/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2004-2016 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * ********************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lpfc_version.h" #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_nvme.h" #include "lpfc_scsi.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #include "lpfc_debugfs.h" /* NVME initiator-based functions */ static struct lpfc_io_buf * lpfc_get_nvme_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx, int expedite); static void lpfc_release_nvme_buf(struct lpfc_hba *, struct lpfc_io_buf *); static struct nvme_fc_port_template lpfc_nvme_template; /** * lpfc_nvme_create_queue - * @pnvme_lport: Transport localport that LS is to be issued from * @qidx: An cpu index used to affinitize IO queues and MSIX vectors. * @qsize: Size of the queue in bytes * @handle: An opaque driver handle used in follow-up calls. * * Driver registers this routine to preallocate and initialize any * internal data structures to bind the @qidx to its internal IO queues. * A hardware queue maps (qidx) to a specific driver MSI-X vector/EQ/CQ/WQ. * * Return value : * 0 - Success * -EINVAL - Unsupported input value. * -ENOMEM - Could not alloc necessary memory **/ static int lpfc_nvme_create_queue(struct nvme_fc_local_port *pnvme_lport, unsigned int qidx, u16 qsize, void **handle) { struct lpfc_nvme_lport *lport; struct lpfc_vport *vport; struct lpfc_nvme_qhandle *qhandle; char *str; if (!pnvme_lport->private) return -ENOMEM; lport = (struct lpfc_nvme_lport *)pnvme_lport->private; vport = lport->vport; if (!vport || test_bit(FC_UNLOADING, &vport->load_flag) || test_bit(HBA_IOQ_FLUSH, &vport->phba->hba_flag)) return -ENODEV; qhandle = kzalloc(sizeof(struct lpfc_nvme_qhandle), GFP_KERNEL); if (qhandle == NULL) return -ENOMEM; qhandle->cpu_id = raw_smp_processor_id(); qhandle->qidx = qidx; /* * NVME qidx == 0 is the admin queue, so both admin queue * and first IO queue will use MSI-X vector and associated * EQ/CQ/WQ at index 0. After that they are sequentially assigned. */ if (qidx) { str = "IO "; /* IO queue */ qhandle->index = ((qidx - 1) % lpfc_nvme_template.max_hw_queues); } else { str = "ADM"; /* Admin queue */ qhandle->index = qidx; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6073 Binding %s HdwQueue %d (cpu %d) to " "hdw_queue %d qhandle x%px\n", str, qidx, qhandle->cpu_id, qhandle->index, qhandle); *handle = (void *)qhandle; return 0; } /** * lpfc_nvme_delete_queue - * @pnvme_lport: Transport localport that LS is to be issued from * @qidx: An cpu index used to affinitize IO queues and MSIX vectors. * @handle: An opaque driver handle from lpfc_nvme_create_queue * * Driver registers this routine to free * any internal data structures to bind the @qidx to its internal * IO queues. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static void lpfc_nvme_delete_queue(struct nvme_fc_local_port *pnvme_lport, unsigned int qidx, void *handle) { struct lpfc_nvme_lport *lport; struct lpfc_vport *vport; if (!pnvme_lport->private) return; lport = (struct lpfc_nvme_lport *)pnvme_lport->private; vport = lport->vport; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6001 ENTER. lpfc_pnvme x%px, qidx x%x qhandle x%px\n", lport, qidx, handle); kfree(handle); } static void lpfc_nvme_localport_delete(struct nvme_fc_local_port *localport) { struct lpfc_nvme_lport *lport = localport->private; lpfc_printf_vlog(lport->vport, KERN_INFO, LOG_NVME, "6173 localport x%px delete complete\n", lport); /* release any threads waiting for the unreg to complete */ if (lport->vport->localport) complete(lport->lport_unreg_cmp); } /* lpfc_nvme_remoteport_delete * * @remoteport: Pointer to an nvme transport remoteport instance. * * This is a template downcall. NVME transport calls this function * when it has completed the unregistration of a previously * registered remoteport. * * Return value : * None */ static void lpfc_nvme_remoteport_delete(struct nvme_fc_remote_port *remoteport) { struct lpfc_nvme_rport *rport = remoteport->private; struct lpfc_vport *vport; struct lpfc_nodelist *ndlp; u32 fc4_xpt_flags; ndlp = rport->ndlp; if (!ndlp) { pr_err("**** %s: NULL ndlp on rport x%px remoteport x%px\n", __func__, rport, remoteport); goto rport_err; } vport = ndlp->vport; if (!vport) { pr_err("**** %s: Null vport on ndlp x%px, ste x%x rport x%px\n", __func__, ndlp, ndlp->nlp_state, rport); goto rport_err; } fc4_xpt_flags = NVME_XPT_REGD | SCSI_XPT_REGD; /* Remove this rport from the lport's list - memory is owned by the * transport. Remove the ndlp reference for the NVME transport before * calling state machine to remove the node. */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6146 remoteport delete of remoteport x%px, ndlp x%px " "DID x%x xflags x%x\n", remoteport, ndlp, ndlp->nlp_DID, ndlp->fc4_xpt_flags); spin_lock_irq(&ndlp->lock); /* The register rebind might have occurred before the delete * downcall. Guard against this race. */ if (ndlp->fc4_xpt_flags & NVME_XPT_UNREG_WAIT) ndlp->fc4_xpt_flags &= ~(NVME_XPT_UNREG_WAIT | NVME_XPT_REGD); spin_unlock_irq(&ndlp->lock); /* On a devloss timeout event, one more put is executed provided the * NVME and SCSI rport unregister requests are complete. */ if (!(ndlp->fc4_xpt_flags & fc4_xpt_flags)) lpfc_disc_state_machine(vport, ndlp, NULL, NLP_EVT_DEVICE_RM); rport_err: return; } /** * lpfc_nvme_handle_lsreq - Process an unsolicited NVME LS request * @phba: pointer to lpfc hba data structure. * @axchg: pointer to exchange context for the NVME LS request * * This routine is used for processing an asynchronously received NVME LS * request. Any remaining validation is done and the LS is then forwarded * to the nvme-fc transport via nvme_fc_rcv_ls_req(). * * The calling sequence should be: nvme_fc_rcv_ls_req() -> (processing) * -> lpfc_nvme_xmt_ls_rsp/cmp -> req->done. * __lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg. * * Returns 0 if LS was handled and delivered to the transport * Returns 1 if LS failed to be handled and should be dropped */ int lpfc_nvme_handle_lsreq(struct lpfc_hba *phba, struct lpfc_async_xchg_ctx *axchg) { #if (IS_ENABLED(CONFIG_NVME_FC)) struct lpfc_vport *vport; struct lpfc_nvme_rport *lpfc_rport; struct nvme_fc_remote_port *remoteport; struct lpfc_nvme_lport *lport; uint32_t *payload = axchg->payload; int rc; vport = axchg->ndlp->vport; lpfc_rport = axchg->ndlp->nrport; if (!lpfc_rport) return -EINVAL; remoteport = lpfc_rport->remoteport; if (!vport->localport || test_bit(HBA_IOQ_FLUSH, &vport->phba->hba_flag)) return -EINVAL; lport = vport->localport->private; if (!lport) return -EINVAL; rc = nvme_fc_rcv_ls_req(remoteport, &axchg->ls_rsp, axchg->payload, axchg->size); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, "6205 NVME Unsol rcv: sz %d rc %d: %08x %08x %08x " "%08x %08x %08x\n", axchg->size, rc, *payload, *(payload+1), *(payload+2), *(payload+3), *(payload+4), *(payload+5)); if (!rc) return 0; #endif return 1; } /** * __lpfc_nvme_ls_req_cmp - Generic completion handler for a NVME * LS request. * @phba: Pointer to HBA context object * @vport: The local port that issued the LS * @cmdwqe: Pointer to driver command WQE object. * @wcqe: Pointer to driver response CQE object. * * This function is the generic completion handler for NVME LS requests. * The function updates any states and statistics, calls the transport * ls_req done() routine, then tears down the command and buffers used * for the LS request. **/ void __lpfc_nvme_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_vport *vport, struct lpfc_iocbq *cmdwqe, struct lpfc_wcqe_complete *wcqe) { struct nvmefc_ls_req *pnvme_lsreq; struct lpfc_dmabuf *buf_ptr; struct lpfc_nodelist *ndlp; int status; pnvme_lsreq = cmdwqe->context_un.nvme_lsreq; ndlp = cmdwqe->ndlp; buf_ptr = cmdwqe->bpl_dmabuf; status = bf_get(lpfc_wcqe_c_status, wcqe); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6047 NVMEx LS REQ x%px cmpl DID %x Xri: %x " "status %x reason x%x cmd:x%px lsreg:x%px bmp:x%px " "ndlp:x%px\n", pnvme_lsreq, ndlp ? ndlp->nlp_DID : 0, cmdwqe->sli4_xritag, status, (wcqe->parameter & 0xffff), cmdwqe, pnvme_lsreq, cmdwqe->bpl_dmabuf, ndlp); lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x parm x%x\n", cmdwqe->sli4_xritag, status, wcqe->parameter); if (buf_ptr) { lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); kfree(buf_ptr); cmdwqe->bpl_dmabuf = NULL; } if (pnvme_lsreq->done) { if (status != CQE_STATUS_SUCCESS) status = -ENXIO; pnvme_lsreq->done(pnvme_lsreq, status); } else { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6046 NVMEx cmpl without done call back? " "Data x%px DID %x Xri: %x status %x\n", pnvme_lsreq, ndlp ? ndlp->nlp_DID : 0, cmdwqe->sli4_xritag, status); } if (ndlp) { lpfc_nlp_put(ndlp); cmdwqe->ndlp = NULL; } lpfc_sli_release_iocbq(phba, cmdwqe); } static void lpfc_nvme_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, struct lpfc_iocbq *rspwqe) { struct lpfc_vport *vport = cmdwqe->vport; struct lpfc_nvme_lport *lport; uint32_t status; struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; status = bf_get(lpfc_wcqe_c_status, wcqe); if (vport->localport) { lport = (struct lpfc_nvme_lport *)vport->localport->private; if (lport) { atomic_inc(&lport->fc4NvmeLsCmpls); if (status) { if (bf_get(lpfc_wcqe_c_xb, wcqe)) atomic_inc(&lport->cmpl_ls_xb); atomic_inc(&lport->cmpl_ls_err); } } } __lpfc_nvme_ls_req_cmp(phba, vport, cmdwqe, wcqe); } static int lpfc_nvme_gen_req(struct lpfc_vport *vport, struct lpfc_dmabuf *bmp, struct lpfc_dmabuf *inp, struct nvmefc_ls_req *pnvme_lsreq, void (*cmpl)(struct lpfc_hba *, struct lpfc_iocbq *, struct lpfc_iocbq *), struct lpfc_nodelist *ndlp, uint32_t num_entry, uint32_t tmo, uint8_t retry) { struct lpfc_hba *phba = vport->phba; union lpfc_wqe128 *wqe; struct lpfc_iocbq *genwqe; struct ulp_bde64 *bpl; struct ulp_bde64 bde; int i, rc, xmit_len, first_len; /* Allocate buffer for command WQE */ genwqe = lpfc_sli_get_iocbq(phba); if (genwqe == NULL) return 1; wqe = &genwqe->wqe; /* Initialize only 64 bytes */ memset(wqe, 0, sizeof(union lpfc_wqe)); genwqe->bpl_dmabuf = bmp; genwqe->cmd_flag |= LPFC_IO_NVME_LS; /* Save for completion so we can release these resources */ genwqe->ndlp = lpfc_nlp_get(ndlp); if (!genwqe->ndlp) { dev_warn(&phba->pcidev->dev, "Warning: Failed node ref, not sending LS_REQ\n"); lpfc_sli_release_iocbq(phba, genwqe); return 1; } genwqe->context_un.nvme_lsreq = pnvme_lsreq; /* Fill in payload, bp points to frame payload */ if (!tmo) /* FC spec states we need 3 * ratov for CT requests */ tmo = (3 * phba->fc_ratov); /* For this command calculate the xmit length of the request bde. */ xmit_len = 0; first_len = 0; bpl = (struct ulp_bde64 *)bmp->virt; for (i = 0; i < num_entry; i++) { bde.tus.w = bpl[i].tus.w; if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) break; xmit_len += bde.tus.f.bdeSize; if (i == 0) first_len = xmit_len; } genwqe->num_bdes = num_entry; genwqe->hba_wqidx = 0; /* Words 0 - 2 */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->generic.bde.tus.f.bdeSize = first_len; wqe->generic.bde.addrLow = bpl[0].addrLow; wqe->generic.bde.addrHigh = bpl[0].addrHigh; /* Word 3 */ wqe->gen_req.request_payload_len = first_len; /* Word 4 */ /* Word 5 */ bf_set(wqe_dfctl, &wqe->gen_req.wge_ctl, 0); bf_set(wqe_si, &wqe->gen_req.wge_ctl, 1); bf_set(wqe_la, &wqe->gen_req.wge_ctl, 1); bf_set(wqe_rctl, &wqe->gen_req.wge_ctl, FC_RCTL_ELS4_REQ); bf_set(wqe_type, &wqe->gen_req.wge_ctl, FC_TYPE_NVME); /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->gen_req.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->gen_req.wqe_com, genwqe->sli4_xritag); /* Word 7 */ bf_set(wqe_tmo, &wqe->gen_req.wqe_com, tmo); bf_set(wqe_class, &wqe->gen_req.wqe_com, CLASS3); bf_set(wqe_cmnd, &wqe->gen_req.wqe_com, CMD_GEN_REQUEST64_WQE); bf_set(wqe_ct, &wqe->gen_req.wqe_com, SLI4_CT_RPI); /* Word 8 */ wqe->gen_req.wqe_com.abort_tag = genwqe->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->gen_req.wqe_com, genwqe->iotag); /* Word 10 */ bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); /* Word 11 */ bf_set(wqe_cqid, &wqe->gen_req.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_cmd_type, &wqe->gen_req.wqe_com, OTHER_COMMAND); /* Issue GEN REQ WQE for NPORT */ genwqe->cmd_cmpl = cmpl; genwqe->drvrTimeout = tmo + LPFC_DRVR_TIMEOUT; genwqe->vport = vport; genwqe->retry = retry; lpfc_nvmeio_data(phba, "NVME LS XMIT: xri x%x iotag x%x to x%06x\n", genwqe->sli4_xritag, genwqe->iotag, ndlp->nlp_DID); rc = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], genwqe); if (rc) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6045 Issue GEN REQ WQE to NPORT x%x " "Data: x%x x%x rc x%x\n", ndlp->nlp_DID, genwqe->iotag, vport->port_state, rc); lpfc_nlp_put(ndlp); lpfc_sli_release_iocbq(phba, genwqe); return 1; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC | LOG_ELS, "6050 Issue GEN REQ WQE to NPORT x%x " "Data: oxid: x%x state: x%x wq:x%px lsreq:x%px " "bmp:x%px xmit:%d 1st:%d\n", ndlp->nlp_DID, genwqe->sli4_xritag, vport->port_state, genwqe, pnvme_lsreq, bmp, xmit_len, first_len); return 0; } /** * __lpfc_nvme_ls_req - Generic service routine to issue an NVME LS request * @vport: The local port issuing the LS * @ndlp: The remote port to send the LS to * @pnvme_lsreq: Pointer to LS request structure from the transport * @gen_req_cmp: Completion call-back * * Routine validates the ndlp, builds buffers and sends a GEN_REQUEST * WQE to perform the LS operation. * * Return value : * 0 - Success * non-zero: various error codes, in form of -Exxx **/ int __lpfc_nvme_ls_req(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, struct nvmefc_ls_req *pnvme_lsreq, void (*gen_req_cmp)(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, struct lpfc_iocbq *rspwqe)) { struct lpfc_dmabuf *bmp; struct ulp_bde64 *bpl; int ret; uint16_t ntype, nstate; if (!ndlp) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6051 NVMEx LS REQ: Bad NDLP x%px, Failing " "LS Req\n", ndlp); return -ENODEV; } ntype = ndlp->nlp_type; nstate = ndlp->nlp_state; if ((ntype & NLP_NVME_TARGET && nstate != NLP_STE_MAPPED_NODE) || (ntype & NLP_NVME_INITIATOR && nstate != NLP_STE_UNMAPPED_NODE)) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6088 NVMEx LS REQ: Fail DID x%06x not " "ready for IO. Type x%x, State x%x\n", ndlp->nlp_DID, ntype, nstate); return -ENODEV; } if (test_bit(HBA_IOQ_FLUSH, &vport->phba->hba_flag)) return -ENODEV; if (!vport->phba->sli4_hba.nvmels_wq) return -ENOMEM; /* * there are two dma buf in the request, actually there is one and * the second one is just the start address + cmd size. * Before calling lpfc_nvme_gen_req these buffers need to be wrapped * in a lpfc_dmabuf struct. When freeing we just free the wrapper * because the nvem layer owns the data bufs. * We do not have to break these packets open, we don't care what is * in them. And we do not have to look at the resonse data, we only * care that we got a response. All of the caring is going to happen * in the nvme-fc layer. */ bmp = kmalloc(sizeof(*bmp), GFP_KERNEL); if (!bmp) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6044 NVMEx LS REQ: Could not alloc LS buf " "for DID %x\n", ndlp->nlp_DID); return -ENOMEM; } bmp->virt = lpfc_mbuf_alloc(vport->phba, MEM_PRI, &(bmp->phys)); if (!bmp->virt) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6042 NVMEx LS REQ: Could not alloc mbuf " "for DID %x\n", ndlp->nlp_DID); kfree(bmp); return -ENOMEM; } INIT_LIST_HEAD(&bmp->list); bpl = (struct ulp_bde64 *)bmp->virt; bpl->addrHigh = le32_to_cpu(putPaddrHigh(pnvme_lsreq->rqstdma)); bpl->addrLow = le32_to_cpu(putPaddrLow(pnvme_lsreq->rqstdma)); bpl->tus.f.bdeFlags = 0; bpl->tus.f.bdeSize = pnvme_lsreq->rqstlen; bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl++; bpl->addrHigh = le32_to_cpu(putPaddrHigh(pnvme_lsreq->rspdma)); bpl->addrLow = le32_to_cpu(putPaddrLow(pnvme_lsreq->rspdma)); bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; bpl->tus.f.bdeSize = pnvme_lsreq->rsplen; bpl->tus.w = le32_to_cpu(bpl->tus.w); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6149 NVMEx LS REQ: Issue to DID 0x%06x lsreq x%px, " "rqstlen:%d rsplen:%d %pad %pad\n", ndlp->nlp_DID, pnvme_lsreq, pnvme_lsreq->rqstlen, pnvme_lsreq->rsplen, &pnvme_lsreq->rqstdma, &pnvme_lsreq->rspdma); ret = lpfc_nvme_gen_req(vport, bmp, pnvme_lsreq->rqstaddr, pnvme_lsreq, gen_req_cmp, ndlp, 2, pnvme_lsreq->timeout, 0); if (ret != WQE_SUCCESS) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6052 NVMEx REQ: EXIT. issue ls wqe failed " "lsreq x%px Status %x DID %x\n", pnvme_lsreq, ret, ndlp->nlp_DID); lpfc_mbuf_free(vport->phba, bmp->virt, bmp->phys); kfree(bmp); return -EIO; } return 0; } /** * lpfc_nvme_ls_req - Issue an NVME Link Service request * @pnvme_lport: Transport localport that LS is to be issued from. * @pnvme_rport: Transport remoteport that LS is to be sent to. * @pnvme_lsreq: the transport nvme_ls_req structure for the LS * * Driver registers this routine to handle any link service request * from the nvme_fc transport to a remote nvme-aware port. * * Return value : * 0 - Success * non-zero: various error codes, in form of -Exxx **/ static int lpfc_nvme_ls_req(struct nvme_fc_local_port *pnvme_lport, struct nvme_fc_remote_port *pnvme_rport, struct nvmefc_ls_req *pnvme_lsreq) { struct lpfc_nvme_lport *lport; struct lpfc_nvme_rport *rport; struct lpfc_vport *vport; int ret; lport = (struct lpfc_nvme_lport *)pnvme_lport->private; rport = (struct lpfc_nvme_rport *)pnvme_rport->private; if (unlikely(!lport) || unlikely(!rport)) return -EINVAL; vport = lport->vport; if (test_bit(FC_UNLOADING, &vport->load_flag) || test_bit(HBA_IOQ_FLUSH, &vport->phba->hba_flag)) return -ENODEV; atomic_inc(&lport->fc4NvmeLsRequests); ret = __lpfc_nvme_ls_req(vport, rport->ndlp, pnvme_lsreq, lpfc_nvme_ls_req_cmp); if (ret) atomic_inc(&lport->xmt_ls_err); return ret; } /** * __lpfc_nvme_ls_abort - Generic service routine to abort a prior * NVME LS request * @vport: The local port that issued the LS * @ndlp: The remote port the LS was sent to * @pnvme_lsreq: Pointer to LS request structure from the transport * * The driver validates the ndlp, looks for the LS, and aborts the * LS if found. * * Returns: * 0 : if LS found and aborted * non-zero: various error conditions in form -Exxx **/ int __lpfc_nvme_ls_abort(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, struct nvmefc_ls_req *pnvme_lsreq) { struct lpfc_hba *phba = vport->phba; struct lpfc_sli_ring *pring; struct lpfc_iocbq *wqe, *next_wqe; bool foundit = false; if (!ndlp) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6049 NVMEx LS REQ Abort: Bad NDLP x%px DID " "x%06x, Failing LS Req\n", ndlp, ndlp ? ndlp->nlp_DID : 0); return -EINVAL; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC | LOG_NVME_ABTS, "6040 NVMEx LS REQ Abort: Issue LS_ABORT for lsreq " "x%px rqstlen:%d rsplen:%d %pad %pad\n", pnvme_lsreq, pnvme_lsreq->rqstlen, pnvme_lsreq->rsplen, &pnvme_lsreq->rqstdma, &pnvme_lsreq->rspdma); /* * Lock the ELS ring txcmplq and look for the wqe that matches * this ELS. If found, issue an abort on the wqe. */ pring = phba->sli4_hba.nvmels_wq->pring; spin_lock_irq(&phba->hbalock); spin_lock(&pring->ring_lock); list_for_each_entry_safe(wqe, next_wqe, &pring->txcmplq, list) { if (wqe->context_un.nvme_lsreq == pnvme_lsreq) { wqe->cmd_flag |= LPFC_DRIVER_ABORTED; foundit = true; break; } } spin_unlock(&pring->ring_lock); if (foundit) lpfc_sli_issue_abort_iotag(phba, pring, wqe, NULL); spin_unlock_irq(&phba->hbalock); if (foundit) return 0; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC | LOG_NVME_ABTS, "6213 NVMEx LS REQ Abort: Unable to locate req x%px\n", pnvme_lsreq); return -EINVAL; } static int lpfc_nvme_xmt_ls_rsp(struct nvme_fc_local_port *localport, struct nvme_fc_remote_port *remoteport, struct nvmefc_ls_rsp *ls_rsp) { struct lpfc_async_xchg_ctx *axchg = container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp); struct lpfc_nvme_lport *lport; int rc; if (test_bit(FC_UNLOADING, &axchg->phba->pport->load_flag)) return -ENODEV; lport = (struct lpfc_nvme_lport *)localport->private; rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, __lpfc_nvme_xmt_ls_rsp_cmp); if (rc) { /* * unless the failure is due to having already sent * the response, an abort will be generated for the * exchange if the rsp can't be sent. */ if (rc != -EALREADY) atomic_inc(&lport->xmt_ls_abort); return rc; } return 0; } /** * lpfc_nvme_ls_abort - Abort a prior NVME LS request * @pnvme_lport: Transport localport that LS is to be issued from. * @pnvme_rport: Transport remoteport that LS is to be sent to. * @pnvme_lsreq: the transport nvme_ls_req structure for the LS * * Driver registers this routine to abort a NVME LS request that is * in progress (from the transports perspective). **/ static void lpfc_nvme_ls_abort(struct nvme_fc_local_port *pnvme_lport, struct nvme_fc_remote_port *pnvme_rport, struct nvmefc_ls_req *pnvme_lsreq) { struct lpfc_nvme_lport *lport; struct lpfc_vport *vport; struct lpfc_nodelist *ndlp; int ret; lport = (struct lpfc_nvme_lport *)pnvme_lport->private; if (unlikely(!lport)) return; vport = lport->vport; if (test_bit(FC_UNLOADING, &vport->load_flag)) return; ndlp = lpfc_findnode_did(vport, pnvme_rport->port_id); ret = __lpfc_nvme_ls_abort(vport, ndlp, pnvme_lsreq); if (!ret) atomic_inc(&lport->xmt_ls_abort); } /* Fix up the existing sgls for NVME IO. */ static inline void lpfc_nvme_adj_fcp_sgls(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_ncmd, struct nvmefc_fcp_req *nCmd) { struct lpfc_hba *phba = vport->phba; struct sli4_sge *sgl; union lpfc_wqe128 *wqe; uint32_t *wptr, *dptr; /* * Get a local pointer to the built-in wqe and correct * the cmd size to match NVME's 96 bytes and fix * the dma address. */ wqe = &lpfc_ncmd->cur_iocbq.wqe; /* * Adjust the FCP_CMD and FCP_RSP DMA data and sge_len to * match NVME. NVME sends 96 bytes. Also, use the * nvme commands command and response dma addresses * rather than the virtual memory to ease the restore * operation. */ sgl = lpfc_ncmd->dma_sgl; sgl->sge_len = cpu_to_le32(nCmd->cmdlen); if (phba->cfg_nvme_embed_cmd) { sgl->addr_hi = 0; sgl->addr_lo = 0; /* Word 0-2 - NVME CMND IU (embedded payload) */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_IMMED; wqe->generic.bde.tus.f.bdeSize = 56; wqe->generic.bde.addrHigh = 0; wqe->generic.bde.addrLow = 64; /* Word 16 */ /* Word 10 - dbde is 0, wqes is 1 in template */ /* * Embed the payload in the last half of the WQE * WQE words 16-30 get the NVME CMD IU payload * * WQE words 16-19 get payload Words 1-4 * WQE words 20-21 get payload Words 6-7 * WQE words 22-29 get payload Words 16-23 */ wptr = &wqe->words[16]; /* WQE ptr */ dptr = (uint32_t *)nCmd->cmdaddr; /* payload ptr */ dptr++; /* Skip Word 0 in payload */ *wptr++ = *dptr++; /* Word 1 */ *wptr++ = *dptr++; /* Word 2 */ *wptr++ = *dptr++; /* Word 3 */ *wptr++ = *dptr++; /* Word 4 */ dptr++; /* Skip Word 5 in payload */ *wptr++ = *dptr++; /* Word 6 */ *wptr++ = *dptr++; /* Word 7 */ dptr += 8; /* Skip Words 8-15 in payload */ *wptr++ = *dptr++; /* Word 16 */ *wptr++ = *dptr++; /* Word 17 */ *wptr++ = *dptr++; /* Word 18 */ *wptr++ = *dptr++; /* Word 19 */ *wptr++ = *dptr++; /* Word 20 */ *wptr++ = *dptr++; /* Word 21 */ *wptr++ = *dptr++; /* Word 22 */ *wptr = *dptr; /* Word 23 */ } else { sgl->addr_hi = cpu_to_le32(putPaddrHigh(nCmd->cmddma)); sgl->addr_lo = cpu_to_le32(putPaddrLow(nCmd->cmddma)); /* Word 0-2 - NVME CMND IU Inline BDE */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->generic.bde.tus.f.bdeSize = nCmd->cmdlen; wqe->generic.bde.addrHigh = sgl->addr_hi; wqe->generic.bde.addrLow = sgl->addr_lo; /* Word 10 */ bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); } sgl++; /* Setup the physical region for the FCP RSP */ sgl->addr_hi = cpu_to_le32(putPaddrHigh(nCmd->rspdma)); sgl->addr_lo = cpu_to_le32(putPaddrLow(nCmd->rspdma)); sgl->word2 = le32_to_cpu(sgl->word2); if (nCmd->sg_cnt) bf_set(lpfc_sli4_sge_last, sgl, 0); else bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(nCmd->rsplen); } /* * lpfc_nvme_io_cmd_cmpl - Complete an NVME-over-FCP IO * * Driver registers this routine as it io request handler. This * routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static void lpfc_nvme_io_cmd_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeIn, struct lpfc_iocbq *pwqeOut) { struct lpfc_io_buf *lpfc_ncmd = pwqeIn->io_buf; struct lpfc_wcqe_complete *wcqe = &pwqeOut->wcqe_cmpl; struct lpfc_vport *vport = pwqeIn->vport; struct nvmefc_fcp_req *nCmd; struct nvme_fc_ersp_iu *ep; struct nvme_fc_cmd_iu *cp; struct lpfc_nodelist *ndlp; struct lpfc_nvme_fcpreq_priv *freqpriv; struct lpfc_nvme_lport *lport; uint32_t code, status, idx; uint16_t cid, sqhd, data; uint32_t *ptr; uint32_t lat; bool call_done = false; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS int cpu; #endif bool offline = false; /* Sanity check on return of outstanding command */ if (!lpfc_ncmd) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6071 Null lpfc_ncmd pointer. No " "release, skip completion\n"); return; } /* Guard against abort handler being called at same time */ spin_lock(&lpfc_ncmd->buf_lock); if (!lpfc_ncmd->nvmeCmd) { spin_unlock(&lpfc_ncmd->buf_lock); lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6066 Missing cmpl ptrs: lpfc_ncmd x%px, " "nvmeCmd x%px\n", lpfc_ncmd, lpfc_ncmd->nvmeCmd); /* Release the lpfc_ncmd regardless of the missing elements. */ lpfc_release_nvme_buf(phba, lpfc_ncmd); return; } nCmd = lpfc_ncmd->nvmeCmd; status = bf_get(lpfc_wcqe_c_status, wcqe); idx = lpfc_ncmd->cur_iocbq.hba_wqidx; phba->sli4_hba.hdwq[idx].nvme_cstat.io_cmpls++; if (unlikely(status && vport->localport)) { lport = (struct lpfc_nvme_lport *)vport->localport->private; if (lport) { if (bf_get(lpfc_wcqe_c_xb, wcqe)) atomic_inc(&lport->cmpl_fcp_xb); atomic_inc(&lport->cmpl_fcp_err); } } lpfc_nvmeio_data(phba, "NVME FCP CMPL: xri x%x stat x%x parm x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, status, wcqe->parameter); /* * Catch race where our node has transitioned, but the * transport is still transitioning. */ ndlp = lpfc_ncmd->ndlp; if (!ndlp) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6062 Ignoring NVME cmpl. No ndlp\n"); goto out_err; } code = bf_get(lpfc_wcqe_c_code, wcqe); if (code == CQE_CODE_NVME_ERSP) { /* For this type of CQE, we need to rebuild the rsp */ ep = (struct nvme_fc_ersp_iu *)nCmd->rspaddr; /* * Get Command Id from cmd to plug into response. This * code is not needed in the next NVME Transport drop. */ cp = (struct nvme_fc_cmd_iu *)nCmd->cmdaddr; cid = cp->sqe.common.command_id; /* * RSN is in CQE word 2 * SQHD is in CQE Word 3 bits 15:0 * Cmd Specific info is in CQE Word 1 * and in CQE Word 0 bits 15:0 */ sqhd = bf_get(lpfc_wcqe_c_sqhead, wcqe); /* Now lets build the NVME ERSP IU */ ep->iu_len = cpu_to_be16(8); ep->rsn = wcqe->parameter; ep->xfrd_len = cpu_to_be32(nCmd->payload_length); ep->rsvd12 = 0; ptr = (uint32_t *)&ep->cqe.result.u64; *ptr++ = wcqe->total_data_placed; data = bf_get(lpfc_wcqe_c_ersp0, wcqe); *ptr = (uint32_t)data; ep->cqe.sq_head = sqhd; ep->cqe.sq_id = nCmd->sqid; ep->cqe.command_id = cid; ep->cqe.status = 0; lpfc_ncmd->status = IOSTAT_SUCCESS; lpfc_ncmd->result = 0; nCmd->rcv_rsplen = LPFC_NVME_ERSP_LEN; nCmd->transferred_length = nCmd->payload_length; } else { lpfc_ncmd->status = status; lpfc_ncmd->result = (wcqe->parameter & IOERR_PARAM_MASK); /* For NVME, the only failure path that results in an * IO error is when the adapter rejects it. All other * conditions are a success case and resolved by the * transport. * IOSTAT_FCP_RSP_ERROR means: * 1. Length of data received doesn't match total * transfer length in WQE * 2. If the RSP payload does NOT match these cases: * a. RSP length 12/24 bytes and all zeros * b. NVME ERSP */ switch (lpfc_ncmd->status) { case IOSTAT_SUCCESS: nCmd->transferred_length = wcqe->total_data_placed; nCmd->rcv_rsplen = 0; nCmd->status = 0; break; case IOSTAT_FCP_RSP_ERROR: nCmd->transferred_length = wcqe->total_data_placed; nCmd->rcv_rsplen = wcqe->parameter; nCmd->status = 0; /* Get the NVME cmd details for this unique error. */ cp = (struct nvme_fc_cmd_iu *)nCmd->cmdaddr; ep = (struct nvme_fc_ersp_iu *)nCmd->rspaddr; /* Check if this is really an ERSP */ if (nCmd->rcv_rsplen == LPFC_NVME_ERSP_LEN) { lpfc_ncmd->status = IOSTAT_SUCCESS; lpfc_ncmd->result = 0; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6084 NVME FCP_ERR ERSP: " "xri %x placed x%x opcode x%x cmd_id " "x%x cqe_status x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, wcqe->total_data_placed, cp->sqe.common.opcode, cp->sqe.common.command_id, ep->cqe.status); break; } lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6081 NVME Completion Protocol Error: " "xri %x status x%x result x%x " "placed x%x opcode x%x cmd_id x%x, " "cqe_status x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, lpfc_ncmd->status, lpfc_ncmd->result, wcqe->total_data_placed, cp->sqe.common.opcode, cp->sqe.common.command_id, ep->cqe.status); break; case IOSTAT_LOCAL_REJECT: /* Let fall through to set command final state. */ if (lpfc_ncmd->result == IOERR_ABORT_REQUESTED) lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6032 Delay Aborted cmd x%px " "nvme cmd x%px, xri x%x, " "xb %d\n", lpfc_ncmd, nCmd, lpfc_ncmd->cur_iocbq.sli4_xritag, bf_get(lpfc_wcqe_c_xb, wcqe)); fallthrough; default: out_err: lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6072 NVME Completion Error: xri %x " "status x%x result x%x [x%x] " "placed x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, lpfc_ncmd->status, lpfc_ncmd->result, wcqe->parameter, wcqe->total_data_placed); nCmd->transferred_length = 0; nCmd->rcv_rsplen = 0; nCmd->status = NVME_SC_INTERNAL; if (pci_channel_offline(vport->phba->pcidev) || lpfc_ncmd->result == IOERR_SLI_DOWN) offline = true; } } /* pick up SLI4 exhange busy condition */ if (bf_get(lpfc_wcqe_c_xb, wcqe) && !offline) lpfc_ncmd->flags |= LPFC_SBUF_XBUSY; else lpfc_ncmd->flags &= ~LPFC_SBUF_XBUSY; /* Update stats and complete the IO. There is * no need for dma unprep because the nvme_transport * owns the dma address. */ #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_ncmd->ts_cmd_start) { lpfc_ncmd->ts_isr_cmpl = pwqeIn->isr_timestamp; lpfc_ncmd->ts_data_io = ktime_get_ns(); phba->ktime_last_cmd = lpfc_ncmd->ts_data_io; lpfc_io_ktime(phba, lpfc_ncmd); } if (unlikely(phba->hdwqstat_on & LPFC_CHECK_NVME_IO)) { cpu = raw_smp_processor_id(); this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); if (lpfc_ncmd->cpu != cpu) lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6701 CPU Check cmpl: " "cpu %d expect %d\n", cpu, lpfc_ncmd->cpu); } #endif /* NVME targets need completion held off until the abort exchange * completes unless the NVME Rport is getting unregistered. */ if (!(lpfc_ncmd->flags & LPFC_SBUF_XBUSY)) { freqpriv = nCmd->private; freqpriv->nvme_buf = NULL; lpfc_ncmd->nvmeCmd = NULL; call_done = true; } spin_unlock(&lpfc_ncmd->buf_lock); /* Check if IO qualified for CMF */ if (phba->cmf_active_mode != LPFC_CFG_OFF && nCmd->io_dir == NVMEFC_FCP_READ && nCmd->payload_length) { /* Used when calculating average latency */ lat = ktime_get_ns() - lpfc_ncmd->rx_cmd_start; lpfc_update_cmf_cmpl(phba, lat, nCmd->payload_length, NULL); } if (call_done) nCmd->done(nCmd); /* Call release with XB=1 to queue the IO into the abort list. */ lpfc_release_nvme_buf(phba, lpfc_ncmd); } /** * lpfc_nvme_prep_io_cmd - Issue an NVME-over-FCP IO * @vport: pointer to a host virtual N_Port data structure * @lpfc_ncmd: Pointer to lpfc scsi command * @pnode: pointer to a node-list data structure * @cstat: pointer to the control status structure * * Driver registers this routine as it io request handler. This * routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static int lpfc_nvme_prep_io_cmd(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_ncmd, struct lpfc_nodelist *pnode, struct lpfc_fc4_ctrl_stat *cstat) { struct lpfc_hba *phba = vport->phba; struct nvmefc_fcp_req *nCmd = lpfc_ncmd->nvmeCmd; struct nvme_common_command *sqe; struct lpfc_iocbq *pwqeq = &lpfc_ncmd->cur_iocbq; union lpfc_wqe128 *wqe = &pwqeq->wqe; uint32_t req_len; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. */ if (nCmd->sg_cnt) { if (nCmd->io_dir == NVMEFC_FCP_WRITE) { /* From the iwrite template, initialize words 7 - 11 */ memcpy(&wqe->words[7], &lpfc_iwrite_cmd_template.words[7], sizeof(uint32_t) * 5); /* Word 4 */ wqe->fcp_iwrite.total_xfer_len = nCmd->payload_length; /* Word 5 */ if ((phba->cfg_nvme_enable_fb) && test_bit(NLP_FIRSTBURST, &pnode->nlp_flag)) { req_len = lpfc_ncmd->nvmeCmd->payload_length; if (req_len < pnode->nvme_fb_size) wqe->fcp_iwrite.initial_xfer_len = req_len; else wqe->fcp_iwrite.initial_xfer_len = pnode->nvme_fb_size; } else { wqe->fcp_iwrite.initial_xfer_len = 0; } cstat->output_requests++; } else { /* From the iread template, initialize words 7 - 11 */ memcpy(&wqe->words[7], &lpfc_iread_cmd_template.words[7], sizeof(uint32_t) * 5); /* Word 4 */ wqe->fcp_iread.total_xfer_len = nCmd->payload_length; /* Word 5 */ wqe->fcp_iread.rsrvd5 = 0; /* For a CMF Managed port, iod must be zero'ed */ if (phba->cmf_active_mode == LPFC_CFG_MANAGED) bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_NONE); cstat->input_requests++; } } else { /* From the icmnd template, initialize words 4 - 11 */ memcpy(&wqe->words[4], &lpfc_icmnd_cmd_template.words[4], sizeof(uint32_t) * 8); cstat->control_requests++; } if (pnode->nlp_nvme_info & NLP_NVME_NSLER) { bf_set(wqe_erp, &wqe->generic.wqe_com, 1); sqe = &((struct nvme_fc_cmd_iu *) nCmd->cmdaddr)->sqe.common; if (sqe->opcode == nvme_admin_async_event) bf_set(wqe_ffrq, &wqe->generic.wqe_com, 1); } /* * Finish initializing those WQE fields that are independent * of the nvme_cmnd request_buffer */ /* Word 3 */ bf_set(payload_offset_len, &wqe->fcp_icmd, (nCmd->rsplen + nCmd->cmdlen)); /* Word 6 */ bf_set(wqe_ctxt_tag, &wqe->generic.wqe_com, phba->sli4_hba.rpi_ids[pnode->nlp_rpi]); bf_set(wqe_xri_tag, &wqe->generic.wqe_com, pwqeq->sli4_xritag); /* Word 8 */ wqe->generic.wqe_com.abort_tag = pwqeq->iotag; /* Word 9 */ bf_set(wqe_reqtag, &wqe->generic.wqe_com, pwqeq->iotag); /* Word 10 */ bf_set(wqe_xchg, &wqe->fcp_iwrite.wqe_com, LPFC_NVME_XCHG); /* Words 13 14 15 are for PBDE support */ /* add the VMID tags as per switch response */ if (unlikely(lpfc_ncmd->cur_iocbq.cmd_flag & LPFC_IO_VMID)) { if (phba->pport->vmid_priority_tagging) { bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, lpfc_ncmd->cur_iocbq.vmid_tag.cs_ctl_vmid); } else { bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); wqe->words[31] = lpfc_ncmd->cur_iocbq.vmid_tag.app_id; } } pwqeq->vport = vport; return 0; } /** * lpfc_nvme_prep_io_dma - Issue an NVME-over-FCP IO * @vport: pointer to a host virtual N_Port data structure * @lpfc_ncmd: Pointer to lpfc scsi command * * Driver registers this routine as it io request handler. This * routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static int lpfc_nvme_prep_io_dma(struct lpfc_vport *vport, struct lpfc_io_buf *lpfc_ncmd) { struct lpfc_hba *phba = vport->phba; struct nvmefc_fcp_req *nCmd = lpfc_ncmd->nvmeCmd; union lpfc_wqe128 *wqe = &lpfc_ncmd->cur_iocbq.wqe; struct sli4_sge *sgl = lpfc_ncmd->dma_sgl; struct sli4_hybrid_sgl *sgl_xtra = NULL; struct scatterlist *data_sg; struct sli4_sge *first_data_sgl; struct ulp_bde64 *bde; dma_addr_t physaddr = 0; uint32_t dma_len = 0; uint32_t dma_offset = 0; int nseg, i, j; bool lsp_just_set = false; /* Fix up the command and response DMA stuff. */ lpfc_nvme_adj_fcp_sgls(vport, lpfc_ncmd, nCmd); /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. */ if (nCmd->sg_cnt) { /* * Jump over the cmd and rsp SGEs. The fix routine * has already adjusted for this. */ sgl += 2; first_data_sgl = sgl; lpfc_ncmd->seg_cnt = nCmd->sg_cnt; if (lpfc_ncmd->seg_cnt > lpfc_nvme_template.max_sgl_segments) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6058 Too many sg segments from " "NVME Transport. Max %d, " "nvmeIO sg_cnt %d\n", phba->cfg_nvme_seg_cnt + 1, lpfc_ncmd->seg_cnt); lpfc_ncmd->seg_cnt = 0; return 1; } /* * The driver established a maximum scatter-gather segment count * during probe that limits the number of sg elements in any * single nvme command. Just run through the seg_cnt and format * the sge's. */ nseg = nCmd->sg_cnt; data_sg = nCmd->first_sgl; /* for tracking the segment boundaries */ j = 2; for (i = 0; i < nseg; i++) { if (data_sg == NULL) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6059 dptr err %d, nseg %d\n", i, nseg); lpfc_ncmd->seg_cnt = 0; return 1; } sgl->word2 = 0; if (nseg == 1) { bf_set(lpfc_sli4_sge_last, sgl, 1); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); } else { bf_set(lpfc_sli4_sge_last, sgl, 0); /* expand the segment */ if (!lsp_just_set && !((j + 1) % phba->border_sge_num) && ((nseg - 1) != i)) { /* set LSP type */ bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_LSP); sgl_xtra = lpfc_get_sgl_per_hdwq( phba, lpfc_ncmd); if (unlikely(!sgl_xtra)) { lpfc_ncmd->seg_cnt = 0; return 1; } sgl->addr_lo = cpu_to_le32(putPaddrLow( sgl_xtra->dma_phys_sgl)); sgl->addr_hi = cpu_to_le32(putPaddrHigh( sgl_xtra->dma_phys_sgl)); } else { bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); } } if (!(bf_get(lpfc_sli4_sge_type, sgl) & LPFC_SGE_TYPE_LSP)) { if ((nseg - 1) == i) bf_set(lpfc_sli4_sge_last, sgl, 1); physaddr = sg_dma_address(data_sg); dma_len = sg_dma_len(data_sg); sgl->addr_lo = cpu_to_le32( putPaddrLow(physaddr)); sgl->addr_hi = cpu_to_le32( putPaddrHigh(physaddr)); bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(dma_len); dma_offset += dma_len; data_sg = sg_next(data_sg); sgl++; lsp_just_set = false; } else { sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32( phba->cfg_sg_dma_buf_size); sgl = (struct sli4_sge *)sgl_xtra->dma_sgl; i = i - 1; lsp_just_set = true; } j++; } /* PBDE support for first data SGE only */ if (nseg == 1 && phba->cfg_enable_pbde) { /* Words 13-15 */ bde = (struct ulp_bde64 *) &wqe->words[13]; bde->addrLow = first_data_sgl->addr_lo; bde->addrHigh = first_data_sgl->addr_hi; bde->tus.f.bdeSize = le32_to_cpu(first_data_sgl->sge_len); bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; bde->tus.w = cpu_to_le32(bde->tus.w); /* Word 11 - set PBDE bit */ bf_set(wqe_pbde, &wqe->generic.wqe_com, 1); } else { memset(&wqe->words[13], 0, (sizeof(uint32_t) * 3)); /* Word 11 - PBDE bit disabled by default template */ } } else { lpfc_ncmd->seg_cnt = 0; /* For this clause to be valid, the payload_length * and sg_cnt must zero. */ if (nCmd->payload_length != 0) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6063 NVME DMA Prep Err: sg_cnt %d " "payload_length x%x\n", nCmd->sg_cnt, nCmd->payload_length); return 1; } } return 0; } /** * lpfc_nvme_fcp_io_submit - Issue an NVME-over-FCP IO * @pnvme_lport: Pointer to the driver's local port data * @pnvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * @hw_queue_handle: Driver-returned handle in lpfc_nvme_create_queue * @pnvme_fcreq: IO request from nvme fc to driver. * * Driver registers this routine as it io request handler. This * routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. * * Return value : * 0 - Success * TODO: What are the failure codes. **/ static int lpfc_nvme_fcp_io_submit(struct nvme_fc_local_port *pnvme_lport, struct nvme_fc_remote_port *pnvme_rport, void *hw_queue_handle, struct nvmefc_fcp_req *pnvme_fcreq) { int ret = 0; int expedite = 0; int idx, cpu; struct lpfc_nvme_lport *lport; struct lpfc_fc4_ctrl_stat *cstat; struct lpfc_vport *vport; struct lpfc_hba *phba; struct lpfc_nodelist *ndlp; struct lpfc_io_buf *lpfc_ncmd; struct lpfc_nvme_rport *rport; struct lpfc_nvme_qhandle *lpfc_queue_info; struct lpfc_nvme_fcpreq_priv *freqpriv; struct nvme_common_command *sqe; uint64_t start = 0; #if (IS_ENABLED(CONFIG_NVME_FC)) u8 *uuid = NULL; int err; enum dma_data_direction iodir; #endif /* Validate pointers. LLDD fault handling with transport does * have timing races. */ lport = (struct lpfc_nvme_lport *)pnvme_lport->private; if (unlikely(!lport)) { ret = -EINVAL; goto out_fail; } vport = lport->vport; if (unlikely(!hw_queue_handle)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6117 Fail IO, NULL hw_queue_handle\n"); atomic_inc(&lport->xmt_fcp_err); ret = -EBUSY; goto out_fail; } phba = vport->phba; if ((unlikely(test_bit(FC_UNLOADING, &vport->load_flag))) || test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6124 Fail IO, Driver unload\n"); atomic_inc(&lport->xmt_fcp_err); ret = -ENODEV; goto out_fail; } freqpriv = pnvme_fcreq->private; if (unlikely(!freqpriv)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6158 Fail IO, NULL request data\n"); atomic_inc(&lport->xmt_fcp_err); ret = -EINVAL; goto out_fail; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (phba->ktime_on) start = ktime_get_ns(); #endif rport = (struct lpfc_nvme_rport *)pnvme_rport->private; lpfc_queue_info = (struct lpfc_nvme_qhandle *)hw_queue_handle; /* * Catch race where our node has transitioned, but the * transport is still transitioning. */ ndlp = rport->ndlp; if (!ndlp) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_NVME_IOERR, "6053 Busy IO, ndlp not ready: rport x%px " "ndlp x%px, DID x%06x\n", rport, ndlp, pnvme_rport->port_id); atomic_inc(&lport->xmt_fcp_err); ret = -EBUSY; goto out_fail; } /* The remote node has to be a mapped target or it's an error. */ if ((ndlp->nlp_type & NLP_NVME_TARGET) && (ndlp->nlp_state != NLP_STE_MAPPED_NODE)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_NVME_IOERR, "6036 Fail IO, DID x%06x not ready for " "IO. State x%x, Type x%x Flg x%x\n", pnvme_rport->port_id, ndlp->nlp_state, ndlp->nlp_type, ndlp->fc4_xpt_flags); atomic_inc(&lport->xmt_fcp_bad_ndlp); ret = -EBUSY; goto out_fail; } /* Currently only NVME Keep alive commands should be expedited * if the driver runs out of a resource. These should only be * issued on the admin queue, qidx 0 */ if (!lpfc_queue_info->qidx && !pnvme_fcreq->sg_cnt) { sqe = &((struct nvme_fc_cmd_iu *) pnvme_fcreq->cmdaddr)->sqe.common; if (sqe->opcode == nvme_admin_keep_alive) expedite = 1; } /* Check if IO qualifies for CMF */ if (phba->cmf_active_mode != LPFC_CFG_OFF && pnvme_fcreq->io_dir == NVMEFC_FCP_READ && pnvme_fcreq->payload_length) { ret = lpfc_update_cmf_cmd(phba, pnvme_fcreq->payload_length); if (ret) { ret = -EBUSY; goto out_fail; } /* Get start time for IO latency */ start = ktime_get_ns(); } /* The node is shared with FCP IO, make sure the IO pending count does * not exceed the programmed depth. */ if (lpfc_ndlp_check_qdepth(phba, ndlp)) { if ((atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) && !expedite) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6174 Fail IO, ndlp qdepth exceeded: " "idx %d DID %x pend %d qdepth %d\n", lpfc_queue_info->index, ndlp->nlp_DID, atomic_read(&ndlp->cmd_pending), ndlp->cmd_qdepth); atomic_inc(&lport->xmt_fcp_qdepth); ret = -EBUSY; goto out_fail1; } } /* Lookup Hardware Queue index based on fcp_io_sched module parameter */ if (phba->cfg_fcp_io_sched == LPFC_FCP_SCHED_BY_HDWQ) { idx = lpfc_queue_info->index; } else { cpu = raw_smp_processor_id(); idx = phba->sli4_hba.cpu_map[cpu].hdwq; } lpfc_ncmd = lpfc_get_nvme_buf(phba, ndlp, idx, expedite); if (lpfc_ncmd == NULL) { atomic_inc(&lport->xmt_fcp_noxri); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6065 Fail IO, driver buffer pool is empty: " "idx %d DID %x\n", lpfc_queue_info->index, ndlp->nlp_DID); ret = -EBUSY; goto out_fail1; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (start) { lpfc_ncmd->ts_cmd_start = start; lpfc_ncmd->ts_last_cmd = phba->ktime_last_cmd; } else { lpfc_ncmd->ts_cmd_start = 0; } #endif lpfc_ncmd->rx_cmd_start = start; /* * Store the data needed by the driver to issue, abort, and complete * an IO. * Do not let the IO hang out forever. There is no midlayer issuing * an abort so inform the FW of the maximum IO pending time. */ freqpriv->nvme_buf = lpfc_ncmd; lpfc_ncmd->nvmeCmd = pnvme_fcreq; lpfc_ncmd->ndlp = ndlp; lpfc_ncmd->qidx = lpfc_queue_info->qidx; #if (IS_ENABLED(CONFIG_NVME_FC)) /* check the necessary and sufficient condition to support VMID */ if (lpfc_is_vmid_enabled(phba) && (ndlp->vmid_support || phba->pport->vmid_priority_tagging == LPFC_VMID_PRIO_TAG_ALL_TARGETS)) { /* is the I/O generated by a VM, get the associated virtual */ /* entity id */ uuid = nvme_fc_io_getuuid(pnvme_fcreq); if (uuid) { if (pnvme_fcreq->io_dir == NVMEFC_FCP_WRITE) iodir = DMA_TO_DEVICE; else if (pnvme_fcreq->io_dir == NVMEFC_FCP_READ) iodir = DMA_FROM_DEVICE; else iodir = DMA_NONE; err = lpfc_vmid_get_appid(vport, uuid, iodir, (union lpfc_vmid_io_tag *) &lpfc_ncmd->cur_iocbq.vmid_tag); if (!err) lpfc_ncmd->cur_iocbq.cmd_flag |= LPFC_IO_VMID; } } #endif /* * Issue the IO on the WQ indicated by index in the hw_queue_handle. * This identfier was create in our hardware queue create callback * routine. The driver now is dependent on the IO queue steering from * the transport. We are trusting the upper NVME layers know which * index to use and that they have affinitized a CPU to this hardware * queue. A hardware queue maps to a driver MSI-X vector/EQ/CQ/WQ. */ lpfc_ncmd->cur_iocbq.hba_wqidx = idx; cstat = &phba->sli4_hba.hdwq[idx].nvme_cstat; lpfc_nvme_prep_io_cmd(vport, lpfc_ncmd, ndlp, cstat); ret = lpfc_nvme_prep_io_dma(vport, lpfc_ncmd); if (ret) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6175 Fail IO, Prep DMA: " "idx %d DID %x\n", lpfc_queue_info->index, ndlp->nlp_DID); atomic_inc(&lport->xmt_fcp_err); ret = -ENOMEM; goto out_free_nvme_buf; } lpfc_nvmeio_data(phba, "NVME FCP XMIT: xri x%x idx %d to %06x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, lpfc_queue_info->index, ndlp->nlp_DID); ret = lpfc_sli4_issue_wqe(phba, lpfc_ncmd->hdwq, &lpfc_ncmd->cur_iocbq); if (ret) { atomic_inc(&lport->xmt_fcp_wqerr); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6113 Fail IO, Could not issue WQE err %x " "sid: x%x did: x%x oxid: x%x\n", ret, vport->fc_myDID, ndlp->nlp_DID, lpfc_ncmd->cur_iocbq.sli4_xritag); goto out_free_nvme_buf; } if (phba->cfg_xri_rebalancing) lpfc_keep_pvt_pool_above_lowwm(phba, lpfc_ncmd->hdwq_no); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_ncmd->ts_cmd_start) lpfc_ncmd->ts_cmd_wqput = ktime_get_ns(); if (phba->hdwqstat_on & LPFC_CHECK_NVME_IO) { cpu = raw_smp_processor_id(); this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); lpfc_ncmd->cpu = cpu; if (idx != cpu) lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6702 CPU Check cmd: " "cpu %d wq %d\n", lpfc_ncmd->cpu, lpfc_queue_info->index); } #endif return 0; out_free_nvme_buf: if (lpfc_ncmd->nvmeCmd->sg_cnt) { if (lpfc_ncmd->nvmeCmd->io_dir == NVMEFC_FCP_WRITE) cstat->output_requests--; else cstat->input_requests--; } else cstat->control_requests--; lpfc_release_nvme_buf(phba, lpfc_ncmd); out_fail1: lpfc_update_cmf_cmpl(phba, LPFC_CGN_NOT_SENT, pnvme_fcreq->payload_length, NULL); out_fail: return ret; } /** * lpfc_nvme_abort_fcreq_cmpl - Complete an NVME FCP abort request. * @phba: Pointer to HBA context object * @cmdiocb: Pointer to command iocb object. * @rspiocb: Pointer to response iocb object. * * This is the callback function for any NVME FCP IO that was aborted. * * Return value: * None **/ void lpfc_nvme_abort_fcreq_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_wcqe_complete *abts_cmpl = &rspiocb->wcqe_cmpl; lpfc_printf_log(phba, KERN_INFO, LOG_NVME, "6145 ABORT_XRI_CN completing on rpi x%x " "original iotag x%x, abort cmd iotag x%x " "req_tag x%x, status x%x, hwstatus x%x\n", bf_get(wqe_ctxt_tag, &cmdiocb->wqe.generic.wqe_com), get_job_abtsiotag(phba, cmdiocb), cmdiocb->iotag, bf_get(lpfc_wcqe_c_request_tag, abts_cmpl), bf_get(lpfc_wcqe_c_status, abts_cmpl), bf_get(lpfc_wcqe_c_hw_status, abts_cmpl)); lpfc_sli_release_iocbq(phba, cmdiocb); } /** * lpfc_nvme_fcp_abort - Issue an NVME-over-FCP ABTS * @pnvme_lport: Pointer to the driver's local port data * @pnvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq * @hw_queue_handle: Driver-returned handle in lpfc_nvme_create_queue * @pnvme_fcreq: IO request from nvme fc to driver. * * Driver registers this routine as its nvme request io abort handler. This * routine issues an fcp Abort WQE with data from the @lpfc_nvme_fcpreq * data structure to the rport indicated in @lpfc_nvme_rport. This routine * is executed asynchronously - one the target is validated as "MAPPED" and * ready for IO, the driver issues the abort request and returns. * * Return value: * None **/ static void lpfc_nvme_fcp_abort(struct nvme_fc_local_port *pnvme_lport, struct nvme_fc_remote_port *pnvme_rport, void *hw_queue_handle, struct nvmefc_fcp_req *pnvme_fcreq) { struct lpfc_nvme_lport *lport; struct lpfc_vport *vport; struct lpfc_hba *phba; struct lpfc_io_buf *lpfc_nbuf; struct lpfc_iocbq *nvmereq_wqe; struct lpfc_nvme_fcpreq_priv *freqpriv; unsigned long flags; int ret_val; /* Validate pointers. LLDD fault handling with transport does * have timing races. */ lport = (struct lpfc_nvme_lport *)pnvme_lport->private; if (unlikely(!lport)) return; vport = lport->vport; if (unlikely(!hw_queue_handle)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS, "6129 Fail Abort, HW Queue Handle NULL.\n"); return; } phba = vport->phba; freqpriv = pnvme_fcreq->private; if (unlikely(!freqpriv)) return; if (test_bit(FC_UNLOADING, &vport->load_flag)) return; /* Announce entry to new IO submit field. */ lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS, "6002 Abort Request to rport DID x%06x " "for nvme_fc_req x%px\n", pnvme_rport->port_id, pnvme_fcreq); lpfc_nbuf = freqpriv->nvme_buf; if (!lpfc_nbuf) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6140 NVME IO req has no matching lpfc nvme " "io buffer. Skipping abort req.\n"); return; } else if (!lpfc_nbuf->nvmeCmd) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6141 lpfc NVME IO req has no nvme_fcreq " "io buffer. Skipping abort req.\n"); return; } /* driver queued commands are in process of being flushed */ if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6139 Driver in reset cleanup - flushing " "NVME Req now. hba_flag x%lx\n", phba->hba_flag); return; } /* Guard against IO completion being called at same time */ spin_lock_irqsave(&lpfc_nbuf->buf_lock, flags); spin_lock(&phba->hbalock); nvmereq_wqe = &lpfc_nbuf->cur_iocbq; /* * The lpfc_nbuf and the mapped nvme_fcreq in the driver's * state must match the nvme_fcreq passed by the nvme * transport. If they don't match, it is likely the driver * has already completed the NVME IO and the nvme transport * has not seen it yet. */ if (lpfc_nbuf->nvmeCmd != pnvme_fcreq) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6143 NVME req mismatch: " "lpfc_nbuf x%px nvmeCmd x%px, " "pnvme_fcreq x%px. Skipping Abort xri x%x\n", lpfc_nbuf, lpfc_nbuf->nvmeCmd, pnvme_fcreq, nvmereq_wqe->sli4_xritag); goto out_unlock; } /* Don't abort IOs no longer on the pending queue. */ if (!(nvmereq_wqe->cmd_flag & LPFC_IO_ON_TXCMPLQ)) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6142 NVME IO req x%px not queued - skipping " "abort req xri x%x\n", pnvme_fcreq, nvmereq_wqe->sli4_xritag); goto out_unlock; } atomic_inc(&lport->xmt_fcp_abort); lpfc_nvmeio_data(phba, "NVME FCP ABORT: xri x%x idx %d to %06x\n", nvmereq_wqe->sli4_xritag, nvmereq_wqe->hba_wqidx, pnvme_rport->port_id); /* Outstanding abort is in progress */ if (nvmereq_wqe->cmd_flag & LPFC_DRIVER_ABORTED) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6144 Outstanding NVME I/O Abort Request " "still pending on nvme_fcreq x%px, " "lpfc_ncmd x%px xri x%x\n", pnvme_fcreq, lpfc_nbuf, nvmereq_wqe->sli4_xritag); goto out_unlock; } ret_val = lpfc_sli4_issue_abort_iotag(phba, nvmereq_wqe, lpfc_nvme_abort_fcreq_cmpl); spin_unlock(&phba->hbalock); spin_unlock_irqrestore(&lpfc_nbuf->buf_lock, flags); /* Make sure HBA is alive */ lpfc_issue_hb_tmo(phba); if (ret_val != WQE_SUCCESS) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6137 Failed abts issue_wqe with status x%x " "for nvme_fcreq x%px.\n", ret_val, pnvme_fcreq); return; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS, "6138 Transport Abort NVME Request Issued for " "ox_id x%x\n", nvmereq_wqe->sli4_xritag); return; out_unlock: spin_unlock(&phba->hbalock); spin_unlock_irqrestore(&lpfc_nbuf->buf_lock, flags); return; } /* Declare and initialization an instance of the FC NVME template. */ static struct nvme_fc_port_template lpfc_nvme_template = { /* initiator-based functions */ .localport_delete = lpfc_nvme_localport_delete, .remoteport_delete = lpfc_nvme_remoteport_delete, .create_queue = lpfc_nvme_create_queue, .delete_queue = lpfc_nvme_delete_queue, .ls_req = lpfc_nvme_ls_req, .fcp_io = lpfc_nvme_fcp_io_submit, .ls_abort = lpfc_nvme_ls_abort, .fcp_abort = lpfc_nvme_fcp_abort, .xmt_ls_rsp = lpfc_nvme_xmt_ls_rsp, .max_hw_queues = 1, .max_sgl_segments = LPFC_NVME_DEFAULT_SEGS, .max_dif_sgl_segments = LPFC_NVME_DEFAULT_SEGS, .dma_boundary = 0xFFFFFFFF, /* Sizes of additional private data for data structures. * No use for the last two sizes at this time. */ .local_priv_sz = sizeof(struct lpfc_nvme_lport), .remote_priv_sz = sizeof(struct lpfc_nvme_rport), .lsrqst_priv_sz = 0, .fcprqst_priv_sz = sizeof(struct lpfc_nvme_fcpreq_priv), }; /* * lpfc_get_nvme_buf - Get a nvme buffer from io_buf_list of the HBA * * This routine removes a nvme buffer from head of @hdwq io_buf_list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_nvme_buf - Success **/ static struct lpfc_io_buf * lpfc_get_nvme_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx, int expedite) { struct lpfc_io_buf *lpfc_ncmd; struct lpfc_sli4_hdw_queue *qp; struct sli4_sge *sgl; struct lpfc_iocbq *pwqeq; union lpfc_wqe128 *wqe; lpfc_ncmd = lpfc_get_io_buf(phba, NULL, idx, expedite); if (lpfc_ncmd) { pwqeq = &(lpfc_ncmd->cur_iocbq); wqe = &pwqeq->wqe; /* Setup key fields in buffer that may have been changed * if other protocols used this buffer. */ pwqeq->cmd_flag = LPFC_IO_NVME; pwqeq->cmd_cmpl = lpfc_nvme_io_cmd_cmpl; lpfc_ncmd->start_time = jiffies; lpfc_ncmd->flags = 0; /* Rsp SGE will be filled in when we rcv an IO * from the NVME Layer to be sent. * The cmd is going to be embedded so we need a SKIP SGE. */ sgl = lpfc_ncmd->dma_sgl; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); bf_set(lpfc_sli4_sge_last, sgl, 0); sgl->word2 = cpu_to_le32(sgl->word2); /* Fill in word 3 / sgl_len during cmd submission */ /* Initialize 64 bytes only */ memset(wqe, 0, sizeof(union lpfc_wqe)); if (lpfc_ndlp_check_qdepth(phba, ndlp)) { atomic_inc(&ndlp->cmd_pending); lpfc_ncmd->flags |= LPFC_SBUF_BUMP_QDEPTH; } } else { qp = &phba->sli4_hba.hdwq[idx]; qp->empty_io_bufs++; } return lpfc_ncmd; } /** * lpfc_release_nvme_buf: Return a nvme buffer back to hba nvme buf list. * @phba: The Hba for which this call is being executed. * @lpfc_ncmd: The nvme buffer which is being released. * * This routine releases @lpfc_ncmd nvme buffer by adding it to tail of @phba * lpfc_io_buf_list list. For SLI4 XRI's are tied to the nvme buffer * and cannot be reused for at least RA_TOV amount of time if it was * aborted. **/ static void lpfc_release_nvme_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd) { struct lpfc_sli4_hdw_queue *qp; unsigned long iflag = 0; if ((lpfc_ncmd->flags & LPFC_SBUF_BUMP_QDEPTH) && lpfc_ncmd->ndlp) atomic_dec(&lpfc_ncmd->ndlp->cmd_pending); lpfc_ncmd->ndlp = NULL; lpfc_ncmd->flags &= ~LPFC_SBUF_BUMP_QDEPTH; qp = lpfc_ncmd->hdwq; if (unlikely(lpfc_ncmd->flags & LPFC_SBUF_XBUSY)) { lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6310 XB release deferred for " "ox_id x%x on reqtag x%x\n", lpfc_ncmd->cur_iocbq.sli4_xritag, lpfc_ncmd->cur_iocbq.iotag); spin_lock_irqsave(&qp->abts_io_buf_list_lock, iflag); list_add_tail(&lpfc_ncmd->list, &qp->lpfc_abts_io_buf_list); qp->abts_nvme_io_bufs++; spin_unlock_irqrestore(&qp->abts_io_buf_list_lock, iflag); } else lpfc_release_io_buf(phba, (struct lpfc_io_buf *)lpfc_ncmd, qp); } /** * lpfc_nvme_create_localport - Create/Bind an nvme localport instance. * @vport: the lpfc_vport instance requesting a localport. * * This routine is invoked to create an nvme localport instance to bind * to the nvme_fc_transport. It is called once during driver load * like lpfc_create_shost after all other services are initialized. * It requires a vport, vpi, and wwns at call time. Other localport * parameters are modified as the driver's FCID and the Fabric WWN * are established. * * Return codes * 0 - successful * -ENOMEM - no heap memory available * other values - from nvme registration upcall **/ int lpfc_nvme_create_localport(struct lpfc_vport *vport) { int ret = 0; struct lpfc_hba *phba = vport->phba; struct nvme_fc_port_info nfcp_info; struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; /* Initialize this localport instance. The vport wwn usage ensures * that NPIV is accounted for. */ memset(&nfcp_info, 0, sizeof(struct nvme_fc_port_info)); nfcp_info.port_role = FC_PORT_ROLE_NVME_INITIATOR; nfcp_info.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); nfcp_info.port_name = wwn_to_u64(vport->fc_portname.u.wwn); /* We need to tell the transport layer + 1 because it takes page * alignment into account. When space for the SGL is allocated we * allocate + 3, one for cmd, one for rsp and one for this alignment */ lpfc_nvme_template.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; /* Advertise how many hw queues we support based on cfg_hdw_queue, * which will not exceed cpu count. */ lpfc_nvme_template.max_hw_queues = phba->cfg_hdw_queue; if (!IS_ENABLED(CONFIG_NVME_FC)) return ret; /* localport is allocated from the stack, but the registration * call allocates heap memory as well as the private area. */ ret = nvme_fc_register_localport(&nfcp_info, &lpfc_nvme_template, &vport->phba->pcidev->dev, &localport); if (!ret) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME | LOG_NVME_DISC, "6005 Successfully registered local " "NVME port num %d, localP x%px, private " "x%px, sg_seg %d\n", localport->port_num, localport, localport->private, lpfc_nvme_template.max_sgl_segments); /* Private is our lport size declared in the template. */ lport = (struct lpfc_nvme_lport *)localport->private; vport->localport = localport; lport->vport = vport; vport->nvmei_support = 1; atomic_set(&lport->xmt_fcp_noxri, 0); atomic_set(&lport->xmt_fcp_bad_ndlp, 0); atomic_set(&lport->xmt_fcp_qdepth, 0); atomic_set(&lport->xmt_fcp_err, 0); atomic_set(&lport->xmt_fcp_wqerr, 0); atomic_set(&lport->xmt_fcp_abort, 0); atomic_set(&lport->xmt_ls_abort, 0); atomic_set(&lport->xmt_ls_err, 0); atomic_set(&lport->cmpl_fcp_xb, 0); atomic_set(&lport->cmpl_fcp_err, 0); atomic_set(&lport->cmpl_ls_xb, 0); atomic_set(&lport->cmpl_ls_err, 0); atomic_set(&lport->fc4NvmeLsRequests, 0); atomic_set(&lport->fc4NvmeLsCmpls, 0); } return ret; } #if (IS_ENABLED(CONFIG_NVME_FC)) /* lpfc_nvme_lport_unreg_wait - Wait for the host to complete an lport unreg. * * The driver has to wait for the host nvme transport to callback * indicating the localport has successfully unregistered all * resources. Since this is an uninterruptible wait, loop every ten * seconds and print a message indicating no progress. * * An uninterruptible wait is used because of the risk of transport-to- * driver state mismatch. */ static void lpfc_nvme_lport_unreg_wait(struct lpfc_vport *vport, struct lpfc_nvme_lport *lport, struct completion *lport_unreg_cmp) { u32 wait_tmo; int ret, i, pending = 0; struct lpfc_sli_ring *pring; struct lpfc_hba *phba = vport->phba; struct lpfc_sli4_hdw_queue *qp; int abts_scsi, abts_nvme; u16 nvmels_cnt; /* Host transport has to clean up and confirm requiring an indefinite * wait. Print a message if a 10 second wait expires and renew the * wait. This is unexpected. */ wait_tmo = msecs_to_jiffies(LPFC_NVME_WAIT_TMO * 1000); while (true) { ret = wait_for_completion_timeout(lport_unreg_cmp, wait_tmo); if (unlikely(!ret)) { pending = 0; abts_scsi = 0; abts_nvme = 0; nvmels_cnt = 0; for (i = 0; i < phba->cfg_hdw_queue; i++) { qp = &phba->sli4_hba.hdwq[i]; if (!vport->localport || !qp || !qp->io_wq) return; pring = qp->io_wq->pring; if (!pring) continue; pending += pring->txcmplq_cnt; abts_scsi += qp->abts_scsi_io_bufs; abts_nvme += qp->abts_nvme_io_bufs; } if (phba->sli4_hba.nvmels_wq) { pring = phba->sli4_hba.nvmels_wq->pring; if (pring) nvmels_cnt = pring->txcmplq_cnt; } if (!vport->localport || test_bit(HBA_PCI_ERR, &vport->phba->bit_flags) || phba->link_state == LPFC_HBA_ERROR || test_bit(FC_UNLOADING, &vport->load_flag)) return; lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6176 Lport x%px Localport x%px wait " "timed out. Pending %d [%d:%d:%d]. " "Renewing.\n", lport, vport->localport, pending, abts_scsi, abts_nvme, nvmels_cnt); continue; } break; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR, "6177 Lport x%px Localport x%px Complete Success\n", lport, vport->localport); } #endif /** * lpfc_nvme_destroy_localport - Destroy lpfc_nvme bound to nvme transport. * @vport: pointer to a host virtual N_Port data structure * * This routine is invoked to destroy all lports bound to the phba. * The lport memory was allocated by the nvme fc transport and is * released there. This routine ensures all rports bound to the * lport have been disconnected. * **/ void lpfc_nvme_destroy_localport(struct lpfc_vport *vport) { #if (IS_ENABLED(CONFIG_NVME_FC)) struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; int ret; DECLARE_COMPLETION_ONSTACK(lport_unreg_cmp); if (vport->nvmei_support == 0) return; localport = vport->localport; if (!localport) return; lport = (struct lpfc_nvme_lport *)localport->private; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6011 Destroying NVME localport x%px\n", localport); /* lport's rport list is clear. Unregister * lport and release resources. */ lport->lport_unreg_cmp = &lport_unreg_cmp; ret = nvme_fc_unregister_localport(localport); /* Wait for completion. This either blocks * indefinitely or succeeds */ lpfc_nvme_lport_unreg_wait(vport, lport, &lport_unreg_cmp); vport->localport = NULL; /* Regardless of the unregister upcall response, clear * nvmei_support. All rports are unregistered and the * driver will clean up. */ vport->nvmei_support = 0; if (ret == 0) { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6009 Unregistered lport Success\n"); } else { lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6010 Unregistered lport " "Failed, status x%x\n", ret); } #endif } void lpfc_nvme_update_localport(struct lpfc_vport *vport) { #if (IS_ENABLED(CONFIG_NVME_FC)) struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; localport = vport->localport; if (!localport) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_NVME, "6710 Update NVME fail. No localport\n"); return; } lport = (struct lpfc_nvme_lport *)localport->private; if (!lport) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_NVME, "6171 Update NVME fail. localP x%px, No lport\n", localport); return; } lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, "6012 Update NVME lport x%px did x%x\n", localport, vport->fc_myDID); localport->port_id = vport->fc_myDID; if (localport->port_id == 0) localport->port_role = FC_PORT_ROLE_NVME_DISCOVERY; else localport->port_role = FC_PORT_ROLE_NVME_INITIATOR; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6030 bound lport x%px to DID x%06x\n", lport, localport->port_id); #endif } int lpfc_nvme_register_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { #if (IS_ENABLED(CONFIG_NVME_FC)) int ret = 0; struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; struct lpfc_nvme_rport *rport; struct lpfc_nvme_rport *oldrport; struct nvme_fc_remote_port *remote_port; struct nvme_fc_port_info rpinfo; struct lpfc_nodelist *prev_ndlp = NULL; struct fc_rport *srport = ndlp->rport; lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NVME_DISC, "6006 Register NVME PORT. DID x%06x nlptype x%x\n", ndlp->nlp_DID, ndlp->nlp_type); localport = vport->localport; if (!localport) return 0; lport = (struct lpfc_nvme_lport *)localport->private; /* NVME rports are not preserved across devloss. * Just register this instance. Note, rpinfo->dev_loss_tmo * is left 0 to indicate accept transport defaults. The * driver communicates port role capabilities consistent * with the PRLI response data. */ memset(&rpinfo, 0, sizeof(struct nvme_fc_port_info)); rpinfo.port_id = ndlp->nlp_DID; if (ndlp->nlp_type & NLP_NVME_TARGET) rpinfo.port_role |= FC_PORT_ROLE_NVME_TARGET; if (ndlp->nlp_type & NLP_NVME_INITIATOR) rpinfo.port_role |= FC_PORT_ROLE_NVME_INITIATOR; if (ndlp->nlp_type & NLP_NVME_DISCOVERY) rpinfo.port_role |= FC_PORT_ROLE_NVME_DISCOVERY; rpinfo.port_name = wwn_to_u64(ndlp->nlp_portname.u.wwn); rpinfo.node_name = wwn_to_u64(ndlp->nlp_nodename.u.wwn); if (srport) rpinfo.dev_loss_tmo = srport->dev_loss_tmo; else rpinfo.dev_loss_tmo = vport->cfg_devloss_tmo; spin_lock_irq(&ndlp->lock); /* If an oldrport exists, so does the ndlp reference. If not * a new reference is needed because either the node has never * been registered or it's been unregistered and getting deleted. */ oldrport = lpfc_ndlp_get_nrport(ndlp); if (oldrport) { prev_ndlp = oldrport->ndlp; spin_unlock_irq(&ndlp->lock); } else { spin_unlock_irq(&ndlp->lock); if (!lpfc_nlp_get(ndlp)) { dev_warn(&vport->phba->pcidev->dev, "Warning - No node ref - exit register\n"); return 0; } } ret = nvme_fc_register_remoteport(localport, &rpinfo, &remote_port); if (!ret) { /* If the ndlp already has an nrport, this is just * a resume of the existing rport. Else this is a * new rport. */ /* Guard against an unregister/reregister * race that leaves the WAIT flag set. */ spin_lock_irq(&ndlp->lock); ndlp->fc4_xpt_flags &= ~NVME_XPT_UNREG_WAIT; ndlp->fc4_xpt_flags |= NVME_XPT_REGD; spin_unlock_irq(&ndlp->lock); rport = remote_port->private; if (oldrport) { /* Sever the ndlp<->rport association * before dropping the ndlp ref from * register. */ spin_lock_irq(&ndlp->lock); ndlp->nrport = NULL; ndlp->fc4_xpt_flags &= ~NVME_XPT_UNREG_WAIT; spin_unlock_irq(&ndlp->lock); rport->ndlp = NULL; rport->remoteport = NULL; /* Reference only removed if previous NDLP is no longer * active. It might be just a swap and removing the * reference would cause a premature cleanup. */ if (prev_ndlp && prev_ndlp != ndlp) { if (!prev_ndlp->nrport) lpfc_nlp_put(prev_ndlp); } } /* Clean bind the rport to the ndlp. */ rport->remoteport = remote_port; rport->lport = lport; rport->ndlp = ndlp; spin_lock_irq(&ndlp->lock); ndlp->nrport = rport; spin_unlock_irq(&ndlp->lock); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC | LOG_NODE, "6022 Bind lport x%px to remoteport x%px " "rport x%px WWNN 0x%llx, " "Rport WWPN 0x%llx DID " "x%06x Role x%x, ndlp %p prev_ndlp x%px\n", lport, remote_port, rport, rpinfo.node_name, rpinfo.port_name, rpinfo.port_id, rpinfo.port_role, ndlp, prev_ndlp); } else { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6031 RemotePort Registration failed " "err: %d, DID x%06x ref %u\n", ret, ndlp->nlp_DID, kref_read(&ndlp->kref)); lpfc_nlp_put(ndlp); } return ret; #else return 0; #endif } /* * lpfc_nvme_rescan_port - Check to see if we should rescan this remoteport * * If the ndlp represents an NVME Target, that we are logged into, * ping the NVME FC Transport layer to initiate a device rescan * on this remote NPort. */ void lpfc_nvme_rescan_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { #if (IS_ENABLED(CONFIG_NVME_FC)) struct lpfc_nvme_rport *nrport; struct nvme_fc_remote_port *remoteport = NULL; spin_lock_irq(&ndlp->lock); nrport = lpfc_ndlp_get_nrport(ndlp); if (nrport) remoteport = nrport->remoteport; spin_unlock_irq(&ndlp->lock); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6170 Rescan NPort DID x%06x type x%x " "state x%x nrport x%px remoteport x%px\n", ndlp->nlp_DID, ndlp->nlp_type, ndlp->nlp_state, nrport, remoteport); if (!nrport || !remoteport) goto rescan_exit; /* Rescan an NVME target in MAPPED state with DISCOVERY role set */ if (remoteport->port_role & FC_PORT_ROLE_NVME_DISCOVERY && ndlp->nlp_state == NLP_STE_MAPPED_NODE) { nvme_fc_rescan_remoteport(remoteport); lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6172 NVME rescanned DID x%06x " "port_state x%x\n", ndlp->nlp_DID, remoteport->port_state); } return; rescan_exit: lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6169 Skip NVME Rport Rescan, NVME remoteport " "unregistered\n"); #endif } /* lpfc_nvme_unregister_port - unbind the DID and port_role from this rport. * * There is no notion of Devloss or rport recovery from the current * nvme_transport perspective. Loss of an rport just means IO cannot * be sent and recovery is completely up to the initator. * For now, the driver just unbinds the DID and port_role so that * no further IO can be issued. */ void lpfc_nvme_unregister_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { #if (IS_ENABLED(CONFIG_NVME_FC)) int ret; struct nvme_fc_local_port *localport; struct lpfc_nvme_lport *lport; struct lpfc_nvme_rport *rport; struct nvme_fc_remote_port *remoteport = NULL; localport = vport->localport; /* This is fundamental error. The localport is always * available until driver unload. Just exit. */ if (!localport) return; lport = (struct lpfc_nvme_lport *)localport->private; if (!lport) goto input_err; spin_lock_irq(&ndlp->lock); rport = lpfc_ndlp_get_nrport(ndlp); if (rport) remoteport = rport->remoteport; spin_unlock_irq(&ndlp->lock); if (!remoteport) goto input_err; lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC, "6033 Unreg nvme remoteport x%px, portname x%llx, " "port_id x%06x, portstate x%x port type x%x " "refcnt %d\n", remoteport, remoteport->port_name, remoteport->port_id, remoteport->port_state, ndlp->nlp_type, kref_read(&ndlp->kref)); /* Sanity check ndlp type. Only call for NVME ports. Don't * clear any rport state until the transport calls back. */ if (ndlp->nlp_type & NLP_NVME_TARGET) { /* No concern about the role change on the nvme remoteport. * The transport will update it. */ spin_lock_irq(&ndlp->lock); ndlp->fc4_xpt_flags |= NVME_XPT_UNREG_WAIT; spin_unlock_irq(&ndlp->lock); /* Don't let the host nvme transport keep sending keep-alives * on this remoteport. Vport is unloading, no recovery. The * return values is ignored. The upcall is a courtesy to the * transport. */ if (test_bit(FC_UNLOADING, &vport->load_flag) || unlikely(vport->phba->link_state == LPFC_HBA_ERROR)) (void)nvme_fc_set_remoteport_devloss(remoteport, 0); ret = nvme_fc_unregister_remoteport(remoteport); /* The driver no longer knows if the nrport memory is valid. * because the controller teardown process has begun and * is asynchronous. Break the binding in the ndlp. Also * remove the register ndlp reference to setup node release. */ ndlp->nrport = NULL; lpfc_nlp_put(ndlp); if (ret != 0) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6167 NVME unregister failed %d " "port_state x%x\n", ret, remoteport->port_state); if (test_bit(FC_UNLOADING, &vport->load_flag)) { /* Only 1 thread can drop the initial node * reference. Check if another thread has set * NLP_DROPPED. */ if (!test_and_set_bit(NLP_DROPPED, &ndlp->nlp_flag)) { lpfc_nlp_put(ndlp); return; } } } } return; input_err: #endif lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "6168 State error: lport x%px, rport x%px FCID x%06x\n", vport->localport, ndlp->rport, ndlp->nlp_DID); } /** * lpfc_sli4_nvme_pci_offline_aborted - Fast-path process of NVME xri abort * @phba: pointer to lpfc hba data structure. * @lpfc_ncmd: The nvme job structure for the request being aborted. * * This routine is invoked by the worker thread to process a SLI4 fast-path * NVME aborted xri. Aborted NVME IO commands are completed to the transport * here. **/ void lpfc_sli4_nvme_pci_offline_aborted(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd) { struct nvmefc_fcp_req *nvme_cmd = NULL; lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6533 %s nvme_cmd %p tag x%x abort complete and " "xri released\n", __func__, lpfc_ncmd->nvmeCmd, lpfc_ncmd->cur_iocbq.iotag); /* Aborted NVME commands are required to not complete * before the abort exchange command fully completes. * Once completed, it is available via the put list. */ if (lpfc_ncmd->nvmeCmd) { nvme_cmd = lpfc_ncmd->nvmeCmd; nvme_cmd->transferred_length = 0; nvme_cmd->rcv_rsplen = 0; nvme_cmd->status = NVME_SC_INTERNAL; nvme_cmd->done(nvme_cmd); lpfc_ncmd->nvmeCmd = NULL; } lpfc_release_nvme_buf(phba, lpfc_ncmd); } /** * lpfc_sli4_nvme_xri_aborted - Fast-path process of NVME xri abort * @phba: pointer to lpfc hba data structure. * @axri: pointer to the fcp xri abort wcqe structure. * @lpfc_ncmd: The nvme job structure for the request being aborted. * * This routine is invoked by the worker thread to process a SLI4 fast-path * NVME aborted xri. Aborted NVME IO commands are completed to the transport * here. **/ void lpfc_sli4_nvme_xri_aborted(struct lpfc_hba *phba, struct sli4_wcqe_xri_aborted *axri, struct lpfc_io_buf *lpfc_ncmd) { uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); struct nvmefc_fcp_req *nvme_cmd = NULL; struct lpfc_nodelist *ndlp = lpfc_ncmd->ndlp; if (ndlp) lpfc_sli4_abts_err_handler(phba, ndlp, axri); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, "6311 nvme_cmd %p xri x%x tag x%x abort complete and " "xri released\n", lpfc_ncmd->nvmeCmd, xri, lpfc_ncmd->cur_iocbq.iotag); /* Aborted NVME commands are required to not complete * before the abort exchange command fully completes. * Once completed, it is available via the put list. */ if (lpfc_ncmd->nvmeCmd) { nvme_cmd = lpfc_ncmd->nvmeCmd; nvme_cmd->done(nvme_cmd); lpfc_ncmd->nvmeCmd = NULL; } lpfc_release_nvme_buf(phba, lpfc_ncmd); } /** * lpfc_nvme_wait_for_io_drain - Wait for all NVME wqes to complete * @phba: Pointer to HBA context object. * * This function flushes all wqes in the nvme rings and frees all resources * in the txcmplq. This function does not issue abort wqes for the IO * commands in txcmplq, they will just be returned with * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI * slot has been permanently disabled. **/ void lpfc_nvme_wait_for_io_drain(struct lpfc_hba *phba) { struct lpfc_sli_ring *pring; u32 i, wait_cnt = 0; if (phba->sli_rev < LPFC_SLI_REV4 || !phba->sli4_hba.hdwq) return; /* Cycle through all IO rings and make sure all outstanding * WQEs have been removed from the txcmplqs. */ for (i = 0; i < phba->cfg_hdw_queue; i++) { if (!phba->sli4_hba.hdwq[i].io_wq) continue; pring = phba->sli4_hba.hdwq[i].io_wq->pring; if (!pring) continue; /* Retrieve everything on the txcmplq */ while (!list_empty(&pring->txcmplq)) { msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); wait_cnt++; /* The sleep is 10mS. Every ten seconds, * dump a message. Something is wrong. */ if ((wait_cnt % 1000) == 0) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6178 NVME IO not empty, " "cnt %d\n", wait_cnt); } } } /* Make sure HBA is alive */ lpfc_issue_hb_tmo(phba); } void lpfc_nvme_cancel_iocb(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeIn, uint32_t stat, uint32_t param) { #if (IS_ENABLED(CONFIG_NVME_FC)) struct lpfc_io_buf *lpfc_ncmd; struct nvmefc_fcp_req *nCmd; struct lpfc_wcqe_complete wcqe; struct lpfc_wcqe_complete *wcqep = &wcqe; lpfc_ncmd = pwqeIn->io_buf; if (!lpfc_ncmd) { lpfc_sli_release_iocbq(phba, pwqeIn); return; } /* For abort iocb just return, IO iocb will do a done call */ if (bf_get(wqe_cmnd, &pwqeIn->wqe.gen_req.wqe_com) == CMD_ABORT_XRI_CX) { lpfc_sli_release_iocbq(phba, pwqeIn); return; } spin_lock(&lpfc_ncmd->buf_lock); nCmd = lpfc_ncmd->nvmeCmd; if (!nCmd) { spin_unlock(&lpfc_ncmd->buf_lock); lpfc_release_nvme_buf(phba, lpfc_ncmd); return; } spin_unlock(&lpfc_ncmd->buf_lock); lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, "6194 NVME Cancel xri %x\n", lpfc_ncmd->cur_iocbq.sli4_xritag); wcqep->word0 = 0; bf_set(lpfc_wcqe_c_status, wcqep, stat); wcqep->parameter = param; wcqep->total_data_placed = 0; wcqep->word3 = 0; /* xb is 0 */ /* Call release with XB=1 to queue the IO into the abort list. */ if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) bf_set(lpfc_wcqe_c_xb, wcqep, 1); memcpy(&pwqeIn->wcqe_cmpl, wcqep, sizeof(*wcqep)); (pwqeIn->cmd_cmpl)(phba, pwqeIn, pwqeIn); #endif } /** * lpfc_nvmels_flush_cmd - Clean up outstanding nvmels commands for a port * @phba: Pointer to HBA context object. * **/ void lpfc_nvmels_flush_cmd(struct lpfc_hba *phba) { #if (IS_ENABLED(CONFIG_NVME_FC)) LIST_HEAD(cancel_list); struct lpfc_sli_ring *pring = NULL; struct lpfc_iocbq *piocb, *tmp_iocb; unsigned long iflags; if (phba->sli4_hba.nvmels_wq) pring = phba->sli4_hba.nvmels_wq->pring; if (unlikely(!pring)) return; spin_lock_irqsave(&phba->hbalock, iflags); spin_lock(&pring->ring_lock); list_splice_init(&pring->txq, &cancel_list); pring->txq_cnt = 0; list_for_each_entry_safe(piocb, tmp_iocb, &pring->txcmplq, list) { if (piocb->cmd_flag & LPFC_IO_NVME_LS) { list_move_tail(&piocb->list, &cancel_list); pring->txcmplq_cnt--; piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; } } spin_unlock(&pring->ring_lock); spin_unlock_irqrestore(&phba->hbalock, iflags); if (!list_empty(&cancel_list)) lpfc_sli_cancel_iocbs(phba, &cancel_list, IOSTAT_LOCAL_REJECT, IOERR_SLI_DOWN); #endif }