can be enqueued to the queue and run on the threads comprising this * entity. * * Return: VDO_SUCCESS or an error. */ int vdo_make_thread(struct vdo *vdo, thread_id_t thread_id, const struct vdo_work_queue_type *type, unsigned int queue_count, void *contexts[]) { struct vdo_thread *thread = &vdo->threads[thread_id]; char queue_name[MAX_VDO_WORK_QUEUE_NAME_LEN]; if (type == NULL) type = &default_queue_type; if (thread->queue != NULL) { return VDO_ASSERT(vdo_work_queue_type_is(thread->queue, type), "already constructed vdo thread %u is of the correct type", thread_id); } thread->vdo = vdo; thread->thread_id = thread_id; get_thread_name(&vdo->thread_config, thread_id, queue_name, sizeof(queue_name)); return vdo_make_work_queue(vdo->thread_name_prefix, queue_name, thread, type, queue_count, contexts, &thread->queue); } /** * register_vdo() - Register a VDO; it must not already be registered. * @vdo: The vdo to register. * * Return: VDO_SUCCESS or an error. */ static int register_vdo(struct vdo *vdo) { int result; write_lock(®istry.lock); result = VDO_ASSERT(filter_vdos_locked(vdo_is_equal, vdo) == NULL, "VDO not already registered"); if (result == VDO_SUCCESS) { INIT_LIST_HEAD(&vdo->registration); list_add_tail(&vdo->registration, ®istry.links); } write_unlock(®istry.lock); return result; } /** * initialize_vdo() - Do the portion of initializing a vdo which will clean up after itself on * error. * @vdo: The vdo being initialized * @config: The configuration of the vdo * @instance: The instance number of the vdo * @reason: The buffer to hold the failure reason on error */ static int initialize_vdo(struct vdo *vdo, struct device_config *config, unsigned int instance, char **reason) { int result; zone_count_t i; vdo->device_config = config; vdo->starting_sector_offset = config->owning_target->begin; vdo->instance = instance; vdo->allocations_allowed = true; vdo_set_admin_state_code(&vdo->admin.state, VDO_ADMIN_STATE_NEW); INIT_LIST_HEAD(&vdo->device_config_list); vdo_initialize_completion(&vdo->admin.completion, vdo, VDO_ADMIN_COMPLETION); init_completion(&vdo->admin.callback_sync); mutex_init(&vdo->stats_mutex); result = read_geometry_block(vdo); if (result != VDO_SUCCESS) { *reason = "Could not load geometry block"; return result; } result = initialize_thread_config(config->thread_counts, &vdo->thread_config); if (result != VDO_SUCCESS) { *reason = "Cannot create thread configuration"; return result; } vdo_log_info("zones: %d logical, %d physical, %d hash; total threads: %d", config->thread_counts.logical_zones, config->thread_counts.physical_zones, config->thread_counts.hash_zones, vdo->thread_config.thread_count); /* Compression context storage */ result = vdo_allocate(config->thread_counts.cpu_threads, char *, "LZ4 context", &vdo->compression_context); if (result != VDO_SUCCESS) { *reason = "cannot allocate LZ4 context"; return result; } for (i = 0; i < config->thread_counts.cpu_threads; i++) { result = vdo_allocate(LZ4_MEM_COMPRESS, char, "LZ4 context", &vdo->compression_context[i]); if (result != VDO_SUCCESS) { *reason = "cannot allocate LZ4 context"; return result; } } result = register_vdo(vdo); if (result != VDO_SUCCESS) { *reason = "Cannot add VDO to device registry"; return result; } vdo_set_admin_state_code(&vdo->admin.state, VDO_ADMIN_STATE_INITIALIZED); return result; } /** * vdo_make() - Allocate and initialize a vdo. * @instance: Device instantiation counter. * @config: The device configuration. * @reason: The reason for any failure during this call. * @vdo_ptr: A pointer to hold the created vdo. * * Return: VDO_SUCCESS or an error. */ int vdo_make(unsigned int instance, struct device_config *config, char **reason, struct vdo **vdo_ptr) { int result; struct vdo *vdo; /* Initialize with a generic failure reason to prevent returning garbage. */ *reason = "Unspecified error"; result = vdo_allocate(1, struct vdo, __func__, &vdo); if (result != VDO_SUCCESS) { *reason = "Cannot allocate VDO"; return result; } result = initialize_vdo(vdo, config, instance, reason); if (result != VDO_SUCCESS) { vdo_destroy(vdo); return result; } /* From here on, the caller will clean up if there is an error. */ *vdo_ptr = vdo; snprintf(vdo->thread_name_prefix, sizeof(vdo->thread_name_prefix), "%s%u", MODULE_NAME, instance); BUG_ON(vdo->thread_name_prefix[0] == '\0'); result = vdo_allocate(vdo->thread_config.thread_count, struct vdo_thread, __func__, &vdo->threads); if (result != VDO_SUCCESS) { *reason = "Cannot allocate thread structures"; return result; } result = vdo_make_thread(vdo, vdo->thread_config.admin_thread, &default_queue_type, 1, NULL); if (result != VDO_SUCCESS) { *reason = "Cannot make admin thread"; return result; } result = vdo_make_flusher(vdo); if (result != VDO_SUCCESS) { *reason = "Cannot make flusher zones"; return result; } result = vdo_make_packer(vdo, DEFAULT_PACKER_BINS, &vdo->packer); if (result != VDO_SUCCESS) { *reason = "Cannot make packer zones"; return result; } BUG_ON(vdo->device_config->logical_block_size <= 0); BUG_ON(vdo->device_config->owned_device == NULL); result = make_data_vio_pool(vdo, MAXIMUM_VDO_USER_VIOS, MAXIMUM_VDO_USER_VIOS * 3 / 4, &vdo->data_vio_pool); if (result != VDO_SUCCESS) { *reason = "Cannot allocate data_vio pool"; return result; } result = vdo_make_io_submitter(config->thread_counts.bio_threads, config->thread_counts.bio_rotation_interval, get_data_vio_pool_request_limit(vdo->data_vio_pool), vdo, &vdo->io_submitter); if (result != VDO_SUCCESS) { *reason = "bio submission initialization failed"; return result; } if (vdo_uses_bio_ack_queue(vdo)) { result = vdo_make_thread(vdo, vdo->thread_config.bio_ack_thread, &bio_ack_q_type, config->thread_counts.bio_ack_threads, NULL); if (result != VDO_SUCCESS) { *reason = "bio ack queue initialization failed"; return result; } } result = vdo_make_thread(vdo, vdo->thread_config.cpu_thread, &cpu_q_type, config->thread_counts.cpu_threads, (void **) vdo->compression_context); if (result != VDO_SUCCESS) { *reason = "CPU queue initialization failed"; return result; } return VDO_SUCCESS; } static void finish_vdo(struct vdo *vdo) { int i; if (vdo->threads == NULL) return; vdo_cleanup_io_submitter(vdo->io_submitter); vdo_finish_dedupe_index(vdo->hash_zones); for (i = 0; i < vdo->thread_config.thread_count; i++) vdo_finish_work_queue(vdo->threads[i].queue); } /** * free_listeners() - Free the list of read-only listeners associated with a thread. * @thread: The thread holding the list to free. */ static void free_listeners(struct vdo_thread *thread) { struct read_only_listener *listener, *next; for (listener = vdo_forget(thread->listeners); listener != NULL; listener = next) { next = vdo_forget(listener->next); vdo_free(listener); } } static void uninitialize_super_block(struct vdo_super_block *super_block) { free_vio_components(&super_block->vio); vdo_free(super_block->buffer); } /** * unregister_vdo() - Remove a vdo from the device registry. * @vdo: The vdo to remove. */ static void unregister_vdo(struct vdo *vdo) { write_lock(®istry.lock); if (filter_vdos_locked(vdo_is_equal, vdo) == vdo) list_del_init(&vdo->registration); write_unlock(®istry.lock); } /** * vdo_destroy() - Destroy a vdo instance. * @vdo: The vdo to destroy (may be NULL). */ void vdo_destroy(struct vdo *vdo) { unsigned int i; if (vdo == NULL) return; /* A running VDO should never be destroyed without suspending first. */ BUG_ON(vdo_get_admin_state(vdo)->normal); vdo->allocations_allowed = true; finish_vdo(vdo); unregister_vdo(vdo); free_data_vio_pool(vdo->data_vio_pool); vdo_free_io_submitter(vdo_forget(vdo->io_submitter)); vdo_free_flusher(vdo_forget(vdo->flusher)); vdo_free_packer(vdo_forget(vdo->packer)); vdo_free_recovery_journal(vdo_forget(vdo->recovery_journal)); vdo_free_slab_depot(vdo_forget(vdo->depot)); vdo_uninitialize_layout(&vdo->layout); vdo_uninitialize_layout(&vdo->next_layout); if (vdo->partition_copier) dm_kcopyd_client_destroy(vdo_forget(vdo->partition_copier)); uninitialize_super_block(&vdo->super_block); vdo_free_block_map(vdo_forget(vdo->block_map)); vdo_free_hash_zones(vdo_forget(vdo->hash_zones)); vdo_free_physical_zones(vdo_forget(vdo->physical_zones)); vdo_free_logical_zones(vdo_forget(vdo->logical_zones)); if (vdo->threads != NULL) { for (i = 0; i < vdo->thread_config.thread_count; i++) { free_listeners(&vdo->threads[i]); vdo_free_work_queue(vdo_forget(vdo->threads[i].queue)); } vdo_free(vdo_forget(vdo->threads)); } uninitialize_thread_config(&vdo->thread_config); if (vdo->compression_context != NULL) { for (i = 0; i < vdo->device_config->thread_counts.cpu_threads; i++) vdo_free(vdo_forget(vdo->compression_context[i])); vdo_free(vdo_forget(vdo->compression_context)); } vdo_free(vdo); } static int initialize_super_block(struct vdo *vdo, struct vdo_super_block *super_block) { int result; result = vdo_allocate(VDO_BLOCK_SIZE, char, "encoded super block", (char **) &vdo->super_block.buffer); if (result != VDO_SUCCESS) return result; return allocate_vio_components(vdo, VIO_TYPE_SUPER_BLOCK, VIO_PRIORITY_METADATA, NULL, 1, (char *) super_block->buffer, &vdo->super_block.vio); } /** * finish_reading_super_block() - Continue after loading the super block. * @completion: The super block vio. * * This callback is registered in vdo_load_super_block(). */ static void finish_reading_super_block(struct vdo_completion *completion) { struct vdo_super_block *super_block = container_of(as_vio(completion), struct vdo_super_block, vio); vdo_continue_completion(vdo_forget(completion->parent), vdo_decode_super_block(super_block->buffer)); } /** * handle_super_block_read_error() - Handle an error reading the super block. * @completion: The super block vio. * * This error handler is registered in vdo_load_super_block(). */ static void handle_super_block_read_error(struct vdo_completion *completion) { vio_record_metadata_io_error(as_vio(completion)); finish_reading_super_block(completion); } static void read_super_block_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct vdo_completion *parent = vio->completion.parent; continue_vio_after_io(vio, finish_reading_super_block, parent->callback_thread_id); } /** * vdo_load_super_block() - Allocate a super block and read its contents from storage. * @vdo: The vdo containing the super block on disk. * @parent: The completion to notify after loading the super block. */ void vdo_load_super_block(struct vdo *vdo, struct vdo_completion *parent) { int result; result = initialize_super_block(vdo, &vdo->super_block); if (result != VDO_SUCCESS) { vdo_continue_completion(parent, result); return; } vdo->super_block.vio.completion.parent = parent; vdo_submit_metadata_vio(&vdo->super_block.vio, vdo_get_data_region_start(vdo->geometry), read_super_block_endio, handle_super_block_read_error, REQ_OP_READ); } /** * vdo_get_backing_device() - Get the block device object underlying a vdo. * @vdo: The vdo. * * Return: The vdo's current block device. */ struct block_device *vdo_get_backing_device(const struct vdo *vdo) { return vdo->device_config->owned_device->bdev; } /** * vdo_get_device_name() - Get the device name associated with the vdo target. * @target: The target device interface. * * Return: The block device name. */ const char *vdo_get_device_name(const struct dm_target *target) { return dm_device_name(dm_table_get_md(target->table)); } /** * vdo_synchronous_flush() - Issue a flush request and wait for it to complete. * @vdo: The vdo. * * Return: VDO_SUCCESS or an error. */ int vdo_synchronous_flush(struct vdo *vdo) { int result; struct bio bio; bio_init(&bio, vdo_get_backing_device(vdo), NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH); submit_bio_wait(&bio); result = blk_status_to_errno(bio.bi_status); atomic64_inc(&vdo->stats.flush_out); if (result != 0) { vdo_log_error_strerror(result, "synchronous flush failed"); result = -EIO; } bio_uninit(&bio); return result; } /** * vdo_get_state() - Get the current state of the vdo. * @vdo: The vdo. * * Context: This method may be called from any thread. * * Return: The current state of the vdo. */ enum vdo_state vdo_get_state(const struct vdo *vdo) { enum vdo_state state = atomic_read(&vdo->state); /* pairs with barriers where state field is changed */ smp_rmb(); return state; } /** * vdo_set_state() - Set the current state of the vdo. * @vdo: The vdo whose state is to be set. * @state: The new state of the vdo. * * Context: This method may be called from any thread. */ void vdo_set_state(struct vdo *vdo, enum vdo_state state) { /* pairs with barrier in vdo_get_state */ smp_wmb(); atomic_set(&vdo->state, state); } /** * vdo_get_admin_state() - Get the admin state of the vdo. * @vdo: The vdo. * * Return: The code for the vdo's current admin state. */ const struct admin_state_code *vdo_get_admin_state(const struct vdo *vdo) { return vdo_get_admin_state_code(&vdo->admin.state); } /** * record_vdo() - Record the state of the VDO for encoding in the super block. */ static void record_vdo(struct vdo *vdo) { /* This is for backwards compatibility. */ vdo->states.unused = vdo->geometry.unused; vdo->states.vdo.state = vdo_get_state(vdo); vdo->states.block_map = vdo_record_block_map(vdo->block_map); vdo->states.recovery_journal = vdo_record_recovery_journal(vdo->recovery_journal); vdo->states.slab_depot = vdo_record_slab_depot(vdo->depot); vdo->states.layout = vdo->layout; } /** * continue_super_block_parent() - Continue the parent of a super block save operation. * @completion: The super block vio. * * This callback is registered in vdo_save_components(). */ static void continue_super_block_parent(struct vdo_completion *completion) { vdo_continue_completion(vdo_forget(completion->parent), completion->result); } /** * handle_save_error() - Log a super block save error. * @completion: The super block vio. * * This error handler is registered in vdo_save_components(). */ static void handle_save_error(struct vdo_completion *completion) { struct vdo_super_block *super_block = container_of(as_vio(completion), struct vdo_super_block, vio); vio_record_metadata_io_error(&super_block->vio); vdo_log_error_strerror(completion->result, "super block save failed"); /* * Mark the super block as unwritable so that we won't attempt to write it again. This * avoids the case where a growth attempt fails writing the super block with the new size, * but the subsequent attempt to write out the read-only state succeeds. In this case, * writes which happened just before the suspend would not be visible if the VDO is * restarted without rebuilding, but, after a read-only rebuild, the effects of those * writes would reappear. */ super_block->unwritable = true; completion->callback(completion); } static void super_block_write_endio(struct bio *bio) { struct vio *vio = bio->bi_private; struct vdo_completion *parent = vio->completion.parent; continue_vio_after_io(vio, continue_super_block_parent, parent->callback_thread_id); } /** * vdo_save_components() - Encode the vdo and save the super block asynchronously. * @vdo: The vdo whose state is being saved. * @parent: The completion to notify when the save is complete. */ void vdo_save_components(struct vdo *vdo, struct vdo_completion *parent) { struct vdo_super_block *super_block = &vdo->super_block; if (super_block->unwritable) { vdo_continue_completion(parent, VDO_READ_ONLY); return; } if (super_block->vio.completion.parent != NULL) { vdo_continue_completion(parent, VDO_COMPONENT_BUSY); return; } record_vdo(vdo); vdo_encode_super_block(super_block->buffer, &vdo->states); super_block->vio.completion.parent = parent; super_block->vio.completion.callback_thread_id = parent->callback_thread_id; vdo_submit_metadata_vio(&super_block->vio, vdo_get_data_region_start(vdo->geometry), super_block_write_endio, handle_save_error, REQ_OP_WRITE | REQ_PREFLUSH | REQ_FUA); } /** * vdo_register_read_only_listener() - Register a listener to be notified when the VDO goes * read-only. * @vdo: The vdo to register with. * @listener: The object to notify. * @notification: The function to call to send the notification. * @thread_id: The id of the thread on which to send the notification. * * Return: VDO_SUCCESS or an error. */ int vdo_register_read_only_listener(struct vdo *vdo, void *listener, vdo_read_only_notification_fn notification, thread_id_t thread_id) { struct vdo_thread *thread = &vdo->threads[thread_id]; struct read_only_listener *read_only_listener; int result; result = VDO_ASSERT(thread_id != vdo->thread_config.dedupe_thread, "read only listener not registered on dedupe thread"); if (result != VDO_SUCCESS) return result; result = vdo_allocate(1, struct read_only_listener, __func__, &read_only_listener); if (result != VDO_SUCCESS) return result; *read_only_listener = (struct read_only_listener) { .listener = listener, .notify = notification, .next = thread->listeners, }; thread->listeners = read_only_listener; return VDO_SUCCESS; } /** * notify_vdo_of_read_only_mode() - Notify a vdo that it is going read-only. * @listener: The vdo. * @parent: The completion to notify in order to acknowledge the notification. * * This will save the read-only state to the super block. * * Implements vdo_read_only_notification_fn. */ static void notify_vdo_of_read_only_mode(void *listener, struct vdo_completion *parent) { struct vdo *vdo = listener; if (vdo_in_read_only_mode(vdo)) vdo_finish_completion(parent); vdo_set_state(vdo, VDO_READ_ONLY_MODE); vdo_save_components(vdo, parent); } /** * vdo_enable_read_only_entry() - Enable a vdo to enter read-only mode on errors. * @vdo: The vdo to enable. * * Return: VDO_SUCCESS or an error. */ int vdo_enable_read_only_entry(struct vdo *vdo) { thread_id_t id; bool is_read_only = vdo_in_read_only_mode(vdo); struct read_only_notifier *notifier = &vdo->read_only_notifier; if (is_read_only) { notifier->read_only_error = VDO_READ_ONLY; notifier->state = NOTIFIED; } else { notifier->state = MAY_NOT_NOTIFY; } spin_lock_init(¬ifier->lock); vdo_initialize_completion(¬ifier->completion, vdo, VDO_READ_ONLY_MODE_COMPLETION); for (id = 0; id < vdo->thread_config.thread_count; id++) vdo->threads[id].is_read_only = is_read_only; return vdo_register_read_only_listener(vdo, vdo, notify_vdo_of_read_only_mode, vdo->thread_config.admin_thread); } /** * vdo_wait_until_not_entering_read_only_mode() - Wait until no read-only notifications are in * progress and prevent any subsequent * notifications. * @parent: The completion to notify when no threads are entering read-only mode. * * Notifications may be re-enabled by calling vdo_allow_read_only_mode_entry(). */ void vdo_wait_until_not_entering_read_only_mode(struct vdo_completion *parent) { struct vdo *vdo = parent->vdo; struct read_only_notifier *notifier = &vdo->read_only_notifier; vdo_assert_on_admin_thread(vdo, __func__); if (notifier->waiter != NULL) { vdo_continue_completion(parent, VDO_COMPONENT_BUSY); return; } spin_lock(¬ifier->lock); if (notifier->state == NOTIFYING) notifier->waiter = parent; else if (notifier->state == MAY_NOTIFY) notifier->state = MAY_NOT_NOTIFY; spin_unlock(¬ifier->lock); if (notifier->waiter == NULL) { /* * A notification was not in progress, and now they are * disallowed. */ vdo_launch_completion(parent); return; } } /** * as_notifier() - Convert a generic vdo_completion to a read_only_notifier. * @completion: The completion to convert. * * Return: The completion as a read_only_notifier. */ static inline struct read_only_notifier *as_notifier(struct vdo_completion *completion) { vdo_assert_completion_type(completion, VDO_READ_ONLY_MODE_COMPLETION); return container_of(completion, struct read_only_notifier, completion); } /** * finish_entering_read_only_mode() - Complete the process of entering read only mode. * @completion: The read-only mode completion. */ static void finish_entering_read_only_mode(struct vdo_completion *completion) { struct read_only_notifier *notifier = as_notifier(completion); vdo_assert_on_admin_thread(completion->vdo, __func__); spin_lock(¬ifier->lock); notifier->state = NOTIFIED; spin_unlock(¬ifier->lock); if (notifier->waiter != NULL) vdo_continue_completion(vdo_forget(notifier->waiter), completion->result); } /** * make_thread_read_only() - Inform each thread that the VDO is in read-only mode. * @completion: The read-only mode completion. */ static void make_thread_read_only(struct vdo_completion *completion) { struct vdo *vdo = completion->vdo; thread_id_t thread_id = completion->callback_thread_id; struct read_only_notifier *notifier = as_notifier(completion); struct read_only_listener *listener = completion->parent; if (listener == NULL) { /* This is the first call on this thread */ struct vdo_thread *thread = &vdo->threads[thread_id]; thread->is_read_only = true; listener = thread->listeners; if (thread_id == 0) vdo_log_error_strerror(READ_ONCE(notifier->read_only_error), "Unrecoverable error, entering read-only mode"); } else { /* We've just finished notifying a listener */ listener = listener->next; } if (listener != NULL) { /* We have a listener to notify */ vdo_prepare_completion(completion, make_thread_read_only, make_thread_read_only, thread_id, listener); listener->notify(listener->listener, completion); return; } /* We're done with this thread */ if (++thread_id == vdo->thread_config.dedupe_thread) { /* * We don't want to notify the dedupe thread since it may be * blocked rebuilding the index. */ thread_id++; } if (thread_id >= vdo->thread_config.thread_count) { /* There are no more threads */ vdo_prepare_completion(completion, finish_entering_read_only_mode, finish_entering_read_only_mode, vdo->thread_config.admin_thread, NULL); } else { vdo_prepare_completion(completion, make_thread_read_only, make_thread_read_only, thread_id, NULL); } vdo_launch_completion(completion); } /** * vdo_allow_read_only_mode_entry() - Allow the notifier to put the VDO into read-only mode, * reversing the effects of * vdo_wait_until_not_entering_read_only_mode(). * @parent: The object to notify once the operation is complete. * * If some thread tried to put the vdo into read-only mode while notifications were disallowed, it * will be done when this method is called. If that happens, the parent will not be notified until * the vdo has actually entered read-only mode and attempted to save the super block. * * Context: This method may only be called from the admin thread. */ void vdo_allow_read_only_mode_entry(struct vdo_completion *parent) { struct vdo *vdo = parent->vdo; struct read_only_notifier *notifier = &vdo->read_only_notifier; vdo_assert_on_admin_thread(vdo, __func__); if (notifier->waiter != NULL) { vdo_continue_completion(parent, VDO_COMPONENT_BUSY); return; } spin_lock(¬ifier->lock); if (notifier->state == MAY_NOT_NOTIFY) { if (notifier->read_only_error == VDO_SUCCESS) { notifier->state = MAY_NOTIFY; } else { notifier->state = NOTIFYING; notifier->waiter = parent; } } spin_unlock(¬ifier->lock); if (notifier->waiter == NULL) { /* We're done */ vdo_launch_completion(parent); return; } /* Do the pending notification. */ make_thread_read_only(¬ifier->completion); } /** * vdo_enter_read_only_mode() - Put a VDO into read-only mode and save the read-only state in the * super block. * @vdo: The vdo. * @error_code: The error which caused the VDO to enter read-only mode. * * This method is a no-op if the VDO is already read-only. */ void vdo_enter_read_only_mode(struct vdo *vdo, int error_code) { bool notify = false; thread_id_t thread_id = vdo_get_callback_thread_id(); struct read_only_notifier *notifier = &vdo->read_only_notifier; struct vdo_thread *thread; if (thread_id != VDO_INVALID_THREAD_ID) { thread = &vdo->threads[thread_id]; if (thread->is_read_only) { /* This thread has already gone read-only. */ return; } /* Record for this thread that the VDO is read-only. */ thread->is_read_only = true; } spin_lock(¬ifier->lock); if (notifier->read_only_error == VDO_SUCCESS) { WRITE_ONCE(notifier->read_only_error, error_code); if (notifier->state == MAY_NOTIFY) { notifier->state = NOTIFYING; notify = true; } } spin_unlock(¬ifier->lock); if (!notify) { /* The notifier is already aware of a read-only error */ return; } /* Initiate a notification starting on the lowest numbered thread. */ vdo_launch_completion_callback(¬ifier->completion, make_thread_read_only, 0); } /** * vdo_is_read_only() - Check whether the VDO is read-only. * @vdo: The vdo. * * Return: true if the vdo is read-only. * * This method may be called from any thread, as opposed to examining the VDO's state field which * is only safe to check from the admin thread. */ bool vdo_is_read_only(struct vdo *vdo) { return vdo->threads[vdo_get_callback_thread_id()].is_read_only; } /** * vdo_in_read_only_mode() - Check whether a vdo is in read-only mode. * @vdo: The vdo to query. * * Return: true if the vdo is in read-only mode. */ bool vdo_in_read_only_mode(const struct vdo *vdo) { return (vdo_get_state(vdo) == VDO_READ_ONLY_MODE); } /** * vdo_in_recovery_mode() - Check whether the vdo is in recovery mode. * @vdo: The vdo to query. * * Return: true if the vdo is in recovery mode. */ bool vdo_in_recovery_mode(const struct vdo *vdo) { return (vdo_get_state(vdo) == VDO_RECOVERING); } /** * vdo_enter_recovery_mode() - Put the vdo into recovery mode. * @vdo: The vdo. */ void vdo_enter_recovery_mode(struct vdo *vdo) { vdo_assert_on_admin_thread(vdo, __func__); if (vdo_in_read_only_mode(vdo)) return; vdo_log_info("Entering recovery mode"); vdo_set_state(vdo, VDO_RECOVERING); } /** * complete_synchronous_action() - Signal the waiting thread that a synchronous action is complete. * @completion: The sync completion. */ static void complete_synchronous_action(struct vdo_completion *completion) { vdo_assert_completion_type(completion, VDO_SYNC_COMPLETION); complete(&(container_of(completion, struct sync_completion, vdo_completion)->completion)); } /** * perform_synchronous_action() - Launch an action on a VDO thread and wait for it to complete. * @vdo: The vdo. * @action: The callback to launch. * @thread_id: The thread on which to run the action. * @parent: The parent of the sync completion (may be NULL). */ static int perform_synchronous_action(struct vdo *vdo, vdo_action_fn action, thread_id_t thread_id, void *parent) { struct sync_completion sync; vdo_initialize_completion(&sync.vdo_completion, vdo, VDO_SYNC_COMPLETION); init_completion(&sync.completion); sync.vdo_completion.parent = parent; vdo_launch_completion_callback(&sync.vdo_completion, action, thread_id); wait_for_completion(&sync.completion); return sync.vdo_completion.result; } /** * set_compression_callback() - Callback to turn compression on or off. * @completion: The completion. */ static void set_compression_callback(struct vdo_completion *completion) { struct vdo *vdo = completion->vdo; bool *enable = completion->parent; bool was_enabled = vdo_get_compressing(vdo); if (*enable != was_enabled) { WRITE_ONCE(vdo->compressing, *enable); if (was_enabled) { /* Signal the packer to flush since compression has been disabled. */ vdo_flush_packer(vdo->packer); } } vdo_log_info("compression is %s", (*enable ? "enabled" : "disabled")); *enable = was_enabled; complete_synchronous_action(completion); } /** * vdo_set_compressing() - Turn compression on or off. * @vdo: The vdo. * @enable: Whether to enable or disable compression. * * Return: Whether compression was previously on or off. */ bool vdo_set_compressing(struct vdo *vdo, bool enable) { perform_synchronous_action(vdo, set_compression_callback, vdo->thread_config.packer_thread, &enable); return enable; } /** * vdo_get_compressing() - Get whether compression is enabled in a vdo. * @vdo: The vdo. * * Return: State of compression. */ bool vdo_get_compressing(struct vdo *vdo) { return READ_ONCE(vdo->compressing); } static size_t get_block_map_cache_size(const struct vdo *vdo) { return ((size_t) vdo->device_config->cache_size) * VDO_BLOCK_SIZE; } static struct error_statistics __must_check get_vdo_error_statistics(const struct vdo *vdo) { /* * The error counts can be incremented from arbitrary threads and so must be incremented * atomically, but they are just statistics with no semantics that could rely on memory * order, so unfenced reads are sufficient. */ const struct atomic_statistics *atoms = &vdo->stats; return (struct error_statistics) { .invalid_advice_pbn_count = atomic64_read(&atoms->invalid_advice_pbn_count), .no_space_error_count = atomic64_read(&atoms->no_space_error_count), .read_only_error_count = atomic64_read(&atoms->read_only_error_count), }; } static void copy_bio_stat(struct bio_stats *b, const struct atomic_bio_stats *a) { b->read = atomic64_read(&a->read); b->write = atomic64_read(&a->write); b->discard = atomic64_read(&a->discard); b->flush = atomic64_read(&a->flush); b->empty_flush = atomic64_read(&a->empty_flush); b->fua = atomic64_read(&a->fua); } static struct bio_stats subtract_bio_stats(struct bio_stats minuend, struct bio_stats subtrahend) { return (struct bio_stats) { .read = minuend.read - subtrahend.read, .write = minuend.write - subtrahend.write, .discard = minuend.discard - subtrahend.discard, .flush = minuend.flush - subtrahend.flush, .empty_flush = minuend.empty_flush - subtrahend.empty_flush, .fua = minuend.fua - subtrahend.fua, }; } /** * vdo_get_physical_blocks_allocated() - Get the number of physical blocks in use by user data. * @vdo: The vdo. * * Return: The number of blocks allocated for user data. */ static block_count_t __must_check vdo_get_physical_blocks_allocated(const struct vdo *vdo) { return (vdo_get_slab_depot_allocated_blocks(vdo->depot) - vdo_get_journal_block_map_data_blocks_used(vdo->recovery_journal)); } /** * vdo_get_physical_blocks_overhead() - Get the number of physical blocks used by vdo metadata. * @vdo: The vdo. * * Return: The number of overhead blocks. */ static block_count_t __must_check vdo_get_physical_blocks_overhead(const struct vdo *vdo) { /* * config.physical_blocks is mutated during resize and is in a packed structure, * but resize runs on admin thread. * TODO: Verify that this is always safe. */ return (vdo->states.vdo.config.physical_blocks - vdo_get_slab_depot_data_blocks(vdo->depot) + vdo_get_journal_block_map_data_blocks_used(vdo->recovery_journal)); } static const char *vdo_describe_state(enum vdo_state state) { /* These strings should all fit in the 15 chars of VDOStatistics.mode. */ switch (state) { case VDO_RECOVERING: return "recovering"; case VDO_READ_ONLY_MODE: return "read-only"; default: return "normal"; } } /** * get_vdo_statistics() - Populate a vdo_statistics structure on the admin thread. * @vdo: The vdo. * @stats: The statistics structure to populate. */ static void get_vdo_statistics(const struct vdo *vdo, struct vdo_statistics *stats) { struct recovery_journal *journal = vdo->recovery_journal; enum vdo_state state = vdo_get_state(vdo); vdo_assert_on_admin_thread(vdo, __func__); /* start with a clean slate */ memset(stats, 0, sizeof(struct vdo_statistics)); /* * These are immutable properties of the vdo object, so it is safe to query them from any * thread. */ stats->version = STATISTICS_VERSION; stats->logical_blocks = vdo->states.vdo.config.logical_blocks; /* * config.physical_blocks is mutated during resize and is in a packed structure, but resize * runs on the admin thread. * TODO: verify that this is always safe */ stats->physical_blocks = vdo->states.vdo.config.physical_blocks; stats->block_size = VDO_BLOCK_SIZE; stats->complete_recoveries = vdo->states.vdo.complete_recoveries; stats->read_only_recoveries = vdo->states.vdo.read_only_recoveries; stats->block_map_cache_size = get_block_map_cache_size(vdo); /* The callees are responsible for thread-safety. */ stats->data_blocks_used = vdo_get_physical_blocks_allocated(vdo); stats->overhead_blocks_used = vdo_get_physical_blocks_overhead(vdo); stats->logical_blocks_used = vdo_get_recovery_journal_logical_blocks_used(journal); vdo_get_slab_depot_statistics(vdo->depot, stats); stats->journal = vdo_get_recovery_journal_statistics(journal); stats->packer = vdo_get_packer_statistics(vdo->packer); stats->block_map = vdo_get_block_map_statistics(vdo->block_map); vdo_get_dedupe_statistics(vdo->hash_zones, stats); stats->errors = get_vdo_error_statistics(vdo); stats->in_recovery_mode = (state == VDO_RECOVERING); snprintf(stats->mode, sizeof(stats->mode), "%s", vdo_describe_state(state)); stats->instance = vdo->instance; stats->current_vios_in_progress = get_data_vio_pool_active_requests(vdo->data_vio_pool); stats->max_vios = get_data_vio_pool_maximum_requests(vdo->data_vio_pool); stats->flush_out = atomic64_read(&vdo->stats.flush_out); stats->logical_block_size = vdo->device_config->logical_block_size; copy_bio_stat(&stats->bios_in, &vdo->stats.bios_in); copy_bio_stat(&stats->bios_in_partial, &vdo->stats.bios_in_partial); copy_bio_stat(&stats->bios_out, &vdo->stats.bios_out); copy_bio_stat(&stats->bios_meta, &vdo->stats.bios_meta); copy_bio_stat(&stats->bios_journal, &vdo->stats.bios_journal); copy_bio_stat(&stats->bios_page_cache, &vdo->stats.bios_page_cache); copy_bio_stat(&stats->bios_out_completed, &vdo->stats.bios_out_completed); copy_bio_stat(&stats->bios_meta_completed, &vdo->stats.bios_meta_completed); copy_bio_stat(&stats->bios_journal_completed, &vdo->stats.bios_journal_completed); copy_bio_stat(&stats->bios_page_cache_completed, &vdo->stats.bios_page_cache_completed); copy_bio_stat(&stats->bios_acknowledged, &vdo->stats.bios_acknowledged); copy_bio_stat(&stats->bios_acknowledged_partial, &vdo->stats.bios_acknowledged_partial); stats->bios_in_progress = subtract_bio_stats(stats->bios_in, stats->bios_acknowledged); vdo_get_memory_stats(&stats->memory_usage.bytes_used, &stats->memory_usage.peak_bytes_used); } /** * vdo_fetch_statistics_callback() - Action to populate a vdo_statistics * structure on the admin thread. * @completion: The completion. * * This callback is registered in vdo_fetch_statistics(). */ static void vdo_fetch_statistics_callback(struct vdo_completion *completion) { get_vdo_statistics(completion->vdo, completion->parent); complete_synchronous_action(completion); } /** * vdo_fetch_statistics() - Fetch statistics on the correct thread. * @vdo: The vdo. * @stats: The vdo statistics are returned here. */ void vdo_fetch_statistics(struct vdo *vdo, struct vdo_statistics *stats) { perform_synchronous_action(vdo, vdo_fetch_statistics_callback, vdo->thread_config.admin_thread, stats); } /** * vdo_get_callback_thread_id() - Get the id of the callback thread on which a completion is * currently running. * * Return: The current thread ID, or -1 if no such thread. */ thread_id_t vdo_get_callback_thread_id(void) { struct vdo_work_queue *queue = vdo_get_current_work_queue(); struct vdo_thread *thread; thread_id_t thread_id; if (queue == NULL) return VDO_INVALID_THREAD_ID; thread = vdo_get_work_queue_owner(queue); thread_id = thread->thread_id; if (PARANOID_THREAD_CONSISTENCY_CHECKS) { BUG_ON(thread_id >= thread->vdo->thread_config.thread_count); BUG_ON(thread != &thread->vdo->threads[thread_id]); } return thread_id; } /** * vdo_dump_status() - Dump status information about a vdo to the log for debugging. * @vdo: The vdo to dump. */ void vdo_dump_status(const struct vdo *vdo) { zone_count_t zone; vdo_dump_flusher(vdo->flusher); vdo_dump_recovery_journal_statistics(vdo->recovery_journal); vdo_dump_packer(vdo->packer); vdo_dump_slab_depot(vdo->depot); for (zone = 0; zone < vdo->thread_config.logical_zone_count; zone++) vdo_dump_logical_zone(&vdo->logical_zones->zones[zone]); for (zone = 0; zone < vdo->thread_config.physical_zone_count; zone++) vdo_dump_physical_zone(&vdo->physical_zones->zones[zone]); vdo_dump_hash_zones(vdo->hash_zones); } /** * vdo_assert_on_admin_thread() - Assert that we are running on the admin thread. * @vdo: The vdo. * @name: The name of the function which should be running on the admin thread (for logging). */ void vdo_assert_on_admin_thread(const struct vdo *vdo, const char *name) { VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.admin_thread), "%s called on admin thread", name); } /** * vdo_assert_on_logical_zone_thread() - Assert that this function was called on the specified * logical zone thread. * @vdo: The vdo. * @logical_zone: The number of the logical zone. * @name: The name of the calling function. */ void vdo_assert_on_logical_zone_thread(const struct vdo *vdo, zone_count_t logical_zone, const char *name) { VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.logical_threads[logical_zone]), "%s called on logical thread", name); } /** * vdo_assert_on_physical_zone_thread() - Assert that this function was called on the specified * physical zone thread. * @vdo: The vdo. * @physical_zone: The number of the physical zone. * @name: The name of the calling function. */ void vdo_assert_on_physical_zone_thread(const struct vdo *vdo, zone_count_t physical_zone, const char *name) { VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.physical_threads[physical_zone]), "%s called on physical thread", name); } /** * vdo_get_physical_zone() - Get the physical zone responsible for a given physical block number. * @vdo: The vdo containing the physical zones. * @pbn: The PBN of the data block. * @zone_ptr: A pointer to return the physical zone. * * Gets the physical zone responsible for a given physical block number of a data block in this vdo * instance, or of the zero block (for which a NULL zone is returned). For any other block number * that is not in the range of valid data block numbers in any slab, an error will be returned. * This function is safe to call on invalid block numbers; it will not put the vdo into read-only * mode. * * Return: VDO_SUCCESS or VDO_OUT_OF_RANGE if the block number is invalid or an error code for any * other failure. */ int vdo_get_physical_zone(const struct vdo *vdo, physical_block_number_t pbn, struct physical_zone **zone_ptr) { struct vdo_slab *slab; int result; if (pbn == VDO_ZERO_BLOCK) { *zone_ptr = NULL; return VDO_SUCCESS; } /* * Used because it does a more restrictive bounds check than vdo_get_slab(), and done first * because it won't trigger read-only mode on an invalid PBN. */ if (!vdo_is_physical_data_block(vdo->depot, pbn)) return VDO_OUT_OF_RANGE; /* With the PBN already checked, we should always succeed in finding a slab. */ slab = vdo_get_slab(vdo->depot, pbn); result = VDO_ASSERT(slab != NULL, "vdo_get_slab must succeed on all valid PBNs"); if (result != VDO_SUCCESS) return result; *zone_ptr = &vdo->physical_zones->zones[slab->allocator->zone_number]; return VDO_SUCCESS; }